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ABSTRACT 

 

A distributed processing environment consists of one or more applications spread over several computers. 

These computers may be geographically separated from one another. The applications may be executed on 

different platforms using different operating systems and telecommunication protocols. In short, a distributed 

operating environment offers a variety of information system solutions regardless of the location of the user, 

user’s operating system or the equipment using by user. Performance enhancement of the distributed 

networks is a major and challenging problem for the researchers. In this paper, algorithm designed, have to 

allocate m tasks to n processors (m>n) in the environment of distributed processing. These m tasks are to be 

assigned on the n processors of system through Greedy algorithm of task scheduling. The starting time and 

finishing time of the processing of a task is considered and denoted by Si and Fi where i= 1, 2, 3, 4, 5…… m. 

In order to evaluate the optimal time, present algorithm obtains the set of assigned and on assigned tasks. 

Based on these sets allocation has been made. The method is presented into algorithmic form and several sets 

of input data have been implemented to test the effectiveness of the algorithm. 

Keywords: Distributed Processing Environment, Performance Enhancement, Greedy algorithm, Allocation 

 

 

I. INTRODUCTION 
 

A distributed system [6 – 8, 11, 13, 17, 29 – 34] is a 

collection of loosely coupled processors interconnected 

by a communication network [5, 15, 19, 22 – 24]. The 

distributed processing environment [8, 10, 14, 18, 20, 

25, 28] is the environment, in which services provided 

by the network reside at multiple sites. Instead of 

single large machine being responsible for all aspects 

of process, each separate processor handles subset. In 

the distributed environment the programs or tasks are 

also often developed with the subsets of independent 

units under various environments. It has drawn 

tremendous attention in developing cost-effective and 

reliable applications to meet the desired requirement. 

Profit density based Greedy Knapsack algorithm [3] is 

one simple approach that can ensure near-optimal 

profit. However, profit gain is sometimes not the only 

factor concerned in making important management 

decisions. Kovalev et al [1] proposed a research using 

the isotone property with respect to the canonical order, 

they described a class of objective functions and a class 

of polyhedral feasible sets which provide the optimal 

Greedy [3] solution for the problem. The main research 

problem for such networks is the allocation problem, in 

which all the tasks or modules are to be assigned 

optimally and performance measures are to be 

optimized.  

 

II. OBJECTIVE 
 

The objective of the present research problem is to 

enhance the performance of the distributed systems by 

using the proper utilization of its processors. The 

present problem minimizes the overall processing time 

of a distributed system through optimally assigning the 
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tasks of various processors of the system. The 

distributed system consist of n processors that are 

denoted through a set P = {p1, p2, p3, ……..pn}. The 

processors are interconnected by communication links. 

A set T = {t1, t2, t3, ……tm} has also been considered. 

These m tasks are to be assigned on the n processors of 

system through greedy algorithm. The number of tasks 

is more than the number of processors of the system. 

The starting time and finish time of the processing of a 

task is considered and denoted by Si and Fi, where i = 1, 

2, 3,……m. 

 

III. TECHNIQUE 
 

It is considered that a distributed system [6 – 8, 11, 13, 

17, 29 – 34] having n processors interconnected by 

communication link. It is denoted by a set P = {p1, p2, 

p3, ……pn} of n processors. A set T = {t1, t2, t3,……tm} 

of m tasks is to be considered. These m tasks are to be 

assigned on the n processors, of the distributed systems 

while m>>n. The set Si and Fi where i = 1, 2, 3 ….m, 

consist of starting and finishing time for the processing 

of the tasks to the system. The difference between the 

finishing time and starting time shows the duration of 

processing of a task on a processor of the distributed 

system.  

 

In order to evaluate the optimal time, present algorithm 

takes input the number of processors i.e., n and number 

of tasks i.e., m. Again taking input the starting time and 

finish time of each task through an array namely, 

TTMPj(,) of order m x 2. Algorithm reads the task 

communication matrix CTM(,) of order. Then on 

storing the difference of starting time and finishing 

time from TTMPj(,) to DTM graphical representation 

of TTMPj(,) using Greedy Activity Scheduling 

Algorithm  (GASA) [3] has been created to obtain the 

pair of all of the non - interfering tasks in Tass(,). Now, 

algorithm replaces the processing time with  in 

DTM(,) where tasks are not assigned and store the 

results in UDTM(,). Algorithm calculates the sum of 

each row in UDTM(,) and stores into avg_row( ); On 

storing the sorted avg_row( ) in avg_row_asc( ) and 

storing the corresponding tasks into Taskseq, algorithm 

selects set of n tasks which have at least one processing 

time in each row and each column, store the results in 

SMi(,). On applying algorithm of Kumar et. al [2] on 

SMi(,) to make allocations and marking the 

assignments [9, 12, 16, 17, 21, 26, 27] along with their 

values overall optimal time by adding optimal time 

with communication time can be obtained. 

