
CSEIT206216 | Accepted : 04 March 2020 | Published : 15 March 2020 | March-April-2020 [6 (2) : 36-42]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2020 IJSRCSEIT | Volume 6 | Issue 2 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT206216

36

Frequent Pattern Mining over Unstructured Data using Semi-Structured Doc-

Model and Pattern Ranking
Sudhir Tirumalasetty*1, A. Divya2, D. Rahitya Lakshmi3, Ch. Durga Bhavani4, D. Anusha5

*1Department of Computer Science & Engineering, Vasireddy Venkatadri Institute of Technology, Guntur,

Andhra Pradesh, India
2, 3, 4, 5 Department of Computer Science & Engineering, Vasireddy Venkatadri Institute of Technology, Guntur,

Andhra Pradesh, India

ABSTRACT

Frequent pattern mining is an essential data-mining task, with a goal of discovering knowledge in the form of

repeated patterns. Many efficient pattern-mining algorithms have been discovered in the last two decades, yet

most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel

algorithms hold the key to solving the problem in this context. This paper reviews recent advances in parallel

frequent pattern mining, analysing them through the Big Data lens. Load balancing and work partitioning are

the major challenges to be conquered. These challenges always invoke innovative methods to do, as Big Data

evolves with no limits. The biggest challenge than before is conquering unstructured data for finding frequent

patterns. To accomplish this Semi Structured Doc-Model and ranking of patterns are used.

Keywords : Data Mining, Doc-Model, Frequent Pattern Mining, Pattern Rank, Unstructured Data

I. INTRODUCTION

A.Traditional File System

The customary recording framework (TFS) is a

technique for putting away and masterminding PC

documents and the data in the record (information).

Fundamentally, it sorts out these documents into a

database for the capacity, association, control, and

recovery by the PC's working system [1].

Record based frameworks were an early endeavor to

modernize the manual documenting framework.

Record based framework is an assortment of

utilization programs that perform administrations for

the end-clients, for example, refreshing, addition, and

erasure adding new documents to database and so on.

Each program characterizes and deals with its

information.

At the point when a PC client needs to store

information electronically, they should do as such by

setting information in records. Records are put away

in explicit areas on the hard plate (catalogs). The client

can make new documents to put information in, erase

a record that contains information, rename the

document, and so on which are known as document

the executives; a capacity gave by the Operating

System (OS).

The improvement of the record based framework lead

to database the board framework as a result of the

burdens of conventional document framework, for

example, information repetition, information

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT206216

Volume 6, Issue 2, March-April-2020 | http://ijsrcseit.com

Sudhir Tirumalasetty et al Int J Sci Res CSE & IT, March-April-2020; 6 (2) : 36-42

 37

irregularity, trouble in getting to information,

constrained information sharing, uprightness issues,

atomicity issues, simultaneous access abnormalities,

and security issues.

B. Relational Database Systems

Because of a great deal of wasteful aspects of the

conventional record framework during the 1970s line

thought of the social hypothesis that prompted the

improvement of the Relational Database Management

Systems (RDBMS) as an answer for the difficulties

presented by the level document database framework

in the prior years. Capacity of information in RDBMS

was finished utilizing Tables. Standard fields and

records are spoken to as sections (fields) and columns

(records) in a table. Their significant preferred

position was the capacity to relate and record data.

Security was upgraded in RDBMS and they were

additionally ready to adjust to impressive development

of information. Organized Query Language, SQL is the

programming language utilized for questioning and

refreshing social databases. For quite a while RDBMS

has been the favored procedure for information the

executives purposes. Be that as it may, RDBMS

powerlessness to deal with current remaining tasks at

hand has offered ascend to adaptability, execution and

accessibility issues with its unbending diagram design

[2].

C. Big-Data

What is large information? Up until now, there is no

all-around acknowledged definition. In Wikipedia,

huge information is characterized as "a widely

inclusive term for any assortment of informational

indexes so enormous and complex that it gets hard to

process utilizing conventional information preparing

applications" [3]. Contrasted with customary

information, the highlights of huge information can be

described by 5V, to be specific, colossal Volume, high

Velocity, high Variety, low Veracity, and high Value.

The primary trouble in adapting to huge information

does not just lie in its immense volume, as we may

reduce somewhat this issue by sensibly growing or

broadening our figuring frameworks. Overall, the

genuine difficulties revolve around the differentiated

information types (Variety), opportune reaction

prerequisites (Velocity), and vulnerabilities in the

information (Veracity). Because of the expanded

information types, an application frequently needs to

manage conventional organized information, yet

additionally semi-organized or unstructured

information (counting content, pictures, video, and

voice). Opportune reactions are likewise testing in

light of the fact that there may not be sufficient assets

to gather, store, and procedure the large information

inside a sensible measure of time. Finally, recognizing

genuine and bogus or solid and untrustworthy

information is particularly testing, in any event, for

the best information cleaning techniques to wipe out

some natural eccentrics of information.

