
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT206448

254

A Secure and Fine-Grained Big Data Access Control Scheme for Cloud-Based

Services
Nisha J William, Nisha O S

Department of Computer Science and Engineering, Lourdes Matha College of Science and Technology, Kuttichal, Kerala, India

Article Info

Volume 6, Issue 4

Page Number: 254-262

Publication Issue :

July-August-2020

Article History

Accepted : 20 July 2020

Published : 27 July 2020

ABSTRACT

Cloud computing is the delivery of computing services including servers,

storage, databases, networking, software, analytics, and intelligence over the

Internet. Nowadays, access control is one of the most critical problems with

cloud computing. Ciphertext-Policy Attribute Based Encryption (CP-ABE) is a

promising encryption technique that enables end-users to encrypt their data

under the access policies defined over some attributes of data consumers and

only allows data consumers whose attributes satisfy the access policies to

decrypt the data. In CP-ABE, the access policy is attached to the ciphertext in

plaintext form, which may also leak some private information about end-users.

Existing methods only partially hide the attribute values in the access policies,

while the attribute names are still unprotected. This paper proposes an efficient

and fine-grained big data access control scheme with privacy-preserving policy.

Specifically, it hides the whole attribute (rather than only its values) in the

access policies. To assist data decryption, it designs an algorithm called

Attribute Bloom Filter to evaluate whether an attribute is in the access policy

and locate the exact position in the access policy if it is in the access policy. The

paper also deals with offline attribute guessing attack. Security analysis and

performance evaluation show that this scheme can preserve the privacy from

any LSSS access policy without employing much overhead.

Keywords : Cloud Computing, Access Control, Attribute, LSSS Access

Structure, Attribute Bloom Filter, Offline Attribute guessing attack

I. INTRODUCTION

In the era of big data, a huge amount of data can be

generated quickly from various sources (e.g., smart

phones, sensors, machines, social networks, etc.).

Towards these big data, conventional computer

systems are not competent to store and process these

data. Due to the flexible and elastic computing

resources, cloud computing is a natural fit for storing

and processing big data. When outsourcing data into

the cloud, end-users lose the physical control of their

data. Moreover, cloud service providers are not fully-

trusted by end-users, which make the access control

more challenging. Thus, end-users may worry that

the cloud server may make wrong access decision

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT206448
https://doi.org/10.32628/CSEIT206448

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 255

intentionally or unintentionally, and disclose their

data to some unauthorized users.

Existing access control methods all suffer a problem

that: the access policy may leak privacy. This is

because the access policy is associated with the

encrypted data in plaintext form. From the plaintext

of access policy, the adversaries may obtain some

privacy information about the end-user. To prevent

the privacy leakage from the access policy, a

straightforward method is to hide the attributes in

the access policy. However, when the attributes are

hidden, not only the unauthorized users but also the

authorized users cannot know which attributes are

involved in the access policy, which makes the

decryption a challenging problem.

This scheme aims to hide the whole attribute instead

of only partially hiding the attribute values. The basic

idea is to express the access policy in LSSS access

structure (M,ρ) where M is a policy matrix and ρ

matches each row Mi of the matrix M to an attribute,

and hide the attributes by simply removing the

attribute matching function ρ. Without the attribute

matching function ρ, it is necessary to design an

attribute localization algorithm to evaluate whether

an attribute is in the access policy and if so find the

correct position in the access policy. An algorithm

Attribute Bloom Filter to locate the attributes to the

anonymous access policy is further build, which can

save a lot of storage overhead and computation cost

especially for large attribute universe.

This system also deals with the offline attribute

guessing attack which checks the guessing of

“attribute strings”. A new way of index generation

mechanism is proposed, in which data user assigns

data owner and generates index with the public key

of data owner. Because of lacking data owner’s secret

key, fake index used to implement keyword guessing

attack by adversary is easy to distinguish.

