
CSEIT2063198 | Accepted : 10 June 2020 | Published : 20 June 2020 | May-June-2020 [6 (3) : 841-848]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2020 IJSRCSEIT | Volume 6 | Issue 3 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/IJSRCSEIT

841

Quantitative Tracking Pedagogy of Software Architecture
Shobha M , Bhavani H R

Lecturer, Department of Computer science and Engineering, Al-khateeb (Govt-Aided) Polytechnic, Bangalore,

Karnataka, India

ABSTRACT

Software architecture is a moderately new point in engineering a software system. It is rapidly turning into a

focal issue, and leading-edge associations spend an extensive division of their advancement exe rtion on

Software architecture. Hence, Software architecture is progressively regularly the point of a committed course

in programming building educational program. There are two general flavors concerning the substance of such

a course. One flavour underscores the programming-in-the-substantial parts of software architecture

furthermore, focuses on architectural patterns and designs, engineering portrayal dialects such as languages and

so forth. The other underscores the correspondence parts of software architecture to an assortment of

stakeholders , in this manner recognizing a more extensive perspective of software architecture. In this paper

we report our encounters with two e xpert level courses in software architecture that emphasis on these

correspondence perspectives. We demonstrate that, by suitably centering the substance of such a course, key

parts of this mechanically exceptionally pertinent field inside of software architecture can be taught effectively

in a college course.

Keywords : ADL's, UML.

I. INTRODUCTION

The Software architecture is the process of

implementing software solutions to one or more sets

of problems. One of the main components of

software design is the software requirements

analysis (SRA). SRA is a part of the software

development process that lists specifications used in

software engineering. If the software is "semi-

automated" or user centred, software design may

involve user experience design yielding a storyboard

to help determine those specifications. If the software

is completely automated (meaning no user or user

interface), a software design may be as simple as a

flow chart or text describing a planned sequence of

events. There are also semi-standard methods like

Unified Modeling Language and Fundamental

modeling concepts. In either case, some

documentation of the plan is usually the product of

the design. Furthermore, a software design may be

platform- independent or platform-specific,

depending upon the availability of the technology

used for the design.

The main difference between software

analysis and design is that the output of a software

analysis consists of smaller problems to solve.

Additionally, the analysis should not be designed

very differently across different team members or

groups. In contrast, the design focuses on capabilities

and thus multiple designs for the same problem can

and will exist. Depending on the environment, the

design often varies, whether it is created From

reliable frameworks or implemented with suitable

design patterns. Design examples include operation

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/IJSRCSEIT
https://en.wikipedia.org/wiki/Software_requirements_analysis
https://en.wikipedia.org/wiki/Software_requirements_analysis
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Specifications
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/User_centered_design
https://en.wikipedia.org/wiki/User_experience_design
https://en.wikipedia.org/wiki/Storyboard
https://en.wikipedia.org/wiki/Storyboard
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/User_(computing)
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Flow_chart
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Fundamental_modeling_concepts
https://en.wikipedia.org/wiki/Fundamental_modeling_concepts
https://en.wikipedia.org/wiki/Documentation
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Design_patterns

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 842

systems, web pages, mobile devices or even the new

cloud computing paradigm.

Software design is both a process and a model.

The design process is a sequence of steps that enables

the designer to describe all aspects of the software for

building. Creative skill, past experience, a sense of

what makes "good" software and an overall

commitment to quality are examples of critical

success factors for a competent design. It is important

to note, however, that the design process is not

always a straightforward procedure; the design model

can be compared to an architect’s plans for a house. It

begins by representing the totality of the thing that is

to be built (e.g., a three- dimensional rendering of the

house); slowly, the thing is refined to provide

guidance for constructing each detail (e.g., the

plumbing layout). Similarly, the design model that is

created for software provides a variety of different

views of the computer software. Basic design

principles enable the software engineer to navigate

the design process.

Figure 1. Life cycles: (a) Pre architecture and (b)

Architecture centric

Specifically, architecting includes finding a harmony

between these sorts of prerequisites. Just when this

parity is come to, ne xt steps can be taken. In the

latter view, software architecture has to bridge the

gap between the world of a variety of, often non-

technical, stakeholders on one hand – the problem

space –, and the technical world of software

developers and designers on the other hand the

solution space.