Volume: Organizations gather information from an

assortment of sources, including business exchanges,

keen (IoT) gadgets, mechanical gear, recordings, web

based life and the sky is the limit from there. Before,

putting away it would have been an issue – yet less

expensive stockpiling on stages like information lakes

and Hadoop have facilitated the weight.

Speed: With the development in the Internet of

Things, information streams in to organizations at an

uncommon speed and should be taken care of in an

opportune way. RFID labels, sensors and savvy meters

are driving the need to manage these deluges of

information in close constant.

Assortment: Data comes in a wide range of

arrangements – from organized, numeric information

in customary databases to unstructured content

reports, messages, recordings, sounds, stock ticker

information and monetary exchanges.

http://www.ijsrcseit.com/

Volume 6, Issue 2, March-April-2020 | http://ijsrcseit.com

Sudhir Tirumalasetty et al Int J Sci Res CSE & IT, March-April-2020; 6 (2) : 36-42

 38

Inconstancy: notwithstanding the expanding speeds

and assortments of information, information streams

are flighty – changing frequently and fluctuating

significantly. It's difficult; however organizations need

to realize when something is inclining in internet

based life, and how to oversee day by day, regular and

occasion activated pinnacle information loads.

Veracity: Veracity alludes to the nature of information.

Since information originates from such a significant

number of various sources, it's hard to connect,

coordinate, wash down and change information across

frameworks. Organizations need to interface and

connect connections, pecking orders and various

information linkages. Something else, their

information can rapidly winding out of control [4].

D. Doc-based

In any field tremendous measure of informational

collections are being utilized where social database

models are not adequate to keep up all the datasets so

report based models are presented. A record situated

database, or archive store, is a PC program intended

for putting away, recovering and overseeing report

arranged data, otherwise called semi-organized data

[5].

Archive arranged databases are one of the

fundamental classifications of NoSQL databases, and

the fame of the expression "record situated database"

has developed with the utilization of the term NoSQL

itself. XML databases are a subclass of record arranged

databases that are upgraded to work with XML reports.

Diagram databases are comparative, however include

another layer, the relationship, which permits them to

connect records for quick traversal.

Archive situated databases are naturally a subclass of

the key-esteem store, another NoSQL database idea.

The distinction lies in the manner the information are

prepared; in a key-esteem store, the information are

viewed as characteristically murky to the database,

while a record arranged framework depends on inside

structure in the report so as to remove metadata that

the database motor uses for additional enhancement.

In spite of the fact that the thing that matters is

regularly debatable because of apparatuses in the

frameworks, reasonably the record store is intended to

offer a more extravagant involvement in present day

programming strategies.

Archive databases balance unequivocally with the

conventional social database (RDB). Social databases

for the most part store information in independent

tables that are characterized by the software engineer,

and a solitary item might be spread over a few tables.

Archive databases store all data for a given item in a

solitary occurrence in the database, and each put away

article can be not the same as each other. This takes

out the requirement for object-social mapping while

at the same time stacking information into the

database.

There are different highlights which makes archive

databases not the same as social databases like Intuitive

Data Model(Faster and Easier for Developers), Flexible

Schema(Dynamically adjust to change),

Universal(JSON Documents are Everywhere),

Powerful(Query Data Anyway You Need),

Distributed(Resilient and Globally Scalable).

The following sections include literature, followed by

the implementation of proposed model with findings.

II. LITERATURE

A.Why NoSQL

A document orient database or a NoSQL record store

is a cutting edge approach to store information in

JSON design instead of straightforward lines and

sections. It permits you to communicate information

in its characteristic structure the manner in which it's

intended to be. For as far back as 40 years, social

databases have commanded the database business.

http://www.ijsrcseit.com/

Volume 6, Issue 2, March-April-2020 | http://ijsrcseit.com

Sudhir Tirumalasetty et al Int J Sci Res CSE & IT, March-April-2020; 6 (2) : 36-42

 39

Social databases arrange information in tables of lines

and segments and create connections between them.

These connections are viewed as the consistent

associations between the tables and are characterized

based on the information itself.

Anyway, social databases could not adapt up to the

difficulties expressed beneath.

1. Agile Software Development requires versatile

procedures and faster shipment of programming. This

implies the hidden database should empower this

strategy. Conversely, lines and sections are

intrinsically inflexible information structure. One

section expansion affects the entire table.