The contributions are summarized as follows:

i. This paper proposes a secure and fine-gained big

data access control scheme for cloud based

services, where the whole attributes are hidden in

the access policy rather than only the values of the

attributes.

ii. It also designs an algorithm called Attribute

Bloom Filter to evaluate whether an attribute is in

the access policy and locate the exact position in

the access policy if it is in the access policy.

iii. It further deals with offline attribute guessing

attack that checks the guessing of attribute string.

II. SYSTEM MODEL

We Consider The Big Data Access Control System, As

Shown In Fig. 1. The System Consists Of Five Entities,

Namely Cloud Servers, Attribute Authority, End-

Users, And Data Consumers.

Fig. 1 System Model

• Cloud Servers: Cloud Servers Are Employed To

Store, Share And Process Big Data In The System.

The Cloud Servers Are Managed By Cloud

Service Providers, Who Are Not In The Same

Trust Domain As End-Users. Thus, Cloud Servers

Cannot Be Trusted By End-Users To Enforce The

Access Policy And Make Access Decisions.

• Attribute Authority: The Attribute Authority

Manages All The Attributes In The System And

Assigns Attributes Chosen From The Attribute

Space To End-Users. It Is Also A Key Generation

Centre, Where The Public Parameters Are

Generated. It Also Grants Different Access

Privileges To End-Users By Issuing Secret Keys

According To Their Attributes. The Attribute

http://www.ijsrcseit.com/
http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 256

Authority Is Assumed To Be Fully Trusted In The

System.

• End-User: End-Users Are The Data

Owners/Producers Who Outsource Their Data

Into The Cloud. They Also Would Like To

Control The Access Of Their Data By Encrypting

The Data With Cp-Abe. End-Users Are Assumed

To Be Honest In The System.

• Data Consumers: Data Consumers Request The

Data From Cloud Servers. Only When Their

Attributes Can Satisfy The Access Policies Of The

Data, Data Consumers Can Decrypt The Data.

However, Data Consumers May Try To Collude

Together To Access Some Data That Are Not

Accessible Individually.

III. Proposed System

This big data access control scheme consists of the

following algorithms: Setup, KeyGen, Encrypt, and

Decrypt.

A. Setup (1λ) → (PK,MSK)

During the system setup phase, the attribute

authority runs the Setup algorithm. Let U denote the

attribute space in the system. Let G and GT be cyclic

multiplicative groups of prime order p, and ê:G×G →

GT be a bilinear map. Let Latt be the maximum bit

length of attributes in the system. Let Lrownum be the

maximum bit length of the row numbers of access

matrix. Let LABF be the size of bit array of the

Attribute Bloom Filter. Let k be the number of hash

functions associated with the ABF.

The attribute authority randomly chooses a generator

g ϵ G, α,a ϵ Z*p, and U = |U| random group elements

h1,h2,...,hU ϵ G. It also generates k hash functions

H1(),H2(),...,Hk() that maps an element to a position in

the range of [1,LABF]. The public key is published as

PK = < g, ê(g,g)α ,ga ,Latt, Lrownum, LABF, h1, h2,…, hU,

H1() ,H2(),…, Kk() >

The master secret key is set as MSK = gα.

KeyGen (PK,MSK,S) → SK

Each data consumer should register and authenticate

to the attribute authority. If the data consumer is not

legal, it aborts. Otherwise, the attribute authority

will evaluate the role of the data consumer in the

system and assign a set of attributes S chosen from

the attribute space U to this data consumer. It

computes

K = gαgat, L = gt, {Kx = htx}xϵS

where t ϵ Z*p is chosen at random. Finally, the secret

key is set as SK = < K, L, {Kx}xϵS, S >

Encrypt (PK,m,(M,ρ)) → (CT,ABF)

Before outsourcing data into the cloud, end-users

encrypt the data by running the Encrypt algorithm.

The data encryption algorithms contains: data

encryption subroutine Enc and Attribute Bloom

Filter building subroutine ABFBuild.

