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ABSTRACT 

 

In this study, we simulate some finite difference schemes numerically to predict weather trends of Abuja Station, 

Nigeria. By evaluating the results from these schemes, it has shown that the best scheme in the finite difference 

method that gives a close accurate weather forecast is the trapezoidal scheme hence we use it to simulate 

numerical weather data obtained from Federal Airports Authority of Nigeria (FAAN), Abuja and corresponding 

numerical weather data obtained by the compatible finite difference schemes, using MATLAB (R2012a) software 

to obtain future numerical weather trends. 

Keywords :  finite different, trapezoidal scheme, Weather Prediction, forecasting, modelling 

 

I. INTRODUCTION 

 

Weather forecasting is one of the most complex and 

remarkably problems of modern science. In spite of 

evident advancement in the few decades and shift 

from manual forecasting methods to numerical ones, 

there are some significant problems that are yet to be 

solved either by manual methods or methods based on 

computer simulation posing interesting challenges for 

all those engaged in the field. An interminably need 

for in depth information on the actual meteorological 

conditions and problems associated to the use of 

traditional methods are responsible from intensive 

development of numerical weather prediction (NWP). 

 

The history of numerical weather prediction considers 

how current weather conditions as input into 

mathematical models of the atmosphere and oceans 

to predict the weather and future sea state (the process 

of numerical weather prediction) has changed over 

the years. Though first attempted in the 1920s, it was 

not until the advent of the computer and computer 

simulation that computation time was reduced to less 

than the forecast period itself.  

 

However, the vast range of available finite difference 

scheme is both a blessing and a curse, and many 

different combinations have been proposed, analysed 

and used for large scale geophysical fluid dynamics 

applications, particularly in the ocean modeling 

community Le Roux et al. (2005, 2007); Le Roux and 

Pouliot (2008); Danilov (2010); Cotter et al. (2009); 

Cotter and Ham (2011); Rostand and Le Roux (2008); 

Le Roux (2012); Comblen et al. (2010), whilst many 

other combinations have been used in engineering 
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applications where different scales and modeling 

aspects are important.  

 

In geophysical applications, the stability properties of 

compatible finite difference have long been 

recognized, leading to various choices being proposed 

and analyzed on triangular meshes, Walters and 

Casulli (1998); Rostand and Le Roux (2008). However, 

no explicit use was made of the compatible structure 

beyond stability until Cotter and Shipton (2012) used 

it, which proved that all compatible finite difference 

methods have exactly steady geotropic modes; this is 

considered a crucial property for numerical weather 

prediction Staniforth and Thuburn (2012).  

 

The purpose of this paper is to obtain numerical 

weather data and weather trends using the various 

schemes of the Finite Difference Method because the 

Finite Difference Method is one of the most powerful 

numerical methods for obtaining the numerical 

solution of step-wise differential equations.  

 

Finite Difference Approximations for Finite 

Difference Methods 

The finite difference method involves using discrete 

approximations like 

 

    
𝜕𝑢

𝜕𝑥
≈

𝑢𝑖+1−𝑢𝑖

Δ𝑥
                                                         (1) 

 

where the quantities on the right hand side are defined 

on the finite difference mesh. Approximations to the 

governing differential equation are obtained by 

replacing all continuous derivatives by discrete 

formulas such as those in Eq. (1). 

 

Advection Equation 

The advection equation is the major model used in this 

weather prediction meanwhile other schemes were 

derived based on their stability, conditional stability 

and neutrality as it affect the weather trends in a local 

station. Many of the important ideas can be illustrated 

by reference to the advection equation which we write 

in the form 

     
𝜕𝑢

 𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0                                                    

(2) 

where 𝑐 is a constant. We divide the (𝑥, 𝑡) −plane into   

a series of discrete points (𝑖∆𝑥, 𝑛∆𝑡) and denote the 

approximate solution for u at this point by 𝑢𝑖
𝑛 . The 

possible finite-difference scheme for the equation is 

 
𝑢𝑖

𝑛+1−𝑢𝑖
𝑛

∆𝑡
+ 𝑐

𝑢𝑖
𝑛−𝑢𝑖−1

𝑛

∆𝑥
= 0                                      (3) 