2. With Relational databases, an adjustment in the

information model methods an engineer demands

changes from a database executive. This human

escalated procedure can take unreasonably yearn for

developing and developing organizations that depend

on rapid arrangement.

3. Ultimately, information communicated in lines and

sections is an unnatural method to store data. The

explanation being, a line in a RDBMS is only a level

information structure, with information separated

into sections, though, information patterns are

considerably more perplexing along these lines

request more flexibility [7].

B. Various NOSQL Models:

There are various models of NoSQL databases. Here is

the list of NoSQL databases

1. Key-Value databases(It has a big hash table of keys and

values)

2. Document based databases(It stores documents made

up of tagged elements)

3. Column oriented databases(Each storage block

contains data from only one column)

4. Graph databases(A network database that uses edges

and nodes to represent and store data) [6]

C. Why MongoDB:

MongoDB is one of the report based capacity model of

NoSQL databases. In MongoDB, records [8] that

utilization a B-tree information structure are created

at assortment (proportional to a table in connection

databases) level. To help an assortment of information

and inquiries, there are various kinds of lists accessible:

1) Default _id - this exists as a matter of course on the

_id field of assortments and furthermore fills in as a

one of a kind id;

2) Single Field - this is a client characterized list on a

solitary field of a record;

3) Compound Index - this is a client characterized list

on different fields;

4) Multi key Index - this is utilized to file a field that

holds a variety of qualities;

5) Geospatial Index - this is an extraordinary list that

MongoDB (in contrast to different models) gives to

help geospatial questions and has two sorts: (I) 2d

spatial file for planer geometry inquiries, (ii) 2sphere

spatial list for round geometry inquiries;

6) Text Index - this is the file type that enables scan for

the string or content to content in an assortment; and

7) Hashed Index-this helps list the hash of the

estimations of a field.

III.PROPOSED MODEL

A. Why:

Big Data is being used in many fields, and it contains

many number of datasets where it is not possible to

find all the frequent patterns in the various datasets.

This proposed model helps us to take the required

content from those large datasets and can be

differentiated based on our usage of the data.

B. Model Explanation:

In this model we preferred a website

(www.vvitguntur.com) where we extracted the

content of all the staff data based on some particular

tags in the inspect page of the website.

A database with a name departments as shown in

Figure 2 is created and various collections are created

in the database with various department names here,

http://www.ijsrcseit.com/

Volume 6, Issue 2, March-April-2020 | http://ijsrcseit.com

Sudhir Tirumalasetty et al Int J Sci Res CSE & IT, March-April-2020; 6 (2) : 36-42

 40

we prefer to take csedepartment as a collection name

as shown in Figure 3.

From the website based on the name, education,

profession and reference id each staff member data is

created as a document sample in the collection as

shown in Figure 4..

IV. IMPLEMENTATION

For implementing this proposed model, we used

Spyder (Python 3.7) for implementing the code. The

below implemented code helps us to get the content

from the website and store it in the Mongo dB

database, where each staff field is stored as a document

in the collection.

The below code is used for extracting data from a

website and stores the data in the MongoDB server.

When we run this program, the program shows the

ObjectId of each document in each collection in the

database as shown in Figure 1.

A. Code Snippet:

Code for extracting Data from website

html=requests.get("https://vvitguntur.com/cse-

faculty")

res=BeautifulSoup(html.content,'html.parser')

ta=res.find("section",{"id":"s5_below_body_w

rap"})

tags=ta.find_all("a")

Code for storing data in MongoDB server

myclient=

pymongo.MongoClient("mongodb://localhost:27017/"

)

mydb = myclient["departmentss"]

mycol = mydb["csedepartment"]

dict={"name":name,"education":education,"profession

":profession,"ref":("https://www.vvitguntur.com"+lists

[i]),"information":info}

 data.append(dict)

x = mycol.insert_many(data)

print(x.inserted_ids)

Figure 1: Shows the ObjectId of the each document

where the data is stored in MongoDB server

After executing this code, it shows some object ids in

the console, where the ids are references of each staff

member.

In the implementation of this code, if the database is

not present in the databases list in MongoDB, then it

creates the database with the given name and create

collections with an object id for each document in the

collection. The result of this code is as follows.

Figure 2: Database in MongoDB server

http://www.ijsrcseit.com/

Volume 6, Issue 2, March-April-2020 | http://ijsrcseit.com

Sudhir Tirumalasetty et al Int J Sci Res CSE & IT, March-April-2020; 6 (2) : 36-42

 41

Figure 3: Collections in the database after executing

the code

Figure 4: Each collection containing the data of each

staff member

As our aim is to produce frequent patterns from the

huge datasets here is another sample code where when

it is implemented. This shows all the frequent items

related to the researches, seminars, journals

implemented by lectures. The proposed model asks the

user to enter the word he need to search for. If the

word the user has given is found in the database it

retrieves the data from the database and shows the

word count to the user as per the given word. If the

word given by the user is not present in the database

it displays a message that, “The word you are trying to

search is not found in the database. Please try for

another word."

