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ABSTRACT 

 

Frequent pattern mining has been an important subject matter in data mining 

from many years. A remarkable progress in this field has been made and lots 

of efficient algorithms have been designed to search frequent patterns in a 

transactional database. One of the most important technique of datamining is 

the extraction rule in large database. The time required for generating frequent 

itemsets plays an important role. This paper provides a comparative study of 

algorithms Eclat, Apriori and FP-Growth. The performance of these algorithms 

is compared according to the efficiency of the time and memory usage. This 

study also focuses on each of the algorithm’s strengths and weaknesses for 

finding patterns among large item sets in database systems. 
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I. INTRODUCTION 

 

Association rule mining has its importance in fields of 

artificial intelligence, information science, database 

and many others. Data volumes are dramatically 

increasing by day-to-day activities. Therefore, 

mining the association rules from massive data is in 

the interest for many industries as theses rules help in 

decision-making processes, market basket analysis 

and cross marketing etc.  

The association rules, being an unsupervised 

learning method, make it possible to discover, from a 

set of transactions, a set of rules that expresses a 

possibility of association between different items. A 

transaction is a succession of items expressed in a 

given order; similarly, the transaction set contains 

transactions of different lengths. 

An association rule is an implication expression of the 

form X =>Y, where X and Y are disjoint itemsets, i.e., 

X ∩ Y = ∅.  X and Y are named respectively the 

ancedant and the consequent. For example if a 

cosumer buy coffee hence he buy probably sugar. 

The strength of an association rule can be measured 

in terms of its support and confidence. The formal 

definitions of these metrics are : 

 

Support(X =>Y) = support (XUY) 

Confidence(X =>Y) =sup(XUY)/Sup(X) 

 

Support: It is defined as rate of occurrence of an 

itemset in a transaction database.  

 

Support (a →b) =  
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(Number of transactions containing both a and b)/ 

number of total transactions  

 

Confidence: For all transactions, it defines the ratio of 

data items which contains Y in the items that contains 

X. 

 

Confidence (a b) =  

(number of transactions containing a and b)/number 

of transactions (containing a). 

 

If I ={a1, a2, …an} is a set of items and a transaction 

database DB={T1, T2,…, Tn} of n transaction, the 

support for I is the number of baskets for which I is a 

subset. We say I is frequent if its support is equal or 

greater than S (minimum support). For example: 

Consider below table (Table 1) containing some 

transactions. This transaction can be represented in 

boolean representation as shown in Table 2.  

 

Table 1. Example of transactions in a database 

TID List of Items 

T1 I1, I2,I5 

T2 I2,I4 

T3 I2, I3 

T4 I1, I2,I4 

T5 I1,I3 

T6 I2, I3 

T7 I1, I3 

T8 I1, I2, I3 , I5 

T9 I1, I2, I3 

T10 I1, I2, I5, I6 

 

In this paper, a comparison between the algorithms 

Apriori [1,2], Fp-growth [3], and Eclat [4,5] is done. 

This paper is organized as follows: Section 2 deals 

with the Eclat algorithm while section 3 describes the 

Apriori algorithm. Section 4 present the FP-Growth 

algorithm. In section 5 we present the results of 

experiment carried out on the database. Section 6 

conclude the paper. 

Table 2 : Boolean representation of DB of Table 1 

TID I

1 

I

2 

I

3 

I

4 

I

5 

I

6 

T1 1 1 0 0 0 0 

T2 0 1 0 1 0 0 

T3 0 1 1 0 0 0 

T4 1 1 0 1 0 0 

T5 1 0 1 0 0 0 

T6 0 1 1 0 0 0 

T7 1 0 1 0 0 0 

T8 1 1 1 0 1 0 

T9 1 1 1 0 1 0 

T10 1 1 0 0 1 1 

Cou

nt 

7 8 6 2 3 1 

 

 

II. EQUIVALENCE CLASS TRANSFORMATION 

(ECLAT) 

 

The Eclat algorithm is used to perform itemset mining. 