We may rewrite (3) as 

𝑢𝑖
𝑛+1 = (1 − 𝜇)𝑢𝑖

𝑛 + 𝜇𝑢𝑖−1
𝑛 ,                                (4) 

where µ = 𝑐∆𝑡/∆𝑥. The advection equation Eq. (2) has 

a possible finite-difference scheme given by Eq. (3) 

and hence an analytic solution of the advection 

equation in the form of a single harmonic is 

  𝑢(𝑥, 𝑡) = 𝑅𝑒[𝑈(𝑡)𝑒𝑖𝑘𝑥]                                (5)    

Here 𝑈(𝑡)  is the wave amplitude and 𝑘  the 

wavenumber. Substituting this result into Eq. (2) gives 

  
𝑑𝑈

𝑑𝑡
+ 𝑖𝑘𝑐𝑈 = 0,                                                   (6) 

which has the solution 

        𝑈(𝑡) = 𝑈(0)𝑒−𝑖𝑘𝑐𝑡,                                              

(7) 

 

𝑈(0) which is the initial amplitude. Hence 

𝑢(𝑥, 𝑡) = 𝑅𝑒[𝑈(0)𝑒−𝑖𝑘(𝑥−𝑐𝑡)]                            (8)  

as expected. The solution is finally expressed in Eq. (8).  

 

However, in the von Neumann method we looked for 

an analogous solution of the finite-difference equation 

Eq. (4) which after substituting 𝑢𝑗
𝑛 = 𝑅𝑒[𝑈(𝑛)𝑒𝑖𝑘𝑗∆𝑥], 

this reduces the entire scheme to the amplitude 

equation; 

  𝑈(𝑛+1) = 𝜆𝑈(𝑛)                                           (9) 

which properly defines the amplification factor |𝜆| 

and hence we can now study the behavior of the 

amplitude 𝑈(𝑛)  as 𝑛  increases, the stability of the 

scheme and the frequency of the stability is given by; 

      𝑝 = 𝜔∆𝑡                                                (10)    

   ∆𝑡 ≤
1

|𝜔|
                                                (11) 
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where 𝑝  is the stability of the scheme, 𝜆  is the 

wavelength 𝜔  is the frequency and ∆𝑡  the time 

interval and 𝜔 = 1,2, … , 𝑛. 

For Euler Scheme 

  𝜆 = 1 + 𝑖𝑝,     |𝜆| = (1 + 𝑝2)
1

2.                   (12) 

 at 𝑝 = 1, we have  

𝜆 = 1 + 𝑖 

This scheme is unstable|𝜆| > 1 for any 𝑝 > 0 

For Backward Scheme 

              𝜆 =
(1+

1

4
𝑖𝑝)

(1+𝑝2)
,     |𝜆| = (1 + 𝑝2)−

1

2               (13) 

at 𝑝 = 1, we have 

𝜆 = 0.5 + 0.125𝑖 

This scheme is stable 

For Trapezoidal Scheme 

       𝜆 =
(1+

1

4
𝑝2+𝑖𝑝)

(1+
1

4
𝑝2)

,     |𝜆| = 1.       

at 𝑝 = 1, we have                  𝜆 = 1 + 𝑖/1.25 

This scheme is always neutral. 

For Matsuno Scheme 

     𝜆 = 1 − 𝑝2 + 𝑖𝑝, |𝜆| = (1 − 𝑝2 + 𝑝4)
1

2           (15) 

at 𝑝 = 1, we have 

𝜆 = 𝑖 

This scheme is stable, if |𝑝|  ≤  1.  