This code checks each and every document for the

user given word. In this program it stores the data

retrieved by the user given word in the database with

the word given by user as the collection name. If the

user is trying to check for the word, he previously

checked then it retrieves data from the database

without storing the data again in the database. If the

word user is trying to search is not in his previously

searched list then it stores the data in database and

retrieve the data in the descending order based on the

count of the words in each document in each

collection as shown in Figure 5.

B. Code Snippet:

Extract user needed data from the server

for x in mycol.find({"information":{"$regex":words}}):

 for k in range(len(x['information'])):

 linklist.append(x['information'][k])

 counts=0

 for m in linklist:

 if words in m:

 counts+=1

dict={"name":x['name'],"department":j,"count":counts

}

Code to store the extracted data in the server

mycol=mydb1[words]

 el=mycol.insert_many(data)

 mydac=mycol.find().sort("count",-1)

 for h in mydac:

 print(number,". ",h['name'],"--

>",h['department'],"-->",h['count'])

Figure 5: Retrieving data based on user needs

http://www.ijsrcseit.com/

Volume 6, Issue 2, March-April-2020 | http://ijsrcseit.com

Sudhir Tirumalasetty et al Int J Sci Res CSE & IT, March-April-2020; 6 (2) : 36-42

 42

V. ADVANTAGES

•

• Large volume of data can be stored in MongoDB

• Extract data from any website and compare the data in

them.

• Less time, more efficiency

• Retrieval is easy without searching for the data in

various files.

• Easy access over the data

• Less complexity

VI. CONCLUSION

We presented a reliable general method for ranking

frequent patterns with respect to the data. This helps

one to understand and retrieve the data easily from the

website. This helps the user to access the data as the

unstructured data is converted to semi-structured data.

The unstructured data consists of irregularities and

ambiguities due to which user faces problems in

retrieving the data so the data is converted to semi-

structured data which helps in removing some of the

irregularities and ambiguities. This helps in

pharmaceutical industries, educational institutes,

finance and marketing, etc used to find the required

data based on their need. This project can be used and

modified based on the user needs. The data can be

taken in the form of text, images, XML, HTML and

modified based on the requirements.

VII. REFERENCES

[1] UKEssays

https://www.ukessays.com/essays/information-

technology/traditional-file-systems-and-

database-management-information-technology-

essay.php

[2] Innocent Mapanga, Prudence Kadebu “Database

Management Systems: A NoSQL Analysis”,

International Journal of Modern Communication

Technologies & Research (IJMCTR) ISSN: 2321-

0850, Volume-1, Issue-7, September 2013

[3] Big Data, https://en.wikipedia.org/wiki/Big_data

[4] SAS Insights “History of Big Data”,

https://www.sas.com/en_in/insights/big-

data/what-is-big-data.html

[5] Document-oriented database,

https://en.wikipedia.org/wiki/Document-

oriented_database

[6] Rupali Arora, Rinkle Rani Aggarwal “Modeling

and Querying Data in MongoDB”, International

Journal of Scientific & Engineering Research,

Volume 4, Issue 7, July-2013,141 ISSN 2229-5518

[7] NCache,

https://www.alachisoft.com/nosdb/document-

databases.html

[8] Bertino, E., Beng, C. O., Ron, S.D., Kian, L.T.,

Justin, Z., Boris, S., & Daniele, A. (2012) Indexing

techniques for advanced database systems.

Springer Publishing Company, Incorporated.

Cite this article as :

Sudhir Tirumalasetty, A. Divya, D. Rahitya Lakshmi,

Ch. Durga Bhavani, D. Anusha, "Frequent Pattern

Mining over Unstructured Data using Semi-Structured

Doc-Model and Pattern Ranking ", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 6 Issue 2, pp.

36-42, March-April 2020. Available at doi :

https://doi.org/10.32628/CSEIT206216

Journal URL : http://ijsrcseit.com/CSEIT206216

http://www.ijsrcseit.com/
https://en.wikipedia.org/wiki/Big_data
https://www.sas.com/en_in/insights/big-data/what-is-big-data.html
https://www.sas.com/en_in/insights/big-data/what-is-big-data.html
https://www.alachisoft.com/nosdb/document-databases.html
https://www.alachisoft.com/nosdb/document-databases.html
https://doi.org/10.32628/CSEIT206216
https://search.crossref.org/?q=10.32628/CSEIT206216
http://ijsrcseit.com/CSEIT206216

