
CSEIT2063106 | Accepted : 20 May 2020 | Published : 29 May 2020 | May-June-2020 [6 (3) : 416-427]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2016 IJSRCSEIT | Volume 1 | Issue 1 | ISSN : 2456-3307

doi : https://doi.org/10.32628/CSEIT2063106

416

Optimal Task Assignment in Distributed Systems through

Greedy algorithm
Kapil Govil*, Arun Kumar Yadav, Harihar Nath Verma

Department of Computer Science & Applications, ITM University, Gwalior, Madhya Pradesh, India

ABSTRACT

A distributed processing environment consists of one or more applications spread over several computers.

These computers may be geographically separated from one another. The applications may be executed on

different platforms using different operating systems and telecommunication protocols. In short, a distributed

operating environment offers a variety of information system solutions regardless of the location of the user,

user’s operating system or the equipment using by user. Performance enhancement of the distributed

networks is a major and challenging problem for the researchers. In this paper, algorithm designed, have to

allocate m tasks to n processors (m>n) in the environment of distributed processing. These m tasks are to be

assigned on the n processors of system through Greedy algorithm of task scheduling. The starting time and

finishing time of the processing of a task is considered and denoted by Si and Fi where i= 1, 2, 3, 4, 5…… m.

In order to evaluate the optimal time, present algorithm obtains the set of assigned and on assigned tasks.

Based on these sets allocation has been made. The method is presented into algorithmic form and several sets

of input data have been implemented to test the effectiveness of the algorithm.

Keywords: Distributed Processing Environment, Performance Enhancement, Greedy algorithm, Allocation

I. INTRODUCTION

A distributed system [6 – 8, 11, 13, 17, 29 – 34] is a

collection of loosely coupled processors interconnected

by a communication network [5, 15, 19, 22 – 24]. The

distributed processing environment [8, 10, 14, 18, 20,

25, 28] is the environment, in which services provided

by the network reside at multiple sites. Instead of

single large machine being responsible for all aspects

of process, each separate processor handles subset. In

the distributed environment the programs or tasks are

also often developed with the subsets of independent

units under various environments. It has drawn

tremendous attention in developing cost-effective and

reliable applications to meet the desired requirement.

Profit density based Greedy Knapsack algorithm [3] is

one simple approach that can ensure near-optimal

profit. However, profit gain is sometimes not the only

factor concerned in making important management

decisions. Kovalev et al [1] proposed a research using

the isotone property with respect to the canonical order,

they described a class of objective functions and a class

of polyhedral feasible sets which provide the optimal

Greedy [3] solution for the problem. The main research

problem for such networks is the allocation problem, in

which all the tasks or modules are to be assigned

optimally and performance measures are to be

optimized.

II. OBJECTIVE

The objective of the present research problem is to

enhance the performance of the distributed systems by

using the proper utilization of its processors. The

present problem minimizes the overall processing time

of a distributed system through optimally assigning the

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

417

tasks of various processors of the system. The

distributed system consist of n processors that are

denoted through a set P = {p1, p2, p3, ……..pn}. The

processors are interconnected by communication links.

A set T = {t1, t2, t3, ……tm} has also been considered.

These m tasks are to be assigned on the n processors of

system through greedy algorithm. The number of tasks

is more than the number of processors of the system.

The starting time and finish time of the processing of a

task is considered and denoted by Si and Fi, where i = 1,

2, 3,……m.

III. TECHNIQUE

It is considered that a distributed system [6 – 8, 11, 13,

17, 29 – 34] having n processors interconnected by

communication link. It is denoted by a set P = {p1, p2,

p3, ……pn} of n processors. A set T = {t1, t2, t3,……tm}

of m tasks is to be considered. These m tasks are to be

assigned on the n processors, of the distributed systems

while m>>n. The set Si and Fi where i = 1, 2, 3 ….m,

consist of starting and finishing time for the processing

of the tasks to the system. The difference between the

finishing time and starting time shows the duration of

processing of a task on a processor of the distributed

system.