For Heun Scheme               

    𝜆 = 1 −
1

2
𝑝2 + 𝑖𝑝, |𝜆| = (1 +

1

4
𝑝4)

1

2
.               (16) 

at 𝑝 = 1, we have  

𝜆 = 0.5 + 𝑖 

This is always >  1 so that the Heun scheme is always 

unstable. 

However, we select the real part minus the product of 

the imaginary part of the deduced wavelength with 

itself for the resultant solution of  

𝑈(𝑛+1) = 𝜆𝑈(𝑛) 

as  

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)].                                                   

(17) 

 

II. NUMERICAL SOLUTIONS 

Summary of Weather Data Set from Federal Airport Authority of Nigeria, Abuja Station 

Table 1 : Dataset from the Federal Airport Authority of Nigeria for Abuja Station 

         Annual Climatological Summary        Year: 2015 

Station: ABUJA, NG     Elev: 343.1ft. Lat: 09.15oN Lon: 07.00oE 
STATION 

# 

STATION 

NAME 

ELEV LAT LONG DATE RelHum TMAX TMIN RAINFALL SUNSHINE 

HRS 

WIND 

SPEED 

WIND 

DIR. 

65125 Abuja 343.1 09.15’N 07.00’E 201501 43 35.5 19.3 0 7.3 2.9 N 

65125 Abuja 343.1 09.15’N 07.00’E 201502 50 37.4 23.2 0.6 7.5 3.7 NE 

65125 Abuja 343.1 09.15’N 07.00’E 201503 62 37.7 25 7.5 8.2 3.5 NE 

65125 Abuja 343.1 09.15’N 07.00’E 201504 62 36.6 25.7 74.2 7.5 5 E 

65125 Abuja 343.1 09.15’N 07.00’E 201505 76 35.8 24.6 109.2 7.4 4.9 SW 

65125 Abuja 343.1 09.15’N 07.00’E 201506 81 30.2 23.2 267.2 7.5 4.7 S 

65125 Abuja 343.1 09.15’N 07.00’E 201507 86 28.7 22.3 314.8 4.5 3.7 SW 

65125 Abuja 343.1 09.15’N 07.00’E 201508 87 28.7 22.5 278.3 5.2 4.2 NW  

65125 Abuja 343.1 09.15’N 07.00’E 201509 83 29.5 22.2 258.4 5.2 4.1 W 

65125 Abuja 343.1 09.15’N 07.00’E 201510 78 30 21.8 238.2 6.8 3.3 NW 

65125 Abuja 343.1 09.15’N 07.00’E 201511 64 33.7 21.6 Trace  9.2 3 E 

65125 Abuja 343.1 09.15’N 07.00’E 201512 36 35 17.2 0 8.8 3.2 NE 

 

Source: FAAN 
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Solution of Sunshine Hours Prediction Using Finite Difference Scheme 

 

Using Eq. (17) and sunshine hours value from Table 1 for the first month, we compute the predicted values for 

the different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

 

𝑈(𝑛+1) = 𝑅𝑒[7.3(0.5 + 𝑖)] = 𝑅𝑒[3.65 + 7.3𝑖] = 3.65 − 1 = 2.65 
 

For Matsuno Scheme 

 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

 

𝑈(𝑛+1) = 𝑅𝑒[7.3(𝑖)] = 𝑅𝑒[7.3𝑖] = 0 
For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(1 + 𝑖/1.25)] = 7.66 − 1 = 6.66 
For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(0.5 + 0.125𝑖)] = 4.6 − 1 = 3.6 
For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(1 + 𝑖)] = 7.3 − 1 = 6.3 
The results of predicted sunshine hours for all the 12 months of the year are shown in Table 2 
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Table 2 : Sunshine Hours 2016 (SHRs 2016) 

 

Months Wavelength  𝜆 Amplitude 

𝑈(𝑛) 

Schemes 𝑈(𝑛+1)(SHRs 2016) 