IV. ALGORITHM 
 

Start algo 

  Read the number of processors in n 

Read the number of tasks in m 

Read the starting and finish time of each task 

in TTMPj(,)  

Read the task communication matrix CTM(,) 

of order m x m. 

Calculate the difference of starting and 

finishing time from TTMPj(,)and store it into 

DTM(,) for all processors. 

Make the graphical representation of TTMPj(,) 

While (all tasks != SELECTED) 

{ 

Select the tasks which are not 

interfering with other tasks using 

GASA.  

   Make the pair of assigned tasks in 

Tass(,) for each processor. 

} 

Replace the processing time with  in DTM(,) 

where tasks are not assigned and store the 

results in UDTM(,) 

Calculate the sum of each row in UDTM(,) and 

store into avg_row( ) 

Sort then in ascending order and store into 

avg_row_asc( ) 

While (all tasks != SELECTED) 

{ 

  Select n tasks from Taskseq() those 

have at least one processing time in 

each row and each column and store 

the results in SMi(,) 

  Apply strategy of Kumar et. al.
 
[2] on 

SMi(,) to make allocations 

  Mark the assignments along with their 

values 

 } 

  Mark the overall allocation along with their 

value   

Overall Optimal Time = Processing Time + 

Communication Time 

End algo 

 

V. IMPLEMENTATION 
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In this problem, the distributed system consist a set P 

of 3 processors {p1, p2, p3} and a set T of 10 tasks {t1, 

t2, t3, t4, t5, t6, t7, t8, t9, t10}. The starting and finishing 

time for all 3 processors are as given in the matrices of 

the order 10 x 2, namely, Task Time Matrix for 

Processors p1, p2 and p3 namely [TTMP1(,)], [TTMP2(,)] 

and [TTMP3(,)] respectively. 
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The communication amongst the tasks has also taken 

into consideration and it is represented by the square 

symmetric communication matrix namely CTM(,) of 

order n x n: 
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Obtaining the matrix DTM(,) of order 10 x 3, which 

shows the difference between starting time and 

finishing time of each task at each processor is as: 
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The graphical representation of the matrices TTMP1(,), 

TTMP2(,) and TTMP3(,) using Greedy Activity 

Scheduling Algorithm (GASA)
 

[3] are shown in 

Figures, 1, 2 and 3 respectively. 
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Figure 1. Task assignment graph for p1
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Figure 2. Task assignment graph for p2 
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Figure 3. Task assignment graph for p3 

 

Now, on selecting those tasks, which are not interfering with another task from the Figure1, 2 and 3, selected 

(shaded) task are obtained as shown in Figure 4, Figure 5 and Figure 6 respectively. 
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Figure 4. Task assignment graph for p1 
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Figure 5. Task assignment graph for p2 
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Figure 6. Task assignment graph for p3 

 

A set of assigned and non-assigned tasks for each 

processor is created as – 

 

For Processor p1: 

 

  Assigned tasks Tass(1,) = {t1, t4, t8, t10} 

  Non-Assigned tasks Tnon_ass(1,) = {t3, t2, t5, t6, t7, 

t9}For Processor p2: 

 

  Assigned tasks Tass(1,) = {t2, t3, t6, t8, t10} 

  Non-Assigned tasks Tnon_ass = {t1, t4, t5, t7, t9} 

 

For Processor p3: 
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  Assigned tasks Tass(1,)= {t1, t3, t4, t5, t6, t9} 

  Non-Assigned tasks Tnon_ass = {t2, t7, t8} 

 

Now, on finding out which one task is still in non - 

assigned set, here, task t7 is not assigned to any 

processor, so the process for task t7 has been repeated. 

So, the graphical representation of the task t7 from 

matrices TTMP1(,), TTMP2(,) and TTMP3(,) are shown 

in the Figures namely Figure 7, 8 and 9 respectively. 
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Figure 7. Task assignment graph for p1 
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Figure 8. Task assignment graph for p2 
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Figure 9. Task assignment graph for p3 

 

As there is only one task in Figure 7, 8 and 9, so no other task can interfere task t7; So the task t7 will be selected 

with all 3 processors namely p1, p2, and p3. The graphical representations are shown in Figure 10, 11 and 12. 
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Figure 10. Task assignment graph for p1 
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Figure 11. Task assignment graph for p2 
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Figure 12. Task assignment graph for p3 
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Now, on modifying the set of assigned and non - 

assigned tasks for each processors as - 

 

For Processor p1: 

 

  Assigned tasks Tass(1,)= {t1, t4, t8, t10, t7} 

  Non - Assigned tasks Tnon_ass(1,) = {t3, t2, t5, t6, 

t9} 

 

For Processor p2: 

   

  Assigned tasks Tass(1,)= {t2, t3, t6, t8, t10, t7,} 

  Non - Assigned tasks Tnon_ass(1,)= {t1, t4, t5, t9} 

 

For Processor p3: 

 

  Assigned tasks Tass(1,)= {t1, t3, t4, t5, t6, t9, t7,} 

  Non - Assigned tasks Tnon_ass(1,)= {t2, t8} 

 