In order to evaluate the optimal time, present algorithm

takes input the number of processors i.e., n and number

of tasks i.e., m. Again taking input the starting time and

finish time of each task through an array namely,

TTMPj(,) of order m x 2. Algorithm reads the task

communication matrix CTM(,) of order. Then on

storing the difference of starting time and finishing

time from TTMPj(,) to DTM graphical representation

of TTMPj(,) using Greedy Activity Scheduling

Algorithm (GASA) [3] has been created to obtain the

pair of all of the non - interfering tasks in Tass(,). Now,

algorithm replaces the processing time with  in

DTM(,) where tasks are not assigned and store the

results in UDTM(,). Algorithm calculates the sum of

each row in UDTM(,) and stores into avg_row(); On

storing the sorted avg_row() in avg_row_asc() and

storing the corresponding tasks into Taskseq, algorithm

selects set of n tasks which have at least one processing

time in each row and each column, store the results in

SMi(,). On applying algorithm of Kumar et. al [2] on

SMi(,) to make allocations and marking the

assignments [9, 12, 16, 17, 21, 26, 27] along with their

values overall optimal time by adding optimal time

with communication time can be obtained.

IV. ALGORITHM

Start algo

 Read the number of processors in n

Read the number of tasks in m

Read the starting and finish time of each task

in TTMPj(,)

Read the task communication matrix CTM(,)

of order m x m.

Calculate the difference of starting and

finishing time from TTMPj(,)and store it into

DTM(,) for all processors.

Make the graphical representation of TTMPj(,)

While (all tasks != SELECTED)

{

Select the tasks which are not

interfering with other tasks using

GASA.

 Make the pair of assigned tasks in

Tass(,) for each processor.

}

Replace the processing time with  in DTM(,)

where tasks are not assigned and store the

results in UDTM(,)

Calculate the sum of each row in UDTM(,) and

store into avg_row()

Sort then in ascending order and store into

avg_row_asc()

While (all tasks != SELECTED)

{

 Select n tasks from Taskseq() those

have at least one processing time in

each row and each column and store

the results in SMi(,)

 Apply strategy of Kumar et. al.

[2] on

SMi(,) to make allocations

 Mark the assignments along with their

values

 }

 Mark the overall allocation along with their

value

Overall Optimal Time = Processing Time +

Communication Time

End algo

V. IMPLEMENTATION

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

418

In this problem, the distributed system consist a set P

of 3 processors {p1, p2, p3} and a set T of 10 tasks {t1,

t2, t3, t4, t5, t6, t7, t8, t9, t10}. The starting and finishing

time for all 3 processors are as given in the matrices of

the order 10 x 2, namely, Task Time Matrix for

Processors p1, p2 and p3 namely [TTMP1(,)], [TTMP2(,)]

and [TTMP3(,)] respectively.

ii

10

9

8

7

6

5

4

3

2

1

1

FS

109

118

97

116

85

74

63

41

52

31

t

t

t

t

t

t

t

t

t

t

)(,TTMP









































ii

10

9

8

7

6

5

4

3

2

1

2

FS

1412

1311

1210

118

97

116

74

53

32

41

t

t

t

t

t

t

t

t

t

t

)(,TTMP









































ii

10

9

8

7

6

5

4

3

2

1

3

FS

1413

1412

1210

119

118

87

75

43

62

31

t

t

t

t

t

t

t

t

t

t

)(,TTMP









































The communication amongst the tasks has also taken

into consideration and it is represented by the square

symmetric communication matrix namely CTM(,) of

order n x n:

10t9t8t7t6t5t4t3t2t1t

0

70

630

1320

25410

362850

7439210

65534710

263286740

4982365210

t

t

t

t

t

t

t

t

t

t

) , CTM(

10

9

8

7

6

5

4

3

2

1









































Obtaining the matrix DTM(,) of order 10 x 3, which

shows the difference between starting time and

finishing time of each task at each processor is as:

321

10

9

8

7

6

5

4

3

2

1

ppp

121

223

222

235

323

153

233

123

413

232

t

t

t

t

t

t

t

t

t

t

)DTM(,









































The graphical representation of the matrices TTMP1(,),

TTMP2(,) and TTMP3(,) using Greedy Activity

Scheduling Algorithm (GASA)

[3] are shown in

Figures, 1, 2 and 3 respectively.

