
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT2063230

21

Frequent Patterns Mining
Youssef FAKIR*, Rachid ELAYACHI

Information processing and decision support laboratory, Faculty of Sciences and Techniques
Universiy Sultane Moulay Slimane, Morocco

Article Info

Volume 6, Issue 4

Page Number: 21-29

Publication Issue :

July-August-2020

Article History

Accepted : 01 July 2020

Published : 07 July 2020

ABSTRACT

Frequent pattern mining has been an important subject matter in data mining

from many years. A remarkable progress in this field has been made and lots

of efficient algorithms have been designed to search frequent patterns in a

transactional database. One of the most important technique of datamining is

the extraction rule in large database. The time required for generating frequent

itemsets plays an important role. This paper provides a comparative study of

algorithms Eclat, Apriori and FP-Growth. The performance of these algorithms

is compared according to the efficiency of the time and memory usage. This

study also focuses on each of the algorithm’s strengths and weaknesses for

finding patterns among large item sets in database systems.

Keywords : Apriori, Fp-growth, Eclat, itemsets, association rule.

I. INTRODUCTION

Association rule mining has its importance in fields of

artificial intelligence, information science, database

and many others. Data volumes are dramatically

increasing by day-to-day activities. Therefore,

mining the association rules from massive data is in

the interest for many industries as theses rules help in

decision-making processes, market basket analysis

and cross marketing etc.

The association rules, being an unsupervised

learning method, make it possible to discover, from a

set of transactions, a set of rules that expresses a

possibility of association between different items. A

transaction is a succession of items expressed in a

given order; similarly, the transaction set contains

transactions of different lengths.

An association rule is an implication expression of the

form X =>Y, where X and Y are disjoint itemsets, i.e.,

X ∩ Y = ∅. X and Y are named respectively the

ancedant and the consequent. For example if a

cosumer buy coffee hence he buy probably sugar.

The strength of an association rule can be measured

in terms of its support and confidence. The formal

definitions of these metrics are :

Support(X =>Y) = support (XUY)

Confidence(X =>Y) =sup(XUY)/Sup(X)

Support: It is defined as rate of occurrence of an

itemset in a transaction database.

Support (a →b) =

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT2063230
https://doi.org/10.32628/CSEIT2063230

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 22

(Number of transactions containing both a and b)/

number of total transactions

Confidence: For all transactions, it defines the ratio of

data items which contains Y in the items that contains

X.

Confidence (a b) =

(number of transactions containing a and b)/number

of transactions (containing a).

If I ={a1, a2, …an} is a set of items and a transaction

database DB={T1, T2,…, Tn} of n transaction, the

support for I is the number of baskets for which I is a

subset. We say I is frequent if its support is equal or

greater than S (minimum support). For example:

Consider below table (Table 1) containing some

transactions. This transaction can be represented in

boolean representation as shown in Table 2.

Table 1. Example of transactions in a database

TID List of Items

T1 I1, I2,I5

T2 I2,I4

T3 I2, I3

T4 I1, I2,I4

T5 I1,I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3 , I5

T9 I1, I2, I3

T10 I1, I2, I5, I6

In this paper, a comparison between the algorithms

Apriori [1,2], Fp-growth [3], and Eclat [4,5] is done.

This paper is organized as follows: Section 2 deals

with the Eclat algorithm while section 3 describes the

Apriori algorithm. Section 4 present the FP-Growth

algorithm. In section 5 we present the results of

experiment carried out on the database. Section 6

conclude the paper.

Table 2 : Boolean representation of DB of Table 1

TID I

1

I

2

I

3

I

4

I

5

I

6

T1 1 1 0 0 0 0

T2 0 1 0 1 0 0

T3 0 1 1 0 0 0

T4 1 1 0 1 0 0

T5 1 0 1 0 0 0

T6 0 1 1 0 0 0

T7 1 0 1 0 0 0

T8 1 1 1 0 1 0

T9 1 1 1 0 1 0

T10 1 1 0 0 1 1

Cou

nt

7 8 6 2 3 1

II. EQUIVALENCE CLASS TRANSFORMATION

(ECLAT)

The Eclat algorithm is used to perform itemset mining.