Software architects concentrate on the move of the

engineering into code. They see a design as

comprising of parts and connectors. Alternate

stakeholders might have an assortment of different

concerns, and are best served by some sort of design

depiction that highlights how these worries are

tended to in the engineering. They are regularly not

served best by a portrayal that resembles an abnormal

state programming dialect, for example, commonly

offered by ADL's, or a formal chart as offered by

UML. Taking after this line of thought, the

documentation of a design is normally part into a

little number of perspectives, each of which

highlights the worries of a particular arrangement of

stakeholders. This same methodology is utilized as a

part of other design fields.

In house development, e.g., we utilize diverse

drawings: one for the electrical wiring, one for the

water supply, and so forth. These drawings consider

diverse perspectives the same general engineering.

The same applies to Software architecture. The

improvement and utilization of various engineering

sees in a setting where the product draftsman

corresponds with an assortment of both specialized

and non-specialized stakeholders, is the focal issue in

our product engineering course.

II. RELATED WORK

There are not very many papers that portray

encounters with showing Software architecture

courses. Jaccheri [10] portrays a course given at the

Norwegian University of Science and Technology

(NTNU) in 2001. The objectives for this course were

like our own: produce compositional choices, depict a

design precisely and assess a design. The course

accentuated the impact of value contemplations on

the engineering (by making performance driven,

upkeep driven and ease of use driven changes to the

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 843

engineering), yet did not accentuate the utilization of

various building sees. Muller [15] talks about his

encounters with showing frameworks architecting.

The course targets mostly covered with our own:

bringing issues to light with the non-specialized

setting in architecting, recording and evaluating

structures. The course has been given 23 times to

experienced individuals inside of Philips.

III. IMPORTANCE OF SOFTWARE

ARCHITECTURE COURSE

• What's important in Software architecture? A

product engineering, or rather its portrayal,

mirrors the significant configuration choices

made. These choices are made by the engineer,

considering the worries of the diverse

stakeholders included. The architect inspires the

prerequisites, both useful and non-useful, from

the stakeholders, and devises an answer that suits

these necessities in an adjusted way. More often

than not, not all prerequisites of all stakeholders

can be met. Architecting then includes

transactions with stakeholders to get a bargain.

In these discourses with stakeholders, the

architect uses a depiction of the design which

mirrors the present set of choices made, and how

these location the worries of the stakeholders.

One possibility is to devise a solitary portrayal of

the framework which addresses all worries of all

stakeholders. This however is liable to bring

about an extre mely complex archive that

nobody gets it. Like with building arranges, it is

ideal to make distinctive "drawings" each of

which stresses certain worries of specific

stakeholders. In Software architecture, this

thought is advanced in the IEEE suggested hone

for design portrayal [9].

• Focal terms of reference in IEEE 1471 are

'perspectives', 'perspectives', "stakeholders" and

'concerns'. A 'structural portrayal' comprises of

"perspectives" that are made by 'perspective'. A

perspective endorses the substance and models to

be utilized as a part of its perspectives,

furthermore demonstrates the proposed

"stakeholders" and their 'worries'. Perspectives

can be reused in different activities; these

reusable perspectives are termed 'library

perspectives'. A partner can have one or more

concerns, and concerns can be applicable to more

than one partner. Clements [4] gives numerous

helpful advices as to which perspectives may be

fitting in specific circumstances. An early sample

of the thought to have different perspectives in

design portrayals is given in [12].

• The architect tries to adjust the prerequisites

of the different stakeholders included. At last,

however, the stakeholders need to choose

whether they are fulfilled by the proposed

engineering. A product engineering appraisal is

intended to do precisely this: evaluate to what

degree the engineering meets the different

worries of its stakeholders [5]. It is directed by

oneon the other hand a couple of assessors.

Further members are the architect(s) and the

significant stakeholders of the framework.

Generally, the structure of such an evaluation is

as per the following:

• The draftsman introduces the design and its

justification to the stakeholders. He highlights

the significant outline choices that prompted the

design. He might utilize distinctive perspectives

of the engineering to outline his focuses.

• The stakeholders next devise a progression of

situations that best express their worries. A

maintainer might devise situations that depict

conceivable changes or expansions to the

framework. A security officer might devise

situations that portray conceivable dangers to the

framework. Etc.

• For each of these situations, or a precisely chose

subset if there are an e xcess of them, the planner

clarifies how the engineering passages with the

circumstance portrayed, and what changes are

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 844

required, and against which cost, to suit the

circumstance depicted.

• The evaluation group composes a report

portraying the discoveries of the appraisal.

IV. OBJECTIVES OF SOFTWARE ARCHITECTURE

COURSE

In view of the above, we chose the accompanying

objectives for our course:

• The students ought to know how to create

distinctive structural perspectives of a design,

tending to particular concerns of stakeholders.