𝜔 Heun  Matsuno  Trapezoidal  Backward  Euler  Sunshine  

2015 

Heun Matsuno Trapezoidal  Backward  Euler  

1 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 7.3 2.65 0 6.66 3.6 6.3 

2 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 7.5 2.75 0 6.86 3.7 6.5 

3 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 8.2 3.1 0 7.56 4.08 7.2 

4 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 7.5 2.75 0 6.86 3.7 6.5 

5 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 7.4 2.7 0 6.76 3.68 6.4 

6 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 7.5 2.75 0 6.86 3.7 6.5 

7 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 4.5 1.25 0 3.86 2.2 3.5 

8 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 5.2 1.6 0 4.56 2.58 4.2 

9 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 5.2 1.6 0 4.56 2.58 4.2 

10 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 6.8 2.4 0 6.16 3.38 5.8 

11 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 9.2 3.6 0 8.56 4.58 8.2 

12 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 8.8 3.4 0 8.16 4.38 7.8 

 

From the above table, the selection of the scheme to represent the model forecasting for the sunshine hours for 

2016 is based on the trend of the scheme whose result is closest to the previous year i.e. 2015 and hence among 

all five schemes in the table it is very obvious that aside Euler’s (Forward) Scheme  

 

which is the second closest, the Trapezoidal Scheme is the closest to the given sunshine hours in 2015. Hence we 

use the Sunshine Hours predicted using the Trapezoidal Scheme. 
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Figure 1 : A Comparative Chart Showing the Sunshine Hours Deduced by Various Schemes in one year 

 

Observing our choice Trapezoidal Scheme from Figure 1 above it is obviously showing that the sunshine hours 

between January and May will be relatively high and will begin to decrease from June and start to rise again 

around September and falls again in December. 

 

Solution of Wind Speed Prediction Using Finite Difference Scheme 

 

Using equation (17) and wind speed value from Table 1 for the third month, we compute the predicted values 

for the different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 3.5 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(0.5 + 𝑖)] = 𝑅𝑒[1.75 + 3.5𝑖] = 1.75 − 1 = 0.75 

For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 3.5 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(𝑖)] = 𝑅𝑒[3.5𝑖] = 0 

For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 3.5 for wind speed then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(1 + 𝑖/1.25)] = 3.86 − 1 = 2.86 
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For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 3.5 for wind speed then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(0.5 + 0.125𝑖)] = 2.7 − 1 = 1.7 

For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 7.3 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(1 + 𝑖)] = 3.5 − 1 = 2.5 

The results of predicted wind speed for all the 12 months of the year are shown in Table 3 

 

Table 3 : Wind Speed 2016 (WS 2016) 

 
Months Wavelength  𝜆 Amplitude 

𝑈(𝑛) 

Schemes 𝑈(𝑛+1)(WS 2016) 

𝜔 Heun  Matsuno  Trapezoidal  Backward  Euler  Wind 

Speed’15 

Heun Matsuno Trapezoidal  Backward  Euler  

1 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 2.9 0.45 0 2.26 1.4 1.9 

2 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 3.7 0.85 0 3.06 1.8 2.7 

3 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 3.5 0.75 0 2.86 1.7 2.5 

4 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 5 1.5 0 4.36 2.48 4 

5 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 4.9 1.45 0 4.26 2.4 3.9 

6 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 4.7 1.35 0 4.06 2.3 3.7 

7 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 3.7 0.85 0 3.06 1.8 2.7 

8 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 4.2 1.1 0 3.56 2.08 3.2 

9 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 4.1 1.05 0 3.46 2 3.1 

10 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 3.3 0.65 0 2.66 1.49 2.3 

11 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 3 0.5 0 2.36 1.48 2 

12 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 3.2 0.6 0 2.56 1.58 2.2 

 

From the above table, the selection of the scheme to represent the model forecasting for the Wind Speed for 2016 

is based on the trend of the scheme whose result is closest to the previous year i.e. 2015 and hence among all five 

schemes in the table it is very obvious that aside Euler’s (Forward) Scheme which is the second most closest, the 

Trapezoidal Scheme is the most closest to the given Wind Speed in 2015. Hence we use the Wind Speed predicted 

using the Trapezoidal Scheme. 
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Figure 2: A Comparative Chart Showing the Wind Speed Deduced by Various Schemes in one year 

Observing our choice Trapezoidal Scheme from Figure 2 above it is obviously showing that the wind speed will 

increase from January to May and will begin to decrease from June and start to rise again around September and 

falls again in November. 

