
CSEIT2063166 | Accepted : 03 June 2020 | Published : 14 June 2020 | May-June-2020 [6 (3) : 642-648]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2020 IJSRCSEIT | Volume 6 | Issue 3 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT2063166

642

Quality Maintenance and Monitoring using Azure CI pipeline and .Net

Technologies
Ishwarya S1, Dr. S. Kuzhalvaimozhi2

Department of Information Science and Engineering, National Institute of Engineering, Mysuru, Karnataka,

India

ABSTRACT

The paper is about how the application is maintained and monitored using Azure CI pipeline. Maintaining and

monitoring the quality of the software plays an important role in company’s growth and performance. This is

achieved using DevOps. Few years back agile methodology was playing a major role in the industry, software

were deployed in monthly, quarterly or annual basis, which is time consuming. However, now industries are

moving towards DevOps methodology where in the software deployed multiple times a day. This methodology

provides the organization to constantly and reliably add new features and automatically deploy them across

various platforms or environment in order to gain high performance and quality assurance products.

Continuous integration and Continuous delivery/ Continuous deployment are the pillars of DevOps.

Continuous integration, Continuous delivery and Continuous deployment are the continuous software

development practices of industry. By automating the build, test and deployment of software, CI/CD bridges

the space between development and operation teams. This paper also concentrates on how the Test Driven

Development features of .Net technologies supports the quality maintenance and monitoring of the application.

Keywords: Continuous Integration, Continuous Delivery, Continuous Deployment, DevOps, Git, ASP.NET.

I. INTRODUCTION

With the competitive growth in the software

industry, organization pays a significant attention in

allocating resources for continuous practices, which

supports in developing, deploying and delivering

reliable and high quality products for the consumers.

Previously, the organizations were maintaining the

manual quality assurance (QA) teams, which

represent the last security layer before any

modifications could go live. Nevertheless, now due to

the advent of continuous practices with the extension

of agile with DevOps, there are teams for automation

practices with the custom syntax for the quality

assurance. The consumers of the products are always

anticipating having continuous interaction with

DevOps team so that they can furnish their

continuous feedback. Devops is a combination of

development and operations, which target the

interaction of the software development and

operation teams in software development lifecycle

(SDLC). Devops Process or Lifecycle depends on the

agility and automation. Each stage in

the DevOps lifecycle focuses on breaking off the loop

between development and operations process and

driving production through continuous development,

integration, testing, monitoring and feedback,

delivery, and deployment to increase the

performance of the organization and to provide a

quality monitored and maintained product. The

Devops lifecycle includes the seven main phases, the

Figure 1 shows the different phases in the Devops

Life Cycle and each phase is, described as below:

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT2063166

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Ishwarya S et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 642-648

 643

Plan – In this phase, the organization defines the

business value and the requirements of the project.

This phase may include tools like Jira or Git to find

issues and for project management.

Code – This phase involves the designing of the

software and the software code creation. Code

creation includes the code Quality and performance.

Build – This phase involves managing the software

builds and Versions .Automated tools used in this

phase to compile, convert and package code for

future release in production. The source code

repositories or package repositories used for product

release.

Test – This phase involves the continuous testing

process, which includes both manual and automated

tests. This testing phase ensures the ideal code quality.

Deploy – In this phase the coordinating, managing,

scheduling and automating product releases into the

production done.

Operate – This phase mainly involves in verifying

that everything is flowing smoothly which supports

in managing the software.

Monitor – This is the final phase of the Devops

lifecycle where the identification and collection of

information with respect to specific release and

which provides the understanding the impact on end

users.

 The methodology presented in this

work the developers after completing their part of

code pushes it to the repository every time which is

the common repository to all and hence the

developers in different location can access the code

which helps in providing the current status of the

project to all in the team. Moving forward the task of

build phase is to form a package by downloading the

corresponding dependencies of the code so that there

is no need for the test team to download the

dependencies again. If errors occur in this phases it is

sent to developers back again to fix. This is a manual

process. This process automated by using the

continuous integration process. This CI process

monitors and checks for the new code arrival and

builds it, if there is any new code arrived [5].