The basic idea for the Eclat algorithm is use tidset 

intersections to compute the support of a candidate 

itemset avoiding the generation of subsets that does 

not exist in the prefix tree. ECLAT algorithm [4,8] uses 

vertical database format whereas in Apriori horizontal 

data format (TranscationId, Items) has been used, in 

which transaction IDs are explicitly listed. While in 

Vertical Data Format (VDF) (Items, TransactionID) 

Items with their list of transactions are maintained. 

ECLAT algorithm with  set intersection property uses 

depth-first search algorithm [6,7,8]. All frequent 

itemsets can be computed with intersection of TID-list.  

In first scan of database a TID list is maintained for 

each single item. k+1 itemset can be generated from k 

itemset using apriori property and depth first search 

computation. (k+1)-itemset is generated by taking 

intersection of TID-set of frequent k-itemset. This 

process continues, until no candidate itemset can be 

found (as shown in Table 3). The algorithm Eclat is 

given in algorithm 1. 
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Table 3. Itemsets representation 

Itemset TID 

I1 1,4,5,7,8,9,10 

I2 1,2,3,4,5,8,9,10 

I3 3,5,6,7,8,9 

I4 2,4 

I5 1,8,10 

I6 10 

(a) 1-Itemset in VDF 

 

Itemset TID 

I1, I2 1,4,8,9,10 

I1, I3 5,7,8,9 

 I1, I4 4                   x 

I1, I5 1,8,10 

I2, I3 3,6,8,9 

I2, I4 2,4 

I2, I5 1,8,10 

I3, I5 8                  x    

I5, I6 10                 x 

(b) 2-Itemset in VDF 

 

Itemset TID 

I1, I2, I3 8,9 

I1, I2,  I4 4                x 

I1, I2, I5 1,8,10 

I1, I3, I5   8                x 

(c) 3-Itemset in VDF 

 

Algorithm 1 : Eclat 

Input: Fk = {I1, I2, ..., In} // cluster of frequent k-

itemsets. 

Output: Frequent l-itemsets. 

Bottom-Up (Fk) { 

for all Ii € Fk 

Fk +1 = ∅; 

for all Ij € Fk , i < j 

N = Ii ∩ Ij; 

if N .supı>= min_sup then 

Fk + 1 = Fk +1 U N; 

end 

end 

end 

if Fk +1 ≠ ∅ then 

Bottom-Up (Fk +1); 

end 

} 

 

In this algorithm, numbers of items are stored in Fk as a 

input. Output is frequent itemsets which are frequently 

occurred. Searching of elements starts from bottom to 

top. First take Fk +1 as empty datasbase. In next step find 

support of individual items. Compare support of all 

items with minimum support. And that put all those 

items in Fk +1. Fk +1 contains all frequent items. Again 

check that Fk +1 is empty or not. If it is not empty then 

bottom up approach will apply on Fk + 1. 

 

III. APRIORI ALGORITHM 

 

Agrawal and Srikant (1994) firstly proposed Apriori 

algorithm [5]. This algorithm uses two steps “join” and 

“prune” to reduce the search space. It is an iterative 

approach to discover the most frequent itemsets. Join 

Step generates (K+1) itemset from K-itemsets by 

joining each item with itself. Prune step scans the 

count of each item in the database. If the candidate 

item does not meet minimum support, then it is 

regarded as infrequent and thus it is removed. This 

step is performed to reduce the size of the candidate 

itemsets. These processes are iteratively repeated until 

candidate Itemsets or large Itemsets becomes empty. 

Original database is scanned first time for the 

candidate set, consists of one sensor item and there 

support has counted, then these 1-Itemset candidates 
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are pruned by simply removing those items that has an 

item count less than user specified threshold 

(minimum support). In second pass database is 

scanned again  to  generate 2-Itemset candidates 

consist of two items, then again pruned to produced 

large 2-Itemset using apriori property. According to 

apriori property every sub 1-Itemset of 2 frequent 

Itemsets must be frequent. This process ends as in 

fourth scan of database 4-Itemset candidate will be 

pruned and large itemset will be empty. 