 

Solution of Rainfall Prediction Using Finite Difference Scheme 

Using equation (17) and rainfall value from Table 1 for the second month, we compute the predicted values for 

the different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 0.6 for rainfall 

then  

𝑈(𝑛+1) = 𝑅𝑒[0.6(0.5 + 𝑖)] = 𝑅𝑒[0.3 + 0.6𝑖] = 0.3 − 1 = −0.7 
For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 0.6 for rainfall  

then  

𝑈(𝑛+1) = 𝑅𝑒[0.6(𝑖)] = 𝑅𝑒[0.6𝑖] = 0 
For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 0.6 for rainfall 

then  

𝑈(𝑛+1) = 𝑅𝑒[0.6(1 + 𝑖/1.25)] = 0.36 − 0.8 = −0.04 
For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 0.6 for rainfall 

then  
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𝑈(𝑛+1) = 𝑅𝑒[0.6(0.5 + 0.125𝑖)] = 0.3 − 0.015628 = 0.28 
For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 0.6 for rainfall 

then  

𝑈(𝑛+1) = 𝑅𝑒[0.6(1 + 𝑖)] = 0.6 − 1 = −0.4 
 

The results of predicted rainfall for all the 12 months of the year are shown in Table 4 

 

Table 4: RainFall 2016 (RF 2016) 

 
Month

s 

Wavelength  𝜆 Amplitude 

𝑈(𝑛) 

Schemes 𝑈(𝑛+1)(RF 2016) 

𝜔 Heu

n  

Matsun

o  

Trapezoida

l  

Backwar

d  

Eule

r  

Rain Fall 

‘15 

Heun Matsun

o 

Trapezoida

l  

Backwar

d  

Euler  

1 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 0 -1 0 -0.64 -0.02 -1 

2 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 0.6 -0.7 0 -0.04 0.28 -0.4 

3 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 7.5 2.75 0 6.86 3.7 6.5 

4 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 74.2 36.1 0 73.56 37 73.2 

5 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 109.2 53.6 0 108.56 54.58 108.2 

6 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 267.2 132.6 0 266.56 133.58 266.2 

7 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 314.8 156.4 0 314.16 157.38 313.8 

8 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 278.3 138.1

5 

0 277.66 139 277.2 

9 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 258.4 128.2 0 257.76 129 257.4 

10 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 238.2 118.1 0 237.56 119 237.2 

11 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 Trace  Trace  Trace  Trace  Trace  Trac

e  

12 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 0 -1 0 -0.64 -0.02 -1 

 
From the above table, the selection of the scheme to represent the model forecasting for the Rain Fall for 2016 is 

based on the trend of the scheme whose result is closest to the previous year i.e. 2015 and hence among all five 

schemes in the table it is very obvious that aside Euler’s (Forward) Scheme which is the second most closest, the 

Trapezoidal Scheme is the most closest to the given Rain Fall in 2015. Hence we use the Rain Fall predicted using 

the Trapezoidal Scheme. 
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Figure 3 : A Comparative Chart Showing the Rain Fall Deduced by Various Schemes in one year 

 

Observing our choice Trapezoidal Scheme from Figure 3 above it is obviously showing that the rain fall will start 

around late February and be very high in June till around October then will begin to reduce and dry season will 

set in from November. 