Figure 1 Devops Processes or Devops LifeCycle.

Agile enables the tactical and strategic framework of

application software development, whereas DevOps

focuses on both development and delivery segments.

Combining Agile, lean and DevOps practices, the

industry verticals increases the throughput and

minimizes lead-times setting up the association,

transparency, and assurance among Developers, QA

and Operations as shown in Figure 2.

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Ishwarya S et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 642-648

 644

Figure 2 Devops Tactics for Quality Assurance

One of the main strategies of modern DevOps

architecture is effective implementation of Test

Driven development (TDD), and the tactical

execution of TDD. Essentially, TDD environment

enforces the test cases development prior to actual

functional programming. The Asp.Net MVC

framework supports this Test Driven development

(TDD) [13].

II. METHODS AND MATERIAL

A. SYSTEM ARCHITECTURE

The DevOps includes the best practices, which

consist of continuous integration and continuous

delivery phases or processes. These practice are

depicted as show in the Figure 3

Figure 3 Relationship between the continuous

practices.

The following describes the continuous processes

involved in DevOps:

Continuous Integration (CI) – This is the software

development wide development phase where the

developers check in and merge their code to central

repository multiple times in a day. After the merge

the builds and tests runs occur.

This phase in DevOps mostly refers to the build and

integration stage in the software development life

cycle. It requires both cultural component and

automation component. The basic challenges of

implementing CI include more frequent commits to

the common codebase, maintaining a single source

code repository, automating builds, and automating

testing. Additional challenges include testing in

similar environments to production, providing

visibility of the process to the team, and allowing

developers to, easily obtain any version of the

application. The main aim of this phase is to identify

and look through the bugs much faster, reduces the

time taken to validate, updates new releases to the

software, improves productivity of the team and

plays an important role in improving the quality of

the software [12].

Continuous Delivery / Continuous Development

(CD) – Continuous Delivery is the software

development phase where the changes to the code

done automatically built, tested and make ready for

the production release. This extends the Continuous

Integration by adding the code changes to the test

environment, production environment or for both

when the build is completed. This phase reduces the

deployment risks. Continuous Delivery partially

automated or fully automated.CD is either partially

automated by using manual steps and it can be fully

automated using workflow process. The continuous

deployment and continuous delivery are different

from each other where in the intended customers

view or in the production environment. The aim of

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Ishwarya S et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 642-648

 645

the customers in continuous deployment practice is

to, automatically and steadily deploy every change in

the production environment. If the Continuous

Delivery implemented properly, the developers will

always have deployment-ready build artifact that has

passed through a continuous process of standardized

tests. The continuous deployment provides the

continuous customer feedback loop in hand in the

process of software production life cycle. There is a

misconception that both continuous delivery and

continuous deployment are same but these are two

similar things but are different from each other.

Continuous delivery is the extended process of

continuous integration to ensure that the new

changes released to customer fast in a sustainable way

involves the automated release process along with the

automated tests in turn where the application

deployed at any point of time by clicking a button.

Whereas, the continuous deployment is a step ahead

of continuous delivery where deploys to the

application takes place continuously and

automatically to the customers or production

environments. Human intervention is not present in

this process and only the test fails will prevent new

change to the production for deployment. This

process the best approach to quicken the feedback

loop with customers and remove pressure of the team

since there is no release day anymore. Therefore, the

developers can focus on building the software and

they can see their work go live minutes after the

work has been finished. One of the main benefits of

continuous delivery process is to improved code

quality since the bugs are identified, resolved early in

the delivery process before they grow into larger

problems later [7].