The basic idea for the Eclat algorithm is use tidset

intersections to compute the support of a candidate

itemset avoiding the generation of subsets that does

not exist in the prefix tree. ECLAT algorithm [4,8] uses

vertical database format whereas in Apriori horizontal

data format (TranscationId, Items) has been used, in

which transaction IDs are explicitly listed. While in

Vertical Data Format (VDF) (Items, TransactionID)

Items with their list of transactions are maintained.

ECLAT algorithm with set intersection property uses

depth-first search algorithm [6,7,8]. All frequent

itemsets can be computed with intersection of TID-list.

In first scan of database a TID list is maintained for

each single item. k+1 itemset can be generated from k

itemset using apriori property and depth first search

computation. (k+1)-itemset is generated by taking

intersection of TID-set of frequent k-itemset. This

process continues, until no candidate itemset can be

found (as shown in Table 3). The algorithm Eclat is

given in algorithm 1.

http://www.ijsrcseit.com/
http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 23

Table 3. Itemsets representation

Itemset TID

I1 1,4,5,7,8,9,10

I2 1,2,3,4,5,8,9,10

I3 3,5,6,7,8,9

I4 2,4

I5 1,8,10

I6 10

(a) 1-Itemset in VDF

Itemset TID

I1, I2 1,4,8,9,10

I1, I3 5,7,8,9

 I1, I4 4 x

I1, I5 1,8,10

I2, I3 3,6,8,9

I2, I4 2,4

I2, I5 1,8,10

I3, I5 8 x

I5, I6 10 x

(b) 2-Itemset in VDF

Itemset TID

I1, I2, I3 8,9

I1, I2, I4 4 x

I1, I2, I5 1,8,10

I1, I3, I5 8 x

(c) 3-Itemset in VDF

Algorithm 1 : Eclat

Input: Fk = {I1, I2, ..., In} // cluster of frequent k-

itemsets.

Output: Frequent l-itemsets.

Bottom-Up (Fk) {

for all Ii € Fk

Fk +1 = ∅;

for all Ij € Fk , i < j

N = Ii ∩ Ij;

if N .supı>= min_sup then

Fk + 1 = Fk +1 U N;

end

end

end

if Fk +1 ≠ ∅ then

Bottom-Up (Fk +1);

end

}

In this algorithm, numbers of items are stored in Fk as a

input. Output is frequent itemsets which are frequently

occurred. Searching of elements starts from bottom to

top. First take Fk +1 as empty datasbase. In next step find

support of individual items. Compare support of all

items with minimum support. And that put all those

items in Fk +1. Fk +1 contains all frequent items. Again

check that Fk +1 is empty or not. If it is not empty then

bottom up approach will apply on Fk + 1.

III. APRIORI ALGORITHM

Agrawal and Srikant (1994) firstly proposed Apriori

algorithm [5]. This algorithm uses two steps “join” and

“prune” to reduce the search space. It is an iterative

approach to discover the most frequent itemsets. Join

Step generates (K+1) itemset from K-itemsets by

joining each item with itself. Prune step scans the

count of each item in the database. If the candidate

item does not meet minimum support, then it is

regarded as infrequent and thus it is removed. This

step is performed to reduce the size of the candidate

itemsets. These processes are iteratively repeated until

candidate Itemsets or large Itemsets becomes empty.

Original database is scanned first time for the

candidate set, consists of one sensor item and there

support has counted, then these 1-Itemset candidates

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 24

are pruned by simply removing those items that has an

item count less than user specified threshold

(minimum support). In second pass database is

scanned again to generate 2-Itemset candidates

consist of two items, then again pruned to produced

large 2-Itemset using apriori property. According to

apriori property every sub 1-Itemset of 2 frequent

Itemsets must be frequent. This process ends as in

fourth scan of database 4-Itemset candidate will be

pruned and large itemset will be empty.

The principle of Apriori is that :

If an itemset is frequent, then all of its subsets must

also be frequent.

Apriori principle holds due to the following property

of the support measure :

• Support of an itemset never exceeds the

support of its subsets.