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

419

 t9

 t7

 t10

 t8

 t6

 t5

 t4

 t2

 t3

 t1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1. Task assignment graph for p1

 t10

 t9

 t8

 t7

 t5

 t6

 t4

 t3

 t1

 t2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2. Task assignment graph for p2

 t10

 t9

 t8

 t7

 t6

 t5

 t4

 t2

 t3

 t1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3. Task assignment graph for p3

Now, on selecting those tasks, which are not interfering with another task from the Figure1, 2 and 3, selected

(shaded) task are obtained as shown in Figure 4, Figure 5 and Figure 6 respectively.

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

420

 t9

 t7

 t10

 t8

 t6

 t5

 t4

 t2

 t3

 t1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4. Task assignment graph for p1

 t10

 t9

 t8

 t7

 t5

 t6

 t4

 t3

 t1

 t2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5. Task assignment graph for p2

 t10

 t9

 t8

 t7

 t6

 t5

 t4

 t2

 t3

 t1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6. Task assignment graph for p3

A set of assigned and non-assigned tasks for each

processor is created as –

For Processor p1:

 Assigned tasks Tass(1,) = {t1, t4, t8, t10}

 Non-Assigned tasks Tnon_ass(1,) = {t3, t2, t5, t6, t7,

t9}For Processor p2:

 Assigned tasks Tass(1,) = {t2, t3, t6, t8, t10}

 Non-Assigned tasks Tnon_ass = {t1, t4, t5, t7, t9}

For Processor p3:

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

421

 Assigned tasks Tass(1,)= {t1, t3, t4, t5, t6, t9}

 Non-Assigned tasks Tnon_ass = {t2, t7, t8}

Now, on finding out which one task is still in non -

assigned set, here, task t7 is not assigned to any

processor, so the process for task t7 has been repeated.

So, the graphical representation of the task t7 from

matrices TTMP1(,), TTMP2(,) and TTMP3(,) are shown

in the Figures namely Figure 7, 8 and 9 respectively.

 t7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7. Task assignment graph for p1

 t7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8. Task assignment graph for p2

 t7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 9. Task assignment graph for p3

As there is only one task in Figure 7, 8 and 9, so no other task can interfere task t7; So the task t7 will be selected

with all 3 processors namely p1, p2, and p3. The graphical representations are shown in Figure 10, 11 and 12.

 t7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 10. Task assignment graph for p1

 t7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 11. Task assignment graph for p2

 t7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 12. Task assignment graph for p3

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

422

Now, on modifying the set of assigned and non -

assigned tasks for each processors as -

For Processor p1:

 Assigned tasks Tass(1,)= {t1, t4, t8, t10, t7}

 Non - Assigned tasks Tnon_ass(1,) = {t3, t2, t5, t6,

t9}

For Processor p2:

 Assigned tasks Tass(1,)= {t2, t3, t6, t8, t10, t7,}

 Non - Assigned tasks Tnon_ass(1,)= {t1, t4, t5, t9}

For Processor p3:

 Assigned tasks Tass(1,)= {t1, t3, t4, t5, t6, t9, t7,}

 Non - Assigned tasks Tnon_ass(1,)= {t2, t8}

Now, replacing the processing time with  (infinity) in

DTM(,), where the tasks are not assigned to the

processor, on storing the updated task matrix DTM(,)

and store as UDTM(,), i.e.,

321

10

9

8

7

6

5

4

3

2

1

ppp

21

2

22

235

32

1

23

12

1

22

t

t

t

t

t

t

t

t

t

t

) , (UDTM



























































Obtaining the sum of each row (by keeping  aside)

and storing it in a linear array sum_row() along with

their corresponding tasks i.e.,












32410515314

tttttttttt
) avg_row(

10987654321

On sorting the avg_row() in ascending order can

keeping  aside and store the results in linear array

avg_row_asc() along their corresponding tasks. These

are given below;












10554433211

tttttttttt
) (cavg_row_as

76481103952

On storing the corresponding tasks in Taskseq() as,

Taskseq()= {t2, t5, t9, t3, t10, t1, t8, t4, t6, t7}

On selecting first 3 tasks from Taskseq, which have at

least one processing time in each row and each column

Selection Matrix namely SM1(,) can be obtained as -

321 ppp

10

5

2

1

t

t

t

) , (SM 























21

1

1

On applying Kumar et. al. [2] strategy on SM1(,) the

task assignment can be find as -

Processor Task

p1 t10

p2 t2

p3 t5

On again selecting next three tasks, SM2(,) can be

obtained as –

321 ppp

1

3

9

2

t

t

t

) , (SM 























22

12

2

On applying Kumar et. al. [2]