 Continuous Testing - Continuous testing is like a

backbone of CI/CD pipeline process. Continuous

Testing is defined as a software testing process that

involves a process of testing early, often, test

everywhere, and automate. It is a strategy of

maintaining quality of the code at each step of the

Continuous Delivery Process. The aim of the

Continuous Testing is test early and tests often. The

focus of continuous testing is to achieve quality

maintenance and monitoring. These testing supports

in finding the risk address them and improve the

quality of the product. This testing process

accelerates the software delivery process. This

involves the merging of siloed teams to meet modern

enterprise needs. Connects or provides interaction

between the development, testing, and operations

teams. It maintains the same configuration for all

similar or relevant tests. The other important benefit

of the continuous testing is the speed. The delivery of

the software becomes faster since there is a

continuous testing process, which speed up delivery

to production and release faster. The tests run parallel

to increase test execution speed. Since, tests are

automated the time spent on testing reduced and

fastens the process. The test suites are prepared at

every point when the code changes, merges or

releases by these way tests can run at specific point

rather than every test at once. This aids to minimize

the time and effort on testing.

B. TOOLS AND TECHNOLOGIES

1. NET technologies: This is the new generation

technology, which supports the application

deployment on Microsoft Windows Server

environment. It is one of the powerful

frameworks, which supports in reducing time for

developing complex web applications. .NET helps

to develop high quality applications faster. .Net

technology provides Quick and cost-effective

development cycle. One of the main advantages of

ASP.NET MVC is to support testability using TDD

(Test Driven Development) and BDD (Behavior

Driven Development). TDD provides the higher

code quality and design. BDD is a testing process,

derived from TDD, but mainly based on system

behavior. BDD encourages collaboration in a

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Ishwarya S et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 642-648

 646

software project between developers, QA, project

managers and the business team. This helps in

maintaining and monitoring of the code quality in

turn helps in improving the quality of the

software.

2. Git: Git is a free, open source distributed version

control system tool. This is a tool created to

handle everything from small to very large

projects with speed and efficiency. Git is a tool

used to push code into one single central remote

repository during software development lifecycle.

This are used to monitor changes in the scripts and

add them to the central repository. Developers

push the codes changes made locally to central

repository using the git commands which include

git add, git commit and git push to add changes to

the main repository.

3. Jenkins: In the continuous integration process,

after the code is committed the build and test of

the software done immediately. Jenkins is the tool

that supports continuous integration and

continuous delivery process for nearly almost all

combination of the languages and source code

repositories using pipelines and supports in

automating other routine development tasks. This

tool helps in determining the bugs or any other

issues as soon as they introduced. This in turn

helps in monitoring the quality of the product.

Jenkins automates manual work of software

development lifecycle [7].

4. Docker: Docker is a tool that uses container to

which makes easy to create, deploy and run

software applications. Docker Container is a

standardized unit, which built to deploy a specific

application or environment. Docker aids both

developers and system administrator. Docker

permits developer to write without concentrating

about the system that it will be ultimately

running. One of the main benefits of docker is that

if once the package of an application and its

dependencies are loaded to the container it will

run in any environment. So the team can build a

container, install different applications on to it and

provide it to the QA team where they have to run

only the container to replicate the environment

[7].

III. RESULTS AND DISCUSSION

Figure 4. Create a pull request to push Code from

local to central Repository (cloud) after executing git

commands.

Figure 5. Build progress in pipeline.

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Ishwarya S et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 642-648

 647

Figure 6 Files added to central repository after the

build succeeded.

Figure 7. Progress report on the test suites running in

pipeline.

Figure 8 Graphical representation of weekly test runs.

Figure 9 An overview on a Quality maintained and

monitored product.