 

3.5 Solution of Relative Humidity Prediction Using Finite Difference Scheme 

Using equation (17) and relative humidity value from Table 1 for the fourth month, we compute the predicted 

values for the different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 62 for relative humidity 

then  

𝑈(𝑛+1) = 𝑅𝑒[62(0.5 + 𝑖)] = 𝑅𝑒[31 + 62𝑖] = 31 − 1 = 30 
For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 62 for relative humidity 

then  

𝑈(𝑛+1) = 𝑅𝑒[62(𝑖)] = 𝑅𝑒[62𝑖] = 0 
For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 62for relative humidity 

then  
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𝑈(𝑛+1) = 𝑅𝑒[62(1 + 𝑖/1.25)] = 62 − 0.64 = 61.36 
For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 62 for relative humidity 

then  

𝑈(𝑛+1) = 𝑅𝑒[62(0.5 + 0.125𝑖)] = 31 − 0.015625 = 30.98 
For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 62 for relative humidity 

then  

𝑈(𝑛+1) = 𝑅𝑒[62(1 + 𝑖)] = 62 − 1 = 61 
The results of predicted relative humidity for all the 12 months of the year are shown in Table 5 

 

Table 5 : Relative Humidity 2016 (RH 2016) 

 
Months Wavelength  𝜆 Amplitude 𝑈(𝑛) Schemes 𝑈(𝑛+1)(RH 2016) 

𝜔 Heun  Matsuno  Trapezoidal  Backward  Euler  Rel. 

Hum‘15 

Heun Matsuno Trapezoidal  Backward  Euler  

1 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 43 20.5 0 42.36 21.48 42 

2 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 50 24 0 49.36 24.98 49 

3 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 62 30 0 61.36 30.98 61 

4 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 62 30 0 61.36 30.98 61 

5 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 76 37 0 75.36 37.98 75 

6 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 81 39.5 0 80.36 40.48 80 

7 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 86 42 0 85.36 42.98 85 

8 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 87 42.5 0 86.36 43.48 86 

9 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 83 40.5 0 82.36 41.48 82 

10 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 78 38 0 77.36 38.98 77 

11 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 64 31 0 63.36 31.98 63 

12 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 36 17 0 35.36 17.98 35 

 
From the above table, the selection of the scheme to represent the model forecasting for the Relative Humidity 

for 2016 is based on the trend of the scheme whose result is closest to the previous year i.e. 2015 and hence 

among all five schemes in the table it is very obvious that aside Euler’s (Forward) Scheme which is the second 

most closest, the Trapezoidal Scheme is the most closest to the given Relative Humidity in 2015. Hence we use 

the Relative Humidity predicted using the Trapezoidal Scheme. 
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Figure 4 : A Comparative Chart Showing the Relative Humidity Deduced by Various Schemes in one year 

 

As the rain fall increase so does the relative humidity, therefore, observing our choice Trapezoidal Scheme from 

Figure 4 above it is obviously showing that the relative humidity will start around late February and be very high 

in June till around October then will begin to reduce and dry season will set in from November. 

 

Solution of Maximum Temperature Prediction Using Finite Difference Scheme 

Using equation (17) and maximum temperature value from Table 1 for the fifth month, we compute the predicted 

values for the different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 35.8 for maximum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[35.8(0.5 + 𝑖)] = 𝑅𝑒[17.9 + 35.8𝑖] = 17.9 − 1 = 16.9 
For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 35.8 for maximum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[35.8(𝑖)] = 𝑅𝑒[35.8𝑖] = 0 
For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 35.8 for maximum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[35.8(1 + 𝑖/1.25)] = 35.8 − 0.64 = 35.16 
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For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 35.8 for maximum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[35.8(0.5 + 0.125𝑖)] = 17.9 − 0.015625 = 17.88 
For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 35.8 for maximum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[35.8(1 + 𝑖)] = 35.8 − 1 = 34.8 
The results of predicted maximum temperature for all the 12 months of the year are shown in Table 6 

 

Table 6: Maximum Temperature 2016 (TMax 2016) 

