
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT206432

270

DDS : A Solution to Network Centric Warfare
Isha Jakhar

INHS Asvini, Colaba, Mumbai, Maharashtra, India

Article Info

Volume 6, Issue 4

Page Number : 270-277

Publication Issue :

July-August-2020

Article History

Accepted : 25 July 2020

Published : 30 July 2020

ABSTRACT

The Open Management Group Data Distribution Service (OMG DDS) is a

standard for publish-subscribe data distribution systems which is emerging as a

specification for data exchange. It is a type of Message Oriented Middleware

(MOM) that provides various functionalities such as portability and

interoperability across many DDS implementations. In this, we create models

which are platform independent. One platform can be mapped to others. These

platforms can be in different programming languages. The existing issues with

this technology include its inability to support request-reply services, file

transfer and transaction processing. These issues can be considered as research

work for future. Nowadays, there is always a need to exchange data among

several communication machines instead of just a single machine. DDS caters

this need by allowing data to be sent and received in a distributed

environment. While doing so, the various security issues related to data

integrity and loss of data are also taken into consideration. In this paper, Data

Distribution Service (DDS) has been implemented to be used in network

centric warfare, in three programming languages i.e Java, C and C++ in order to

allow for cross language communication without any loss of data on a

standalone mode .Data can also be exchanged between several machines in a

distributed environment.

Keywords : DDS, MOM, data exchange, OMG

I. INTRODUCTION

OpenSplice is the most widely used implementation

of the OMG DDS standard, both as Commercial as

well as Open source, as far as completeness and

advancement are concerned. OpenSplice makes it

possible to share data and integrate it across different

operating systems and different platforms. It provides

a full implementation of both the OMG DDS latest

rev1.4 (DCPS profiles) and the OMG-DDSI / RTPS

v2.1 interoperable wire-protocol standards. It is

designed to be used with server-class (desktops, racks

etc.) platforms, real-time

embedded environments and operating systems.

OpenSplice DDS provides an infrastructure for real-

time data distribution and offers middleware services

to applications. The aims of real-time data

distribution service are:

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT206432

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 271

Supporting incremental development, providing a

base infrastructure upon which fault-tolerant real-

time systems can be often built, reducing the

complexity of the real time systems, and deployment

of systems.

DDS for Real-Time Systems is a type of Message

Oriented Middleware (MOM) that supports a data-

centric publish and subscribe style of

communications. One of the major advantages of

DDS is that it enables real-time, scalable, high

performance, reliable and interoperable data

exchanges between systems. DDS can be very

effectively used for mission and business-critical

applications such as traffic control, military command

and control systems, SCADA & utilities, modelling

and simulation, transportation management and

other big data applications.

DDS is both language and Operating System (OS)

independent. In order to ensure that DDS

applications can be ported effectively among different

vendor’s implementations, there is a need to use

standardized APIs.

1.1 DDS-DCPS OVERVIEW:

DDS provides a model for efficiently distributing

useful data among several participants in a distributed

scenario. This model consists of two levels of

interfaces(layers): the Data-Centric Publish-

Subscribe (DCPS) layer and a Data Local

Reconstruction Layer (DLRL), which is optional. The

DCPS layer is responsible for transporting data from

publishers to the respective subscribers, efficiently

taking into consideration the Quality of Service

constraints associated with the data topic(on which

the work is being done), publisher, and the subscriber.

The DLRL allows this distributed data to be shared

among local objects located remotely from each other

as if that data were local. The DCPS layer is built

under the DLRL.

Figure 1 DDS-DCPS Overview

1.2 DDS vs CLIENT-SERVER ARCHITECTURE

CLIENT SERVER:

In client-server architectures, we have clients (the

chatters) that connect to a server (the chat room) and

identify themselves by giving their user name.

Authentication is done by using passwords. After

successful authentication, unlimited chat messages

can be sent by the client. The chat room collects the

chat messages of each client and will forward them to

all other participating clients. New clients can request

to join a chat room at any moment in time: they will

then have to identify themselves to the server, and

the server will make sure that all chat messages

received from that moment on will also be forwarded

to the newly added client.