Now, replacing the processing time with  (infinity) in 

DTM(,), where the tasks are not assigned to the 

processor, on storing the updated task matrix DTM(,) 

and store as UDTM(,), i.e.,  

321

10

9

8

7

6

5

4

3

2

1

ppp

21

2

22

235

32

1

23

12

1

22

t

t

t

t

t

t

t

t

t

t

 ) , ( UDTM

























































  

Obtaining the sum of each row (by keeping  aside) 

and storing it in a linear array sum_row( ) along with 

their corresponding tasks i.e.,  
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On sorting the avg_row( ) in ascending order can 

keeping  aside and store the results in linear array 

avg_row_asc( ) along their corresponding tasks. These 

are given below; 
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On storing the corresponding tasks in Taskseq() as,  

 

Taskseq()= {t2, t5, t9, t3, t10, t1, t8, t4, t6, t7} 

 

On selecting first 3 tasks from Taskseq, which have at 

least one processing time in each row and each column 

Selection Matrix namely SM1(,)  can be obtained as - 
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On applying Kumar et. al. [2] strategy on SM1(,) the 

task assignment can be find as - 

 

Processor Task 

p1 t10 

p2 t2 

p3 t5 

 

On again selecting next three tasks, SM2(,) can be 

obtained as – 
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On applying Kumar et. al. [2]
 
strategy on SM2(,) the 

task assignment can be obtained as - 

 

Processor Task 

p1 t1 

p2 t3 

p3 t9 

 

On again selecting next three tasks, SM3(,) can be 

obtained as – 
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On applying Kumar et. al. [2] strategy on SM3(,) the 

task assignment can be obtained as - 

 

Processor Task 

p1 t8 

p2 t6 

p3 t4 

 

Now, there are no next three tasks to allocate; but there 

is only one task as - 

                   
321 ppp  

  SM4(,) = t7[5       3        2] 

 

On applying Kumar et. al. [2] strategy on processors 

the task assignment can be obtained as 

Processor Task 

p3 t7 

 

The final results are given in the Table I -  

 

 

 

 

 

TABLE I  

OPTIMAL RESULTS 

Processor Task 
Processing 

Time 

Communication 

Time 

Overall 

Optimal 

Time 

p1 t10*t1*t8 5 

128 145 p2 t2*t3*t6 5 

p3 t5*t9*t4*t7 7 

 

VI. CONCLUSION 
 

The algorithm mentioned in this paper is based on the 

consideration of processing time of the tasks to various 

processors. It is found that method is useful for 

network designer working in the area of distributed 

systems. The graphical representation of the optimal 

assignment is shown by the Figure 13.  

 

 
Figure 13. Optimal Assignment Graph 

 

It may be noticed that task t1, t8 & t10 are being 

executed by processor p1, task t2, t3 & t6 are getting 

executed by processor p2 and tasks t4, t5, t7 & t9 are 

getting executed by processor p3. The processorwise 

processing time graph is shown in the Figure 14. 

 

    
Figure 14. Processorwise Processing time Graph 

 

The optimal result of the example that is considered to 

test the algorithm and it is mentioned in the 

implementation section of the problem are as given in 

Table II. 
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TABLE II  

OPTIMAL RESULTS 

Processors Tasks 
Processing 

Time 

Communication 

Time 

Overall 

Optimal 

Time 

p1 t10*t1*t8 5 

128 145 p2 t2*t3*t6 5 

p3 t5*t9*t4*t7 7 

 

As the analysis of an algorithm is mainly focuses on its 

complexity. The complexity is a function of input 

size ’n’. It is referred to as the amount of time required 

by an algorithm to run to completion. The complexity 

of the above mentioned algorithm is O(m
2
n

2
). The 

performance of the algorithm is compared with the 

algorithm suggested by Richard et al [4]. Table III 

shows the complexity comparison between algorithm 

[5] and present algorithm. 

    

TABLE III 

TIME COMPLEXITY 

Processors 

n 

Tasks 

m 

Time Complexity 

Algorithm [4]
 
O(n

m
)

 
Present algorithm O(m

2
n

2
) 

3 4 81 144 

3 5 243 225 

3 6 729 324 

3 7 2187 441 

3 8 6561 576 

4 5 1024 400 

4 6 4096 576 

4 7 16384 784 

4 8 65536 1024 

4 9 262144 1296 

5 6 15625 900 

5 7 78125 1225 

5 8 390625 1600 

5 9 1953125 2025 

5 10 9765625 2500 

 

From the Table III, it is clear that present algorithm is 

much better for optimal allocation of tasks that upgrade 

the performance of distributed system. Graphs 15, 16 

and 17 also shows the comparison between algorithm 

[4] and present algorithm for n=3, 4 and 5 respectively.  
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Figure 15. Comparison Graph for n=3 

 
Figure 16. Comparison Graph for n=4  

 

 
Figure 17. Comparison Graph for n=5 
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