IV. CONCLUSION

In this paper, a discussion about how the quality of

the software could be maintained and monitored

using Azure CI/CD pipeline. The proposed

methodology uses DevOps methodology where this

provides the interaction between the developers and

operational teams, which in turn helps to improve

the quality of the software by obtaining the

continuous feedback from the production

environment or customers. The impact, of any release

from Continuous testing correlated with data from

operations and production, verifies the quality of the

product. Continuous testing assures quality by

simplified process by Continuous improvement at

each stage of the software development lifecycle. In

addition, this paper discusses how TDD (Test Driven

Development) and BDD (Behavior Driven

Development) of the ASP .Net framework from .Net

technology helps to aid Continuous Testing provides,

maintained and monitored software.

V. REFERENCES

[1]. Shahin, Muhammad Ali Babar, Liming Zhu,

“Continuous Integration, Delivery and

Deployment: A Systematic Review on

Approaches, Tools, Challenges and Practices”,

IEEE 2016.

[2]. Prabal Mahanta, Anil Kumar Pole, Vittalraya

Shenoy Adige, Rajkumar M, DevOps Culture

and its impact on Cloud Delivery and Software

Development, IEEE International Professional

Communication Conference (IPCC), 2016.

[3]. Elisa Diel, Sabrina Marczak, Daniela S. Cruzes,

“Communication Challenges and Strategies in

Distributed DevOps”, IEEE 11th International

Conference on Global Software Engineering

(ICGSE), 2016.

[4]. Hui Kang, Michael Le, Shu Tao, “Container and

Microservice Driven Design for Cloud

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Ishwarya S et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 642-648

 648

Infrastructure DevOps”, IEEE International

Conference on Cloud Engineering (IC2E), 2016.

[5]. Matt Callanan, Alexandra Spillane, “DevOps:

Making It Easy to Do the Right Thing”, IEEE

Software, 2016.

[6]. M Rajkumar, Anil Kumar Pole, Vittalraya

Shenoy Adige, Prabal Mahanta, “DevOps

culture and its impact on cloud delivery and

software development”, International

Conference on Advances in Computing,

Communication, & Automation (ICACCA)

(Spring), 2016.

[7]. Mojtaba Shahin1, Muhammad Ali Babar1, And

Liming Zhu2, “Continuous Integration,

Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and

Practices” IEEE Access (Volume: 5), 2017

[8]. Matej Arta, Tadej Borov, Elisabetta Di Nitto1,

Michele Guerriero1, Damian Andrew

Tamburri1, DevOps: Introducing

Infrastructure-as-Code, IEEE/ACM 39th IEEE

International Conference on Software

Engineering Companion, 2017.

[9]. Zhenhua Li, Yun Zhang, Yunhao Liu, “Towards

a full-stack devops environment (platform-as-a-

service) for cloud-hosted applications”,

Tsinghua Science and Technology, 2017.

[10]. Wolfgang John, Guido Marchetto, Felician

Nemeth, Pontus Skoldstrom, Rebecca Steinert,

Catalin Meiros, Ioanna Papafili, Koastas

Pentikousis, “Service Provider DevOps”, IEEE

Communications Magazine, 2017.

[11]. Len Bass, “The Software Architect and

DevOps”, IEEE SOFTWARE 2018.

[12]. Agarwal, Subhash Gupta, Tanupriya

Choudhury, “Continuous and Integrated

Software Development using DevOps”,

International Conference on Advances in

Computing and Communication Engineering

(ICACCE2018) Paris, France 22-23 June 2018.

[13]. DVSR Krishna Koilada, NetrixLLC, Business

model innovation using modern DevOps, IEEE

Technology & Engineering Management

Conference (TEMSCON), 2019.

Cite this article as :

Ishwarya S, Dr. S. Kuzhalvaimozhi, "Quality

Maintenance and Monitoring using Azure CI pipeline

and .Net Technologies", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 6, Issue 3, pp.642-648, May-June-

2020. Available at

doi : https://doi.org/10.32628/CSEIT2063166

Journal URL : http://ijsrcseit.com/CSEIT2063166

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT2063166
http://ijsrcseit.com/CSEIT2063166