strategy on SM2(,) the

task assignment can be obtained as -

Processor Task

p1 t1

p2 t3

p3 t9

On again selecting next three tasks, SM3(,) can be

obtained as –

321 ppp

6

4

8

3

t

t

t

) , (SM 























32

23

22

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

423

On applying Kumar et. al. [2] strategy on SM3(,) the

task assignment can be obtained as -

Processor Task

p1 t8

p2 t6

p3 t4

Now, there are no next three tasks to allocate; but there

is only one task as -

321 ppp

 SM4(,) = t7[5 3 2]

On applying Kumar et. al. [2] strategy on processors

the task assignment can be obtained as

Processor Task

p3 t7

The final results are given in the Table I -

TABLE I

OPTIMAL RESULTS

Processor Task
Processing

Time

Communication

Time

Overall

Optimal

Time

p1 t10*t1*t8 5

128 145 p2 t2*t3*t6 5

p3 t5*t9*t4*t7 7

VI. CONCLUSION

The algorithm mentioned in this paper is based on the

consideration of processing time of the tasks to various

processors. It is found that method is useful for

network designer working in the area of distributed

systems. The graphical representation of the optimal

assignment is shown by the Figure 13.

Figure 13. Optimal Assignment Graph

It may be noticed that task t1, t8 & t10 are being

executed by processor p1, task t2, t3 & t6 are getting

executed by processor p2 and tasks t4, t5, t7 & t9 are

getting executed by processor p3. The processorwise

processing time graph is shown in the Figure 14.

Figure 14. Processorwise Processing time Graph

The optimal result of the example that is considered to

test the algorithm and it is mentioned in the

implementation section of the problem are as given in

Table II.

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

424

TABLE II

OPTIMAL RESULTS

Processors Tasks
Processing

Time

Communication

Time

Overall

Optimal

Time

p1 t10*t1*t8 5

128 145 p2 t2*t3*t6 5

p3 t5*t9*t4*t7 7

As the analysis of an algorithm is mainly focuses on its

complexity. The complexity is a function of input

size ’n’. It is referred to as the amount of time required

by an algorithm to run to completion. The complexity

of the above mentioned algorithm is O(m
2
n

2
). The

performance of the algorithm is compared with the

algorithm suggested by Richard et al [4]. Table III

shows the complexity comparison between algorithm

[5] and present algorithm.

TABLE III

TIME COMPLEXITY

Processors

n

Tasks

m

Time Complexity

Algorithm [4]

O(n

m
)

Present algorithm O(m

2
n

2
)

3 4 81 144

3 5 243 225

3 6 729 324

3 7 2187 441

3 8 6561 576

4 5 1024 400

4 6 4096 576

4 7 16384 784

4 8 65536 1024

4 9 262144 1296

5 6 15625 900

5 7 78125 1225

5 8 390625 1600

5 9 1953125 2025

5 10 9765625 2500

From the Table III, it is clear that present algorithm is

much better for optimal allocation of tasks that upgrade

the performance of distributed system. Graphs 15, 16

and 17 also shows the comparison between algorithm

[4] and present algorithm for n=3, 4 and 5 respectively.

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

425

Figure 15. Comparison Graph for n=3

Figure 16. Comparison Graph for n=4

Figure 17. Comparison Graph for n=5

VII. REFERENCES

[1] M. M. Kovalev and D. M.Vasilkov. 1995. The

canonical order and greedy algorithms. European

Journal of Operational Research. (1995), Vol. 80. No.

2. pp. 446 – 450.

[2] A. Kumar, M. P. Singh and P. K. Yadav. 1995. A Fast

Algorithm for Allocating Tasks in Distributed

Processing System. In proceedings of the 30
th

 Annual

Convention of CSI, Hyderabad. (1995). pp. 347 –

358.

[3] Nitin Upadhyay, “The Design & Analysis of

Algorithms”, Katson Books, India, 2004.

[4] R. Y. Richard, E. Y. S. Lee and M. Tsuchiya. 1982. A

Task Allocation Model for Distributed Computer

System. IEEE Transactions on Computer. (1982),

Vol. 31. pp. 41 – 47.