The server is the single point of failure. If it fails, all

chatter applications get disconnected.

Figure 2 Client Server Approach

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 272

DDS-BASED APPROACH:

The idea here is to remove the chat room server

altogether and let the chat applications directly

communicate with each other. The architecture will

then become less centralized. Now, all the

applications are equal; there is no centralized point of

failure. If one node crashes, all the Chatters

associated with that node also die, but all the other

nodes and chatters are up and can keep

communicating normally with each other. Every chat

message only has to be transmitted over the network

once to deliver it to all the other interested Chatters.

Adding more Chatter applications does not use any

extra bandwidth, except for the messages sent by

these newly added entities.

Figure 3 DDS Approach

1.3 DDS PARTICIPANTS:

In DCPS, applications must use APIs to create entities

(objects) in order to establish publish-subscribe

communication between each other. In object-

oriented terms, Entity is the base class from which

other DCPS classes Topic,

DataWriter, DataReader,Publisher, Subscriber, Doma

in Participants derive. The sending side uses objects

called Publishers and DataWriters. The receiving side

uses objects called Subscribers and DataReaders.

An application uses DataWriters to send data.

A DataWriter is associated with a single Topic. You

can have multiple DataWriters and Topics in a single

application. A Publisher is the DCPS object

responsible for the actual sending of

data. Publishers own and manage DataWriters.

A DataWriter can only be owned by a

single Publisher while a Publisher can own

many DataWriters. An application

uses DataReaders to access data received over DCPS.

A DataReader is associated with a single Topic. You

can have multiple DataReaders and Topics in a single

application. A Subscriber is the DCPS object

responsible for the actual receipt of published

data. Subscribers own and manage DataReaders. A

DataReader can only be owned by a

single Subscriber while a Subscriber can own

many DataReaders.

DomainParticipants are the focal point for creating,

destroying, and managing other DDS objects. A DDS

domain is a logical network of applications: only

applications that belong to the same DDS domain

may communicate using DDS. A DDS domain is

identified by a unique integer value known as a

domain ID. In order to participate in a DDS domain,

the application has to create a

DomainParticipant first, for that domain ID.

Figure 4 DDS Architecture

The main purpose of a DomainParticipantFactory is

to create and destroy DomainParticipants. For

a DataWriter and DataReader to communicate with

each other, it is necessary for them to be working on

the same Topic. A Topic includes a name and an

association with a user data type that has been

registered with DDS. Each topic has a unique topic

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 273

name. These Topic names are important as this is

how different parts of the communication system

locate or find each other.

Figure 5 Flow Of Data In DDS

In this paper, such a model has been used to establish

communication between various warfare entities in

order to help them interact with each other,

irrespective of the platform on which the system is

working on. Current implementation is done on a

standalone PC and can be further extended to

distributed systems. This experiment was done in

three languages C, C++ and JAVA .The objective

behind using three languages is to enable cross

language communication .For example, if one

machine runs C and another machine runs JAVA,

then they will be able to connect with each other and

communicate, irrespective of their being a difference

in platforms.

II. IMPLEMENTATION

A data type represents a structured data type, like an

IDL struct with several members and a keylist. When

we read or write topics, we actually read or write

samples of a specific data type. The definition of each

data type you will be using has to be written in (a

subset of) OMG IDL. To invoke the IDL, Create a file

named filename.idl. Insert the IDL definition into

this file. Run the IDL pre-processor from the

command line.

We start the software and start implementing the

code in three languages. First, the interfaces

(publishers and subscribers) are allowed to interact

with each only on single platform(either both work

on C or both work on C++ or both on Java). The

output for java is attached.

 Figure 6

Then, one platform is allowed to interact with other subscriber platforms in order to check if the information is

being communicated between systems operating on different platforms in a desired manner. After that, for

ensuring privacy of the data, the message, before being transmitted over the network is encrypted using the

desired encryption algorithm and then, decrypted on the receiver side after the message is successfully received.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 274

 Figure 7

Figure 8

Figure 9

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 275

Figure 10

After successfully implementing the DDS code on command prompt, GUI was designed to make it more user

friendly and appealing to the user working on it.