The principle of Apriori is that : 

If an itemset is frequent, then all of its subsets must 

also be frequent. 

 

Apriori principle holds due to the following property 

of the support measure : 

• Support of an itemset never exceeds the 

support of its subsets. 

• This is known as the anti-monotone property 

of support 

The pseudo code for apriori algorithm is as 

follows : 
 

Apriori_Algo(L,C,k)  

Pass 1  

1. Generate the candidate itemsets in C1  

2. Save the frequent itemsets in L1  

Pass k  

1. Generate the candidate itemsets in Ck from the 

frequent itemsets in Lk-1  

i. Join Lk-1 p with Lk-1q, as follows:  

insert into Ck  

select p.item1 , p.item2 , . . . , p.itemk1 , q.itemk-1 from 

Lk-1 p, Lk-1q where p.item1 = q.item1 , . . . 

p.itemk2 = q.itemk-2 , p.itemk-1 < q.itemk-1  

ii. Generate all (k-1)-subsets from the candidate 

itemsets in Ck  

iii. Prune all candidate itemsets from Ck where some 

(k-1)-subset of the candidate itemset is not in the 

frequent itemset Lk-1  

2. Scan the transaction database to determine the 

support for each candidate itemset in Ck  

3. Save the frequent itemsets in Lk 

 

 

The basic steps to mine the frequent elements are 

given in the following tables (Table 4 to Table 6) by 

fixing the minimum support to 30%. 

 

- Step 1 : Items –count 

-  

Table .4 : Items and large 1-items 

Items Count    

I1 7  Large 1-item count 

I2 8  I1 7 

I3 6  I2 8 

I4 2  I3 6 

I5 3  I5 3 

I6 1    

(b) Candidate 1                     (c) Large 1-items 

 

 

- Step 2. Prune Step:  

- Table-4(b) shows that I4 and  I6 Item does not meet 

min_sup=3, thus it is deleted, only I1, I2, I3, I5 meet 

min_sup count. 

-  

- Step 3 Join Step:  

- Form 2-itemset. from Table-4 (c) find out the 

occurrences of 2-itemset. 

-  

- Step 4. Prune Step:  

- Table-5 shows that item set {I3, I5} does not meet 

min_sup, thus it is deleted. 

 

Step 5: 

 Join and Prune Step: Form 3-itemset. From 

the Table-1 find out occurrences of 3-itemset. We 

can see for itemset {I1, I2, I3} subsets, {I1, I2}, {I1, I3}, 

{I1, I5},{I2, I3}, {I2, I5} are occurring in Table 5 thus 

{I1, I2, I5} is frequent.  
-  
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Table-5: Large 2-items 

Item Count 

I1,I2 5 

I1,I3 4 

I1,I5 3 

I2,I3 4 

I2,I5 3 

I3,I5 2 

 

Table-6 : Large 3-items 

Item count 

I1,I2,I3 2 

I1,I2,I5 3 

 

The last step is the generalisation of association rules 

by chosen a confidence threshold. 

  

IV. FP-GROWTH ALGORITHM 

 

In the field of data mining, the most popular algorithm 

used for pattern discovery is FP Growth algorithm 

[3,5,9]. To deal with the two main drawbacks of 

Apriori algorithm in [5] a novel, compressed data 

structure named as FP- tree is constructed, which is 

prefix-tree structure storing quantifiable information 

about frequent patterns. Based on FP tree a frequent 

pattern growth algorithm was developed. FP-growth 

has to scan the TDB twice to construct an FP-tree. The 

first scan of TDB retrieves a set of frequent items from 

the TDB . Then, the retrieved frequent items are 

ordered by descending order of their supports. The 

ordered list is called an F-list. In the second scan, a tree 

T whose root node R labeled with “null” is created. 

Then, the following steps are applied to every 

transaction in the TDB . Here, let a transaction 

represent [ p | P] where p is the first item of the 

transaction and P is the remaining items. 