[5] T. F. Abelzaher and K. G. Shin. 1995. Optimal

combined task and message scheduling in distributed

real – time systems. IEEE Real – Time Systems

Symposium. (1995), Vol. 16. pp. 162.

[6] Andrew S. Tanenbaum, “Computer Networks”,

Prentice Hall of India, India, 2001.

[7] D. F. Baca. 1989. Allocation modules to Processor in

a distributed system. IEEE Transactions on Software

Engineering. (1989), Vol. 15. pp. 1427 – 1436.

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

426

[8] T. L. Casavent and J. G. Kuhl. 1988. A. Taxonomy of

Scheduling in General Purpose Distributed

Computing System. IEEE Transactions on Software

Engineering. (1988), Vol. 14. pp. 141 – 154.

[9] A. Farinelli, L. Iocchi, D. Nardi and V. A. Ziparo.

2005. Task Assignment with dynamic perception and

constrained tasks in a Multi-Robot System. Proc. of

International Conference on Robotics and Automation

(ICRA'05). (2005).

[10] A. Y. Hamed. 2012. Task Allocation for Maximizing

Reliability of Distributed Computing Systems Using

Genetic Algorithms. International Journal of

Computer Networks and Wireless Communications.

(2012), Vol. 2. No. 5. pp. 560 – 569.

[11] Bassel Arafeh, Khalid Day and Abderezak Touzene.

2008. A multilevel partitioning approach for efficient

tasks allocation in heterogeneous distributed systems.

Journal of Systems Architecture: The EUROMICRO

Journal. (2008), Vol. 54. No. 5. pp. 530 – 548.

[12] Faizul Navi Khan and Kapil Govil. 2014. A tricky

task scheduling technique to optimize time cost and

reliability in mobile computing environment.

International Journal of Research in Engineering and

Technology. (2014), Vol. 3. No. 5. pp. 823 – 829.

[13] Faizul Navi Khan and Kapil Govil. 2014. A Static

approach to optimize time cost and reliability in

Distributed Processing Environment. International

Journal of Scientific & Engineering Research. (2014),

Vol. 5. No. 5. pp. 1016 – 1021.

[14] Faizul Navi Khan and Kapil Govil. 2013. Cost

Optimization Technique of Task Allocation in

Heterogeneous Distributed Computing System.

International Journal Advanced Networking and

Applications. (2013), Vol. 5, No.3. pp. 1913 – 1916.

[15] Faizul Navi Khan, Kapil Govil. 2013. Static Approach

for Efficient Task Allocation in Distributed

Environment. International Journal of Computer

Applications. (2013), Vol. 81. No. 15. pp. 19 – 22.

[16] Geir Horn, B. John Oommen. 2010. Solving multi

constraint assignment problems using learning

automata. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics. (2010), Vol. 40.

No.1. pp. 6 – 18.

[17] Harendra Kumar, M. P. Singh, P. K. Yadav. 2013.

Optimal Tasks Assignment for Multiple

Heterogeneous Processors with Dynamic Re –

assignment. International Journal of Computers &

Technology. (2013), Vol. 4. No. 2. pp. 528 – 535.

[18] Kapil Govil. 2011. A Smart Algorithm for Dynamic

Task Allocation for Distributed Processing

Environment. International Journal of Computer

Applications. (2011), Vol. 28. No. 2. pp. 13 – 19.

[19] M. P. Singh, P. K. Yadav, H. Kumar and B. Agarwal.

2012. Dynamic Tasks Scheduling Model for

Performance Evaluation of a Distributed Computing

System through Artificial Neural Network.

Proceedings of the International Conference on Soft

Computing for Problem Solving (SocProS 2011)

(Advances in Intelligent and Soft Computing:

Published by Springer). (2012), Vol. 130. pp. 321 –

331.

[20] Manisha Sharma, Harendra Kumar and Deepak Garg.

2012. An Optimal Task Allocation Model through

Clustering with Inter –Processor Distances in

Heterogeneous Distributed Computing Systems.

International Journal of Soft Computing and

Engineering. (2012), Vol. 2. No. 1. pp. 50 – 55.

[21] Monika Choudhary and Sateesh Kumar Peddoju.

2012. A Dynamic Optimization Algorithm for Task

Scheduling in Cloud Environment. International

Journal of Engineering Research and Applications

(IJERA). (2012), Vol. 2. No. 3. pp. 2564 – 2568.