It has publish and subscribe buttons, fields to enter DomainID, content and topic name to identify the system

over the network. Once these fields are entered, the user can write the message and send it over the network

successfully.

Figure 11

At last, encryption is performed to ensure privacy and security of the data.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 276

Figure 12

III. RESULTS

The project implemented worked correctly on a

single platform as well as multiple platforms. No

communication gap or defect was found on systems

communicating on different platforms. For

encryption, Blowfish algorithm was used which

proved to be successful in encryption and decryption

of the message. DDS has an added feature of

automatic discovery. Irrespective of their locations,

one system can locate any other system over the

network very easily. Since, DDS has gained

popularity over the past few years; soon it will be

implemented on a full basis in the modern warfare.

IV. CONCLUSIONS AND FUTURE WORK

In this project, we have explored the various

functionalities that DDS can provide. The DDS

participants in DDS domains that communicate with

each other, were studied in detail to understand more

about the Data Distribution Service. Several

comparisons were made between DDS and other

technologies as to highlight the advantages of DDS

over those technologies due to which we chose DDS

to work with.

Future work will look into how to provide QoS

guarantee in wide area networks using advanced

infrastructure for Next Generation Network

architecture that builds, uses and manages end-to-end

QoS across different administrative domains and

heterogeneous networks. For this, efficient work is

being done on an interoperable DDS security

specification which will be able to cater many

security issues such as data integrity, confidentiality,

availability and assurance.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Isha Jakhar Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 270-277

 277

V. REFERENCES

[1]. OMG Data-Distribution Service: Architectural

Overview Gerardo Pardo-Castellote, Ph.D.

Real-Time Innovations, Inc. gerardo@rti.com

[2]. IJCSNS International Journal of Computer

Science and Network Security, VOL.7 No.1,

January 2007 313 Manuscript received January

5, 2007. Manuscript revised January 25, 2007.

Performance of a Publish/Subscribe

Middleware for the Real Time Distributed

Control systems, Mohamed Anis MASTOURI

and Salem HASNAOUI SYSCOM Laboratory,

National School of Engineering of Tunis

TUNISIA.

[3]. www.rti.com/docs/Comparison-Mapping-DDS-

HLA.pdf.

[4]. Addressing the Challenge of Distributed

Interactive Simulation With Data Distribution

Service Akram HAKIRI 1, 2, Pascal

BERTHOU1, 2, Thierry GAYRAUD1,2 1 CNRS

; LAAS, 7, avenue du Colonel Roche, 31077

Toulouse, France 2 Université Toulouse; UPS,

INSA, INP, ISAE; LAAS; F-31077 Toulouse,

France Email: {Hakiri, Berthou,

Gayraud}@laas.fr.

[5]. Mapping different communication traffic over

DDS in industrial environments , Dept. of

Comput. Languages & Syst., Univ. of the

Basque Country, Vitoria-Gasteiz, Spain ; I.

Calvo ; F. Pérez

[6]. DDSS: A Communication Middleware based on

the DDS for Mobile and Pervasive Systems , K

.J Kown , C.B Park , H.Choi.

[7]. IJCSNS International Journal of Computer

Science and Network Security, VOL.7 No.1,

January 2007, Performance of a

Publish/Subscribe Middleware for the Real-

Time Distributed Control systems, Mohamed

Anis mastouri and Salem hasnaoui,syscom

Laboratory, National School of Engineering of

Tunis TUNISIA.

Cite this article as :

Isha Jakhar, "DDS : A Solution to Network Centric

Warfare", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume

6 Issue 4, pp. 270-277, July-August 2020. Available at

doi : https://doi.org/10.32628/CSEIT206432

Journal URL : http://ijsrcseit.com/CSEIT206432

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT206432
https://search.crossref.org/?q=10.32628/CSEIT206432
http://ijsrcseit.com/CSEIT206432