We utilized [9] as the model for doing as such.

• The students ought to know of the evil way of

Software architecture [2]. A product design is

never right or wrong, yet at most more qualified

for specific circumstances. It includes making an

extensive number of exchange offs between

concerns of various stakeholders. There might be

distinctive worthy arrangements, and the

arrangement in the end picked relies on upon

how the adjusting between partner concerns is

made.

• The students ought to know how to do an

appraisal of a design. This gives them the chance

to learn also, welcome an arrangement of

building choices and exchange offs made. This

gives knowledge into the limits of the design

arrangements, the outcomes for engineering if

another arrangement of concerns had been

picked, and also a general impression of the

nature of the design depiction. Since an appraisal

includes clarifying the design and the choices

that prompted the engineering to its

stakeholders, this by and by hassles the

correspondence part of Software architecture.

The reconsidering and examination of one's own

proficient manifestations enhances one's

execution in that calling [7]. Through the studio-

such as set-up of our course, with a week by

week input on deliverables (compositional

perspectives, arrangements of situations, and so

on), key parts of this intelligent specialist

methodology are connected. By giving students a

chance to add to their own particular

compositional perspectives and perspectives, and

giving them a chance to choose which worries to

address, we acquire a progression of various

answers for the same issue. This gives the

students the chance to gain from diverse

arrangements, and welcome these distinctions as

far as quality needs set. It underlines the very

way of the characteristic configuration sort issue.

V. THE SOFTWARE ARCHITECTURE COURSES

The product engineering course twice in two very

distinctive educational module is given. The main

course was a piece of a one-year expert project in e

xpert programming building. It was an e xtre mely

escalated course. It kept going eight weeks, and the

students needed to burn through 20 hours/week on

the course (so they took just two courses in

parallel). The vast majority of the work was done in

the initial six weeks. We had visitor speakers in

week 7, and e xa m planning and e xa m in week 8.

An aggregate of 19 students selected in the

course.They worked in groups of three (and in one

case four) individuals. They had all done a lone

wolves program at a polytechnic foundation before

enlisting in the course. We utilized [1] as course

book.

The second course was a piece of a consistent experts

program in both software engineering and business

informatics. It had a length of time of 12 weeks, with

a Christmas break after week eight. The students

needed to burn through 12 hours/week on this course.

A sum of 50 students selected, around equitably

isolated between the (two-year) e xpert project in

software engineering and the (one-year) e xpe rt

system in business informatics. They worked in

groups of four or five individuals. Their e

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 845

xperience was very shifted. A substantial e xtent had

done lone rangers at our college. A significant

number of students had done a single men at a

polytechnic foundation, while a few students selected

in the experts program subsequent to having done a

unhitched males in another nation. No course

reading was endorsed, however numerous students

utilized [1]. None of the students had broad past

involvement with Software architecture. For most,

this was their first introduction to the theme. Most

studentshad already taken after a product building

course or something to that affect.

The Demanding Architecture Course

Since the work for the intensive course adequately

must be done inside of six weeks, we chose not to

have the students build up a design without any

preparation. So we began with a current heap of Java

code. This current framework actualized an auto

rental framework. It utilized an average 3-level

engineering that isolated the client interface from the

business rationale also, the informat ion layer. We

gave the accompanying assignments:

Reverse specialist the design from the

(undocumented) source code. We gave no rules with

reference to how to do this, nor rules regarding what

the subsequent portrayal ought to resemble. Most

gatherings found and utilized JBuilder as a part of

blend with some current figuring out strategy, for e

xa mple, Dali [1, part 10]. In all cases, the engineering

was portrayed in a perspective delineating the major

utilitarian components; see figure 2 for an illustration.

A significant number of the box and line charts

conveyed had vague semantics. Bo xes could signify a

(Java) class, coherent subsystem, or some other static

element. Lines could indicate a calling relationship,

an is-contained-in relationship, an is-subordinate-to

relationship, and so on.