• This is known as the anti-monotone property

of support

The pseudo code for apriori algorithm is as

follows :

Apriori_Algo(L,C,k)

Pass 1

1. Generate the candidate itemsets in C1

2. Save the frequent itemsets in L1

Pass k

1. Generate the candidate itemsets in Ck from the

frequent itemsets in Lk-1

i. Join Lk-1 p with Lk-1q, as follows:

insert into Ck

select p.item1 , p.item2 , . . . , p.itemk1 , q.itemk-1 from

Lk-1 p, Lk-1q where p.item1 = q.item1 , . . .

p.itemk2 = q.itemk-2 , p.itemk-1 < q.itemk-1

ii. Generate all (k-1)-subsets from the candidate

itemsets in Ck

iii. Prune all candidate itemsets from Ck where some

(k-1)-subset of the candidate itemset is not in the

frequent itemset Lk-1

2. Scan the transaction database to determine the

support for each candidate itemset in Ck

3. Save the frequent itemsets in Lk

The basic steps to mine the frequent elements are

given in the following tables (Table 4 to Table 6) by

fixing the minimum support to 30%.

- Step 1 : Items –count

-

Table .4 : Items and large 1-items

Items Count

I1 7 Large 1-item count

I2 8 I1 7

I3 6 I2 8

I4 2 I3 6

I5 3 I5 3

I6 1

(b) Candidate 1 (c) Large 1-items

- Step 2. Prune Step:

- Table-4(b) shows that I4 and I6 Item does not meet

min_sup=3, thus it is deleted, only I1, I2, I3, I5 meet

min_sup count.

-

- Step 3 Join Step:

- Form 2-itemset. from Table-4 (c) find out the

occurrences of 2-itemset.

-

- Step 4. Prune Step:

- Table-5 shows that item set {I3, I5} does not meet

min_sup, thus it is deleted.

Step 5:

 Join and Prune Step: Form 3-itemset. From

the Table-1 find out occurrences of 3-itemset. We

can see for itemset {I1, I2, I3} subsets, {I1, I2}, {I1, I3},

{I1, I5},{I2, I3}, {I2, I5} are occurring in Table 5 thus

{I1, I2, I5} is frequent.
-

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 25

Table-5: Large 2-items

Item Count

I1,I2 5

I1,I3 4

I1,I5 3

I2,I3 4

I2,I5 3

I3,I5 2

Table-6 : Large 3-items

Item count

I1,I2,I3 2

I1,I2,I5 3

The last step is the generalisation of association rules

by chosen a confidence threshold.

IV. FP-GROWTH ALGORITHM

In the field of data mining, the most popular algorithm

used for pattern discovery is FP Growth algorithm

[3,5,9]. To deal with the two main drawbacks of

Apriori algorithm in [5] a novel, compressed data

structure named as FP- tree is constructed, which is

prefix-tree structure storing quantifiable information

about frequent patterns. Based on FP tree a frequent

pattern growth algorithm was developed. FP-growth

has to scan the TDB twice to construct an FP-tree. The

first scan of TDB retrieves a set of frequent items from

the TDB . Then, the retrieved frequent items are

ordered by descending order of their supports. The

ordered list is called an F-list. In the second scan, a tree

T whose root node R labeled with “null” is created.

Then, the following steps are applied to every

transaction in the TDB . Here, let a transaction

represent [p | P] where p is the first item of the

transaction and P is the remaining items.

- In each transaction, infrequent items are

discarded.

- Then, only the frequent items are sorted by the

same order of F-list.

- Call insert_tree (p | P, R) to construct an FP-tree.

The function insert_tree (p | P, R) appends a

transaction [p |P] to the root node R of the tree T .

An example of an FP-tree is shown in Figure 1 and

Figure 2. This FP-tree is constructed from the TDB

shown in Table 7 with min_sup = 3. In Figure 1, every

node is represented by (item name : count). Links

to next same item name node are represented by

dotted arrows. FP-Growth allows frequent itemset

discovery without candidate itemset generation. Two

steps approach:

Step 1: Build a compact data structure called the FP-

tree built using 2 passes over the data-set.

Step 2: Extracts frequent item-sets directly from the

FP-tree.

FP-tree: is a compact data structure that stores

important, crucial and quantitative information about

frequent patterns. The main components of FP tree are:

item-name, count, and node-link, where item-name

registers which item this node represents, count

registers the number of transactions represented by

the portion of the path reaching this node, and node-

link links to the next node in the FP- tree carrying the

same item-name.

Each entry in the frequent-item header table consists

of two fields, (1) item-name and (2) head of node-link,

which points to the first node in the FP-tree carrying

the item-name.