[22] N. Beaumont. 2009. Using dynamic programming to

determine an optimal strategy in a contract bridge

tournament. Journal of the Operational Research

Society. (2009), Vol. 61. No. 5. pp. 732 – 739.

[23] Palmer, J. and Mitrani I. 2005. Optimal and heuristic

policies for dynamic server allocation. Journal of

Parallel and Distributed Computing. (2005), Vol. 65.

No. 10. pp. 1204 – 1211.

[24] Pradeep Kumar Yadav, M. P. Singh and Harendra

Kumar. 2008. Scheduling Algorithm: Tasks

Scheduling Algorithm for Multiple Processors with

Dynamic Reassignment. Journal of Computer

Systems, Networks, and Communications. (2008), pp.

1 – 9.

[25] Sagar Dhakal, Majeed M. Hayat, Jorge E. Pezoa,

Cundong Yang and David A. Bader. 2007. Dynamic

Load Balancing in Distributed Systems in the

Presence of Delays: A Regeneration-Theory

Approach. IEEE Transactions on Parallel and

Distributed Systems. (2007), Vol. 18. No. 4. pp. 485 –

497.

[26] Shen Chenglin and Zhang Xinxin. 2009. Dynamic

Mechanisms of Task – assignment for Virtual

Enterprises Based on Multi-agent Theory.

Proceedings of the 2009 International Symposium on

Web Information Systems and Applications

(WISA’09). (2009), pp. 525 – 528.

[27] Sunita Bansal, Bhavik Kothari and Chittaranjan Hota.

2011. Dynamic Task-Scheduling in Grid Computing

using Prioritized Round Robin Algorithm. IJCSI

International Journal of Computer Science Issues.

(2011), Vol. 8. No. 2. pp. 472 – 477.

[28] V. Pilloni, P. Navaratnam, S. Vural, L. Atzori and R.

Tafazolli. 2014. TAN: A Distributed Algorithm for

Dynamic Task Assignment in WSNs. Sensors Journal,

IEEE. (2014), Vol. 14. No. 4. pp. 1266 – 1279.

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Kapil Govil et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 416-427

427

[29] Xiangzhen Konga, Chuang Lina, Yixin Jianga, Wei

Yana and Xiaowen Chub. 2011. Efficient dynamic

task scheduling in virtualized data centers with fuzzy

prediction. Journal of Network and Computer

Applications. (2011), Vol. 34. No. 4. pp. 1068 – 1077.

[30] Yishuang Hu, Yi Ding, Fan Wen and Lei Liu. 2019.

Reliability Assessment in Distributed Multi-State

Series-Parallel Systems. Energy Procedia. (Feb 2019),

Vol. 159. pp. 104 – 110.

[31] Amit Kumar Srivastava and Shishir Kumar. 2018.

Dynamic Reconfiguration of robot software

component in real time distributed system using

clustering techniques. Procedia Computer Science.

(2018), Vol. 125. pp. 754 – 761.

[32] Mohammed I. Alghamdi, Xunfei Jiang, Ji Zhang, Jifu

Zhang and Xiao Qin. 2017. Towards two – phase

scheduling of real-time applications in distributed

systems, Journal of Network and Computer

Applications. (Apr 2017), Vol. 84. pp. 109 – 117.

[33] Vikash Mishra and Vikram Singh. 2015. Generating

Optimal Query Plans for Distributed Query

Processing using Teacher – Learner Based

Optimization. Procedia Computer Science. (2015),

Vol. 54. pp. 281 – 290.

[34] Qingchao Jiang and Biao Huang. 2016. Distributed

monitoring for large – scale processes based on

multivariate statistical analysis and Bayesian method.

Journal of Process Control. (Oct 2016), Vol. 46. pp.

75 – 83.

Cite This Article :

Kapil Govil, Arun Kumar Yadav, Harihar Nath Verma,

"Optimal Task Assignment in Distributed Systems through

Greedy algorithm", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-3307,

Volume 6, Issue 3, pp.416-427, May-June-2020. Available

at doi : https://doi.org/10.32628/CSEIT2063106

Journal URL : http://ijsrcseit.com/CSEIT2063106

https://doi.org/10.32628/CSEIT2063106
http://ijsrcseit.com/CSEIT2063106