Develop a few (no less than two) building sees and

the comparing perspectives. All gatherings added to a

progressed adaptation of the practical perspective

created in the past step. This enhanced form typically

made a more reliable utilization of different sorts of

boxes and lines. All gatherings e xperienced issues in

concocting a second view. A few gatherings thought

of a fairly shallow end-client view with a couple of

symbols portraying the client, the PC, and a LAN or

WAN association. A few gatherings conceived a

procedure view [12] demonstrating the dynamic

structure of the framework as far as errands,

procedures, correspondences, and the portion of

usefulness to run-time components. The most

intriguing perspective we e xpe rienced is (somewhat)

delineated in figure 3. This perspective demonstrates

the relationship between business necessities,

structural choices, and quality perspectives. It

demonstrates e xchange offs and underpins "imagine

a scenario in which" situations. In this illustration, an

abnormal state of information honesty is picked, and

the effect on different qualities, the proposed

engineering, and business necessities is reflected in

the shading plan.

Identify the styles and exa mples utilized as a part of

the design, and exa mine their advantages. All

gatherings characterized new perspectives

indicating how the e xa mples were utilized as a

part of the design: most perspectives went about as

indexes, indicating out which e xa mples were

utilized as a part of which subsystems; in these cases

the exa mple advantages could be talked about when

all is said in done terms as it were. One and only

gathering characterized perspectives demonstrating

how components inside subsystems were

specializations of components inside a specific e xa

mple; in doing that they could talk about qualities all

the more completely, as well Do an engineering

appraisal. We let a large portion of the gatherings go

about as planners, and the other half as stakeholders.

We didn't dole out particular assessor parts. We

cleared out it to the students to pick or devise a

particular evaluation technique. All gatherings

picked a trimmed-down variant of the Architecture

Trade-Off Analysis Method (ATAM) [5], whose

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 846

structure looked like that outlined in area 2. All

gatherings were energetic about the experiences they

picked up in the nature of their design depiction.

They likewise recognized now having a much more

profound information of the effect their specific

arrangement of outline choices had on the

compositional arrangement picked. One gathering

interestingly saw the possibly manipulative character

of such an evaluation. An extre mely self-assured

engineer might overpower stakeholders with an

over-burden of sure articulations, and successfully

block a beneficial e xa mination. Then again, having

a dream and being definitive are required

characteristics of a product draftsman [13], [6].

Figure 2. A 3tier Solution

The Normal Engineering Course

In the normal course, we requested that the students

add to a product design starting with no outside help.

The students were inquired to build up engineering

for taking care of the research material in a

courthouse; see figure 4 for this task. Two gatherings

acted as stakeholders, nine gatherings went about as

draftsmen. One partner bunch collaborated with four

designer gatherings, while the second partner bunch

cooperated with five designer gatherings. The partner

gatherings could devise their own particular parts.

Both these gatherings settled on parts like IT director,

judge, legal advisor, police. One gathering chose to

have the press as one of the stakeholders. Since this

brought about a considerable measure of security

issues in the structures that needed to agree to this

partner, this part displayed very a few issues to the

engineers that needed to manage it; more on this

later on. For this course, we picked the

accompanying undertakings:

Develop an underlying engineering. Once more, we

gave no rules in the matter of how to do this, nor

rules with reference to what the coming about

depiction ought to resemble. Since most students had

beforehand taken after the product designing course

at our specialty, they were acquainted with the idea

of MOSCOW: the partition of prerequisites into Must

haves should haves, could haves, and won’t haves.

They connected these ideas in the necessities

elicitation talks with the partner gatherings to

organize necessities. The planner gathers that needed

to manage the press partner, tended to rate his

prerequisites as low, presumably in light of the

fact that they experienced issues choosing how to

handle them. This came about in a considerable

measure of warmed talks in some of those gatherings.

Like the concentrated course portrayed before, the

subsequent design was portrayed in a useful

perspective taking after the one in figure 2. Also,

once more, the semantics of the box and- lines charts

was typically vague Develop no less than two

structural perspectives and the relating perspectives.

To offer the students come assistance with doing this,

we introduced them with a strategy for

characterizing IEEE STD 1471 perspectives [11]. This

strategy has four stages:

(1) Aggregate partner profiles,

(2) Condense accessible configuration

documentation,

(3) Relate this synopsis to the partner concerns, and

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 847

Characterize perspectives. This strategy constrained

them to deliberately consider partner concerns and

how to relate them to engineering choices, something

they were not usual to, and discovered troublesome.

Particularly step 3 constrained the students to show

their outcomes concise, an exceptionally essential

ability for an effective planner. We needed to guide

them through this procedure, and give samples.

Figure 3.A Business View

Do an engineering appraisal. We let a large portion of

the designer gatherings go about as draftsmen, and

the other half as stakeholders. In a second evaluation

round, we turned around these parts. Along these

lines, all designer gatherings assumed both parts. We

asked the two partner gatherings to characterize a

trimmed -down rendition of ATAM [5] to be utilized,

and next act assume the assess or part amid the

evaluation. For this situation, numerous gatherings

saw the stakeholders as assaulting their answer.