The tree construction algorithm is listed in Algorithm

2, the insert_tree(.) procedure is defined in Algorithm

3 and FP-Growth is given in algorithm 4.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 26

Head table Root

Items Head

modelink

I2:8

I1:2

I2

I1 I1:5 I3:2 I3:2

I3 I3:2

I5 I5:2

 I5:1

 Item Conditional

Pattern base

 I5 I2 I1:2, I2 I1 I3 :1

 I3 I2 I1:2, I2:2,I1:2

 I1 I2:5

 I2 {}

Figure 1. Conditional database

(a) I5’s conditional Tree

Item Conditional Tree Frequent Pattern

I5 {(I2 I1)}| I5 I2 I5, I1 I5 , I2 I1 I5

I3 {(I2 I1)}| I3 I2 I3 , I1 I3 , I2 I3 I5

(b) Frequent conditional items

Figure 2. (a) Conditional tree and (b) frequent

conditional items

Algorithm 2: FP-tree_construction

Input: A transaction database DB and a minsupcount

ξ.

Output: The frequent pattern tree F

1. Scan the DB to get the list L of frequent items,

and sort it in support descending order.

2. Create a FP-tree F by:

3. Create the header table, and set all the headof-

node-links to null.

4. Create the root node T of the tree having the

item-name of null.

5. Set the parent-link and node-link of T to null.

6. Scan the DB again

7. For each transaction Tran in DB do

8. Get the list of frequent items.

9. Sort it according to the order L.

10. Let this list be [p|P], where p is the first item and

P is the remaining items.

11. Call insert_tree([p|P], T).

Table 7. Ordered frequent items

TID List of Items Items ordered by

decending order

T1 I1, I2,I5 I2,I1, ,I5

T2 I2,I4 I2

T3 I2, I3 I2, I3

T4 I1, I2,I4 I2, I1

T5 I1,I3 I1,I3

T6 I2, I3 I2, I3

T7 I1, I3 I1, I3

T8 I1, I2, I3 , I5 I2, I1, I3 , I5

T9 I1, I2, I3 I2, I1, I3

T10 I1, I2, I5, I6 I2, I1, I5

Algorithm 3: insert_tree

Input: the ordered list [p|P] of frequent items, and

a node T of a FP-tree.

Output: the updated FP-tree.

1. If T has a child node N such that the item name

of N and p is the same then

2. Increase the count of N by 1

3. Else

4. Create a new node N.

5. Set the item_name of N to p.item_name.

6. Set the count of N to 1.

7. Link the parent-link of N to T.

8. Set the node-link of N to null.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 27

9. If the head-of-node-links of the item h in the

header table having the same name as p is null

then

10. Set head-of-node-links of h to p;

11. Else

12. Traverse through the head-of-node-links of h to

the end of the list, and link the node-link of the

end-node to p.

13. If P is not empty then

14. Let P=[p1|P1]

15. Call insert_tree([p1|P1], N)

Algorithm 4: FP_growth

Input: FP-tree constructed based on Algorithm 2,

using DB and a minsupcount ξ, and a pattern prefix α

Output: The complete set of frequent patterns.

 Procedure FP-growth (Tree, α)

{

1. If Tree contains a single path P then

2. For each combination (denoted as β) of the nodes

in the path P do generate pattern β ∪α with support

=minimum support of nodes in β;

3. Else for each ai in the header of Tree do{

4. Generate pattern β = ai∪α with support = ai.

Support;

5. Construct β 's conditional pattern base and then β

's conditional FP-tree Tree β with respect to

minsupcount ξ;

6. If Treeβ ≠∅ then call FP-growth (Tree β, β)

}

V. EXPIRIMENTAL RESULTS

For the experimental study, the same dataset is used

for the tree algorithms as input in order to compare

the efficiency and rapidity of the algorithms. Results

obained by the above mentioned algorithms are as

follows :

APRIORI

Candidates count: 15

The algorithm stopped at size : 5

Frequent itemsets count: 15

Maximum memory usage: 1.282684326171875 mb

Total time : ~ 17 ms

FP-GROWTH

Transactions count from database : 7

Frequent itemsets count : 15

Max memory usage: 1.2811813354492188 mb

Total time : ~ 12 ms

ECLAT

Transactions count from database: 5

Frequent itemsets count: 15

Maximum memory usage: 0.6226730346679688 mb

Total time : ~ 5 ms

The statistics above contain the number of generated

patterns, the pattern size at which the algorithm

stopped wihch in this case is five, then the memory

used for the algorithm’s variables and finally, the

runtime.