 
Months Wavelength  𝜆 Amplitude 

𝑈(𝑛) 

Schemes 𝑈(𝑛+1)(TMax 2016) 

𝜔 Heun  Matsuno  Trapezoidal  Backward  Euler  TMax‘15 Heun Matsuno Trapezoidal  Backward  Euler  

1 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 35.5 16.75 0 34.86 17.7 34.5 

2 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 37.4 17.7 0 36.76 18.68 36.4 

3 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 37.7 17.85 0 37.06 18.8 36.7 

4 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 36.6 17.3 0 35.96 18.3 35.6 

5 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 35.8 16.9 0 35.16 17.88 34.8 

6 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 30.2 14.1 0 29.57 15 29.2 

7 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 28.7 13.35 0 28.06 14.33 27.7 

8 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 28.7 13.35 0 28.06 14.33 27.7 

9 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 29.5 13.75 0 28.86 14.7 28.5 

10 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 30 14 0 29.36 14.98 29 

11 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 33.7 15.85 0 33.06 16.8 32.7 

12 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 35 16.5 0 34.36 17.5 34 

 
From the above table, the selection of the scheme to represent the model forecasting for the Maximum 

Temperature for 2016 is based on the trend of the scheme whose result is closest to the previous year i.e. 2015 

and hence among all five schemes in the table it is very obvious that aside Euler’s (Forward) Scheme which is 

the second most closest, the Trapezoidal Scheme is the most closest to the given Maximum Temperature in 2015. 

Hence we use the Maximum Temperature predicted using the Trapezoidal Scheme. 
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Figure 5  : A Comparative Chart Showing the Maximum Temperature Deduced by Various Schemes in one year 

 

Observing our choice Trapezoidal Scheme from Figure 5 above it is obviously showing that the temperature will 

be high from January till around May and it begin to decline from June till around October where it will rise 

slightly in November. 

 

Solution of Minimum Temperature Prediction Using Finite Difference Scheme 

Using equation (17) and sunshine hours value from Table 1 for the sixth month, we compute the predicted values 

for the different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 23.2 for minimum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[23.2(0.5 + 𝑖)] = 𝑅𝑒[11.75 + 23.5𝑖] = 11.6 − 1 = 10.6 
For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 23.2 for minimum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[23.2(𝑖)] = 𝑅𝑒[23.2𝑖] = 0 
For Trapezoidal Scheme 
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where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 23.2 for minimum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[23.2(1 + 𝑖/1.25)] = 23.2 − 0.64 = 22.56 
For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 23.2 for minimum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[23.2(0.5 + 0.125𝑖)] = 11.75 − 0.015625 = 11.58 
For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 23.2 for minimum temperature 

then  

𝑈(𝑛+1) = 𝑅𝑒[23.2(1 + 𝑖)] = 23.2 − 1 = 22.2 
The results of predicted minimum temperature for all the 12 months of the year are shown in Table 7 

 

Table 7: Minimum Temperature 2016 (TMin 2016) 

 
Months Wavelength  𝜆 Amplitude 

𝑈(𝑛) 

Schemes 𝑈(𝑛+1)(TMin 2016) 

𝜔 Heun  Matsuno  Trapezoidal  Backward  Euler  TMin ‘15 Heun Matsuno Trapezoidal  Backward  Euler  

1 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 19.3 8.65 0 18.66 9.6 18.3 

2 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 23.2 10.6 0 22.56 11.58 22.2 

3 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 25 11.5 0 24.36 12.48 24 

4 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 25.7 11.8 0 25.06 12.78 24.7 

5 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 24.6 11.3 0 23.96 12.3 23.6 

6 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 23.2 10.6 0 22.56 11.58 22.2 

7 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 22.3 10.2 0 21.66 11.2 21.3 

8 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 22.5 10.3 0 21.86 11.3 21.5 

9 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 22.2 10.1 0 21.56 11.1 21.2 