Therefore, they vivaciously safeguarded their

configuration choices. This extensively enhanced in

the second appraisal round, however the learning

impact of this second evaluation was not exactly

sought after. Toward the end however, the students

were once more extremely positive about the

appraisal exercise, for the same reasons given by the

students of the other course. In this course, we

watched a solid relationship between's the nature of

the appraisal and the specificity of its inputs, viz. the

design depiction and the arrangement of situations

VI. CONCLUSION

We don't spread all parts of Software architecture in

our course. In light of a watchful e xa mination of the

pervasive perspectives of crucial parts of Software

architecture, we chose points to manage these. We

formulated a set-up which permits us to educate

these subjects in a college setting. We accomplished

the objectives set for the course. In spite of the fact

that the students for the most part considered the

workload very high, they too report a substantial

learning impact for this course. They pick up

certainty about how to record Software architecture

for particular purposes and stakeholders, and can

reason about structural choices. Likewise, they can

adapt to the way that elective design techniques exist

and that there is no single best arrangement. Our

fundamental test for the following cycle of this

course is to give the students more direction in their

configuration sort e xerc ises, in the meantime

holding an adequately expansive range of proposed

arrangements.

We consider the setup of the consistent course more

fruitfu l than that of the serious course. The

fundamental reason is that students there can't break

faith to the code, when the archived sees don't suffice.

They are compelled to think more precisely about the

design documentation.

VII. REFERENCES

[1] L. Bass, P. Clements, and R. Kazman.Software

architecturein Practice. Addison Wesley,

second edition, 2013.

http://www.ijsrcseit.com/

Volume 6, Issue 3, May-June-2020 | http://ijsrcseit.com

Abhishek Thakur et al Int J Sci Res CSE & IT, May-June-2020; 6 (3) : 841-848

 848

[2] D. Budgen. Software Design. Addison Wesley,

second edition, 2013.

[3] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal.A System of

Patterns.John Wiley & Sons, 2016.

[4] P. Clements, F. Bachman, L. Bass, D.

Garlan, J. Ivers,

[5] R. Little, R. Nord, and J. Stafford. Documenting

Software Architectures: Views and Beyond.

Addison Wesley, 2013.

[6] P. Clements, R. Kazman, and M.

Klein.Evaluating Software architectures:

Methods and Case Studies. Addison-Wesley,

2012.

[7] D. Dikel, D. Kane, and J. W ilson. Software

architecture: Organizational Principles and

Patterns. Prentice Hall, 2012.

[8] O. Hazzan. The reflective practitioner

perspective in software engineering

education.Journal of Systems and Software,

63(3):161–171, 2017.

[9] . Hughes and S. Parkes.Impact of Verbalisation

upon Students’ Software Design and

Evaluation. In Proceedings 8th International

Conference on Empirical Assessment in

Software Engineering (EASE 2004, pages 121–

134. IEEE, 2014.

[10] IEEE Recommended Practice for Architecture

Description. Technical report, IEEE Standard

1471, IEEE, 2010.

[11] M. Jaccheri. Tales from a Software

architectureCourse Project. On -line at

http://www.idi.ntnu.no/

letizia/swarchi/eCourse.html, 2012.

[12] H. Koning and H. van Vliet. A Method for

Defining IEEE STD 1471 Viewpoints, 2014.

Submitted for publication.

[13] R. Malveau and T. Mowbray.Software

Architect BOOTCAMP. Prentice Hall, second

edition, 2004.

[14] N. Medvidovic and R. Taylor. A Classification

and Comparison Framework for Software

architectureDescription Languages.IEEE

Transactions in Software Engineering ,

26(1):70–93, 2010.

[15] G. Muller. Expe riences of Teaching Systems

Architecting.In INCOSE 2014,.

[16] H. van Vliet. Software Engineering: Principles

and Practice. Wiley, second edition, 2010.

Cite this article as :

Shobha M , Bhavani H R, "Quantitative Tracking

Pedagogy of Software Architecture ", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 6, Issue 3,

pp.841-848, May-June-2020.

Journal URL : http://ijsrcseit.com/CSEIT2063198

http://www.ijsrcseit.com/
http://www.idi.ntnu.no/
http://www.idi.ntnu.no/
http://ijsrcseit.com/CSEIT2063198