- In each transaction, infrequent items are 

discarded. 

- Then, only the frequent items are sorted by the 

same order of F-list. 

- Call insert_tree ( p | P, R) to construct an FP-tree. 

The function insert_tree ( p | P, R) appends a 

transaction [ p |P] to the root node R of the tree T . 

An example of an FP-tree is shown in Figure 1 and 

Figure 2. This FP-tree is constructed from the TDB  

shown in Table 7 with min_sup = 3. In Figure 1, every 

node is represented by (item       name : count).  Links 

to next same item name node are represented by 

dotted arrows. FP-Growth allows frequent itemset 

discovery without candidate itemset generation. Two 

steps approach: 

 

Step 1: Build a compact data structure called the FP-

tree built using 2 passes over the data-set. 

 

Step 2: Extracts frequent item-sets directly from the 

FP-tree. 

 

FP-tree: is a compact data structure that stores 

important, crucial and quantitative information about 

frequent patterns. The main components of FP tree are: 

item-name, count, and node-link, where item-name 

registers which item this node represents, count 

registers the number of transactions represented by 

the portion of the path reaching this node, and node-

link links to the next node in the FP- tree carrying the 

same item-name. 

 

Each entry in the frequent-item header table consists 

of two fields, (1) item-name and (2) head of node-link, 

which points to the first node in the FP-tree carrying 

the item-name. 

The tree construction algorithm is listed in Algorithm 

2, the insert_tree(.) procedure is defined in Algorithm 

3 and FP-Growth is given in algorithm 4. 
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Head table   Root  

Items Head 

modelink 

  

I2:8 

  

I1:2 

I2    

I1  I1:5  I3:2 I3:2 

I3   I3:2   

I5  I5:2    

   I5:1   

      

   Item Conditional 

Pattern base 

   I5 I2 I1:2, I2 I1 I3 :1 

   I3 I2 I1:2, I2:2,I1:2 

   I1 I2:5 

   I2 {} 

 

Figure 1.  Conditional database 

 

 

(a)  I5’s conditional Tree 

Item Conditional Tree Frequent Pattern 

I5 {(I2 I1)}| I5 I2 I5, I1 I5 , I2 I1 I5 

I3 {(I2 I1)}| I3 I2 I3 , I1 I3 , I2 I3 I5 

(b) Frequent conditional items 

 

Figure 2. (a) Conditional tree and (b) frequent 

conditional items 

 

Algorithm 2: FP-tree_construction 

Input: A transaction database DB and a minsupcount 

ξ. 

Output: The frequent pattern tree F 

1. Scan the DB to get the list L of frequent items, 

and sort it in support descending order. 

2. Create a FP-tree F by: 

3. Create the header table, and set all the headof-

node-links to null. 

4. Create the root node T of the tree having the 

item-name of null. 

5. Set the parent-link and node-link of T to null. 

6.  Scan the DB again 

7. For each transaction Tran in DB do 

8. Get the list of frequent items. 

9. Sort it according to the order L. 

10. Let this list be [p|P], where p is the first item and 

P is the  remaining items. 

11. Call insert_tree([p|P], T). 

 

Table 7. Ordered frequent items 

TID List of Items Items ordered by 

decending order 

T1 I1, I2,I5 I2,I1, ,I5 

T2 I2,I4 I2 

T3 I2, I3 I2, I3 

T4 I1, I2,I4 I2, I1  

T5 I1,I3 I1,I3 

T6 I2, I3 I2, I3 

T7 I1, I3 I1, I3 

T8 I1, I2, I3 , I5 I2, I1, I3 , I5 

T9 I1, I2, I3 I2, I1, I3 

T10 I1, I2, I5, I6 I2, I1,  I5 

 

Algorithm 3: insert_tree 

Input:     the ordered list [p|P] of frequent items, and 

a node T of a FP-tree. 

Output: the updated FP-tree. 