10 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 21.8 9.9 0 21.16 10.88 20.8 

11 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 21.6 9.8 0 20.96 10.78 20.6 

12 0.5
+ 𝑖 

𝑖 1 + 𝑖/1.25 0.5
+ 0.125𝑖 

1 + 𝑖 17.2 7.6 0 16.56 8.58 16.2 

 

From the above table, the selection of the scheme to represent the model forecasting for the Minimum 

Temperature for 2016 is based on the trend of the scheme whose result is closest to the previous year i.e. 2015 

and hence among all five schemes in the table it is very obvious that aside Euler’s (Forward) Scheme which is 

the second most closest, the Trapezoidal Scheme is the most closest to the given Minimum Temperature in 2015. 

Hence we use the Minimum Temperature predicted using the Trapezoidal Scheme. 
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Figure 6 : A Comparative Chart Showing the Minimum Temperature Deduced by Various Schemes in one year 

 

Observing our choice Trapezoidal Scheme from Figure 6 above it is obviously showing that the temperature 

will be fall from January till around May and it begin to rise from June till around October where it will fall 

slightly in November. 

 

Summary of Predicted Weather Data Set From Compatible Finite Difference Scheme 

Table 8: Compatible FDM Numerical Weather Prediction  Year: 2016 

Station: ABUJA, NG     Elev: 343.1ft. Lat: 09.15oN Lon: 07.00oE 

 
STATIO

N 

NUMBE

R 

STATIO

N 

NAME 

ELE

V 

LAT LONG DAT

E 

RelHu

m 

TMA

X 

TMI

N 

RAINFA

LL 

SUNSHI

NE HRS 

WIN

D 

SPEE

D 

WIND  

DIRECTIO

N 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

1 

42.36 34.86 18.6

6 

-0.64 6.66 2.26 NE 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

2 

49.36 36.76 22.5

6 

-0.04 6.86 3.06 N 

65125 Abuja 343.

1 

09.15’ 

N 

09.24’

W 

20160

3 

61.36 37.06 24.3

6 

6.86 7.56 2.86 NW 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

4 

61.36 35.96 25.0

6 

73.56 6.86 4.36 NE 
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65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

5 

75.36 35.16 23.9

6 

108.56 6.76 4.26 NE 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

6 

80.36 29.57 22.5

6 

266.56 6.86 4.06 N 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

7 

85.36 28.06 21.6

6 

314.16 3.86 3.06 NE 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

8 

86.36 28.06 21.8

6 

277.66 4.56 3.56 NW 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20160

9 

82.36 28.86 21.5

6 

257.76 4.56 3.46 W 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20161

0 

77.36 29.36 21.1

6 

237.56 6.16 2.66 E 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20161

1 

63.36 33.06 20.9

6 

Trace  8.56 2.36 W 

65125 Abuja 343.

1 

09.15’

N 

09.24’

W 

20161

2 

35.36 34.36 16.5

6 

-0.64 8.16 2.56 NE 

 
Table 8 shows the values of the predicted weather data values obtained by using the trapezoidal scheme. This 

compared favourably with the real weather data values collected from Federal Airport Authority of Nigeria 

(FAAN) Abuja Station shown on Table 4.1.

 

III. CONCLUSION 

 

Weather prediction for a particular station is mostly 

accurate in the advent of recursive use of previous 

predictions or measurement. This research has 

unveiled that studying the weather trends helps in 

predicting future weather attenuation using numerical 

solutions deduced by finite difference method. The 

finite difference method has been used to deduce 

compatible models for automated attenuation of 

various parameters involved in the weather formation 

with the use of MATLAB in predicting future weather 

trends. The derivation of the models based on the 

finite difference method gives a high level of 

significance. In conclusion, the weather prediction for 

a station (i.e. Abuja, Nigeria) was flexibly obtained 

accurately prior to the use of previous determined or 

forecasted data and a compatible C-grid staggered 

finite difference method. 
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