VI. CONCLUSION AND DISCUSSION

The comparative analysis provides a framework that

clearly shows the technique, database scan, and

execution time of various frequent pattern mining

algorithms. The above mentioned algorithms also

compared on the basis of used data format and storage

structure.

The performance of any algorithm can be estimated by

the number of required database scan to extract

patterns. The storage consumption of the above

mentioned algorithms can be assessed for their

utilization of memory to generate less candidate

Itemset or avoid candidate Itemset generation process.

Apriori algorithm charactersitics is as follows :

- Database is scanned for each time a candidate

itemset is generated.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Youssef Fakir et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 21-29

 28

- Uses large itemset property and easy to

implement

- Uses breadth first search

The drawback for apriori is that requires large memory

space ,too many candidate itemset and too many passes

over database

FP-Growth is good in achieving three important

objectives :

- the database is scanned only two times and

computational cost is decreased dramatically.

- no candidates itemset are generated.

- uses divide and conquer approach which

consequently reduces the search space.

On the other hands FP-Growth has one drawback. It

is difficult to use in incremental mining, FP tree needs

to be updated and the whole process needs to repeat.

ECLAT algorithm is better than Apriori and near

equivalent to FP-Growth performs better than Apriori

and FP-Growth in terms of its execution time.

Eclat has some advantages:

- The database is scannd few times (best case=2),

- Execution time less than apriori

- No need to scan database each time a candidate is

generated as support count information will be

obtained from previous itemset

- uses depth first search

- Eclat has drawback, requires the virtual memory

to perform the transformation.

VII. REFERENCES

[1]. Hahsler, M .; Gruen, B. & Hornik, K. arules - Un

environnement informatique pour les règles de

l’Association minière et les ensembles d’articles

fréquents . Journal of Statistical Software, 2005,

14, 1-25

[2]. Garima Jain, Diksha Maurya, Extraction of

Association Rule Mining using Apriori

algorithm with Wolf Search Optimisation in R

Programming International Journal of Recent

Technology and Engineering (IJRTE) ISSN:

2277-3878, Volume-8, Issue-2S7, July 2019

[3]. Yong Qiu, Yongjie Lan, Qing-Song Xie, An

Improved Algorithm Of Mining From Fp-Tree,

Proceedings of the Third International

Conference on Machine Learning and

Cybernedcs, Shanghai, 26-29 Aygust 2004

[4]. M. Kaur, U. Garg, et S. Kaur, « Advanced Eclat

Algorithm for Frequent Itemsets Generation »,

p. 19.

[5]. X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q.

Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu,

P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand,

and D.Steinberg, “Top 10 algorithms in data

mining,” Knowledge and Information Systems,

vol. 14, no. 1, pp. 1–37, Dec. 2007.

[6]. Bo Wu, Defu Zhang, Qihua Lan, Jiemin Zheng,

An Efficient Frequent Patterns Mining

Algorithm based on Apriori Algorithm and the

FP-tree Structure, Third 2008 International

Conference on Convergence and Hybrid

Information Technology

[7]. Manjit kaur , Urvashi Grag , ECLAT Algorithm

for Frequent Itemsets Generation , International

Journal of Computer Systems , Volume 01– Issue

03, December, 2014

[8]. Manjit kaur , Urvashi Grag, ECLAT Algorithm

for Frequent Itemsets Generation, International

Journal of Computer Systems (ISSN: 2394-1065),

Volume 01– Issue 03, December, 2014

[9]. Xiaomei Yu, Hong Wang, Improvement of Eclat

Algorithm Based on Support in Frequent Itemset

Mining, journal of computers, vol. 9, no. 9,

september 2014

Cite this article as :

Youssef Fakir, Rachid Elayachi, "Frequent Patterns

Mining ", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 6

Issue 4, pp. 21-29, July-August 2020. Available at

doi : https://doi.org/10.32628/CSEIT2063230

Journal URL : http://ijsrcseit.com/CSEIT2063230

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT2063230
https://doi.org/10.32628/CSEIT2063230
http://ijsrcseit.com/CSEIT2063230
http://ijsrcseit.com/CSEIT2063230