1. If T has a child node N such that the item name 

of N and p is the same then 

2. Increase the count of N by 1 

3. Else 

4. Create a new node N. 

5. Set the item_name of N to p.item_name. 

6. Set the count of N to 1. 

7. Link the parent-link of N to T. 

8.    Set the node-link of N to null. 
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9.    If the head-of-node-links of the item h in the 

header table having the same name as p is null 

then 

10.    Set head-of-node-links of h to p; 

11.    Else 

12. Traverse through the head-of-node-links of h to 

the end of the list, and link the node-link of the 

end-node to p. 

13. If P is not empty then 

14. Let P=[p1|P1] 

15. Call insert_tree([p1|P1], N) 

 

Algorithm 4: FP_growth 

Input: FP-tree constructed based on Algorithm 2, 

using DB and a minsupcount ξ, and a pattern prefix α 

Output: The complete set of frequent patterns. 

 Procedure FP-growth (Tree, α) 

{ 

1. If Tree contains a single path P then 

2. For each combination (denoted as β) of the nodes 

in the path P do generate pattern β ∪α with support 

=minimum support of nodes in β; 

3. Else for each ai in the header of Tree do{ 

4. Generate pattern β = ai∪α with support = ai. 

Support; 

5. Construct β 's conditional pattern base and then β 

's conditional FP-tree Tree β with respect to 

minsupcount ξ; 

6. If Treeβ ≠∅ then call FP-growth (Tree β, β)  

} 

 

V. EXPIRIMENTAL RESULTS 

 

For the experimental study, the same dataset is used 

for the tree algorithms as input in order to compare 

the efficiency and rapidity of the algorithms. Results 

obained by the above mentioned algorithms are as 

follows : 

APRIORI  

Candidates count: 15 

The algorithm stopped at size : 5 

Frequent itemsets count: 15 

Maximum memory usage: 1.282684326171875 mb  

Total time : ~ 17 ms 

 

FP-GROWTH 

 

Transactions count from database : 7 

Frequent itemsets count : 15 

Max memory usage: 1.2811813354492188 mb 

Total time : ~ 12 ms 

 

ECLAT  

Transactions count from database: 5 

Frequent itemsets count: 15 

Maximum memory usage: 0.6226730346679688 mb  

Total time : ~ 5 ms 

The statistics above contain the number of generated 

patterns, the pattern size at which the algorithm 

stopped wihch in this case is five, then the memory 

used for the algorithm’s variables and finally, the 

runtime. 

 

VI. CONCLUSION AND DISCUSSION 

 

The comparative analysis provides a framework that 

clearly shows the technique, database scan, and 

execution time of various frequent pattern mining 

algorithms. The above mentioned algorithms also 

compared on the basis of used data format and storage 

structure. 

The performance of any algorithm can be estimated by 

the number of required database scan to extract 

patterns. The storage consumption of the above 

mentioned algorithms can be assessed for their 

utilization of memory to generate less candidate 

Itemset or avoid candidate Itemset generation process.  

Apriori algorithm charactersitics is as follows : 

- Database is scanned for each time a candidate 

itemset  is generated. 
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- Uses large itemset property and easy to 

implement 

- Uses breadth first search 

The drawback for apriori is that requires large memory 

space ,too many candidate itemset and too many passes 

over database 

FP-Growth is good in achieving three important 

objectives :  

- the database is scanned only two times and 

computational cost is decreased dramatically. 

- no candidates itemset are generated.  

- uses divide and conquer approach which 

consequently reduces the search space.  

On the other hands FP-Growth has one drawback. It 

is difficult to use in incremental mining, FP tree needs 

to be updated and the whole process needs to repeat. 

ECLAT algorithm is better than Apriori and near 

equivalent to FP-Growth performs better than Apriori 

and FP-Growth in terms of its execution time. 

Eclat has some advantages: 

- The database is scannd few times (best case=2), 

- Execution time less than apriori 

- No need to scan database each time a candidate is 

generated as support count information will be 

obtained from previous itemset 

- uses depth first search 

- Eclat has drawback, requires the virtual memory 

to perform the transformation. 
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