Enc (PK,m,(M,ρ)) → CT : The data encryption

subroutine takes as inputs the public key PK, the

message m and access structure (M,ρ). As shown in

Fig 2, M is an l×n access matrix and the injective

function ρ maps rows of M to attributes. The

algorithm first chooses an encryption secret s ϵ Z*p

randomly and then selects a random vector v-> =

(s,y2,...,yn), where y2,...,yn are used to share the

encryption secret s. For i=1,...,l, it calculates

λi =Mi · v->, where Mi is the vector corresponding to

the i-th row of M. Then, it outputs the ciphertext as

CT = < C=mê(g,g)αs, C’=gs, {Ci=gaλih-sρ(i)}i=1,…,l >

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 257

Fig. 2 The LSSS Access Policy and Attribute Bloom

Filter

ABFBuild (M,ρ) → ABF : The ABF building

subroutine takes as input the access policy (M,ρ). It

outputs the Attribute Bloom Filter ABF.

Algorithm 1 ABFBuild

Input: An LSSS access policy (M,ρ), λ, LABF

Input: k hash functions {H1(),…,Hk()}

Output: ABF

1: Generate an element set Se from the access policy

(M,ρ)

2: ABF = new LABF element array of bit strings

3: for i = 0 to LABF - 1 do

4: ABF[i] = NULL // Initialize the ABF with

“NULL”

5: for each element e =i||atte ϵ Se do

6: emptyPos = -1, finalShare = x

7: for i = 0 to k – 1 do

8: j = Hi+1(atte) // get the index of the position

9: if ABF[j] == NULL then

10: if emptyPos == -1 then

11: // reserve this position for the finalShare

12: emptyPos = j

13: else // generate a new share

14: generate a random string rj,e with λ

bits

15: ABF[j] = rj,e

16: finalShare = finalShare ⊕ ABF[j]

17: else // reuse an existing share

18: finalShare = finalShare ⊕ ABF[j]

19: ABF[emptyPos] = finalShare

20: for i = 0 to LABF – 1 do

21: if ABF[i] == NULL then

22: // fill the empty position with random strings

23: generate a random string ri with λ bits

24: ABF[i] = ri

Search (PP,SK,SKuid) → SR

Offline Index (PP) → IX : The offline index algorithm

is run by End User, and in this stage the associated

access structure and keyword is unknown. The input

of this algorithm is public parameters, and the output

is intermediate index IX.

End User does pre-computing when the associated

keywords and access structure is unknown. It picks s

ϵ Zp , then computes C = e(g1,g2)αs, C’ = gs2, C’0 = g2sids.

Let Katt = U. For attributes i ϵ Katt, chooses random ri ϵ

Zp, computes C’i = h2,i-ri, D’i = g2ri, and remove i from

Katt. Output the Intermediate Index

IX = {s,C,C’,C’0,{C’i,D’i}iϵU} .

Offline Trapdoor (PP,SK,SKuid) → IT : Offline

trapdoor algorithm is run by Data Consumer, and in

this stage the associated keyword and the owner of

file set to be searched is unknown. The input of this

algorithm is public parameters, user’s secret key and

its private key, and the output is intermediate

trapdoor IT.

Data Consumer does pre-computing when the search

task is unknown. It computes K’ = Kx
1

𝑢𝑖𝑑, L0’ = g1
1

𝑢𝑖𝑑,

L1’ = L1
1

𝑢𝑖𝑑, and saves it as Intermediate Trapdoor.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 258

Search (Index,Trapdoor) → SR : Search algorithm is

run by Cloud Services Provider. It takes the Index

and Trapdoor as input and outputs the search result.

Cloud service provider computes {wi ϵ Zp}iϵI satisfies

ΣiϵI wiλi = s , and let I ϵ {1,2,…,l} be defined as I = {I :

ρ(i) ϵ S} , then computes T1 = ΠiϵI [e(Ci,L’1)

e(Di,K’ρ(i))]wx , T2 = (K’,C’) , T3 = Ce(C0,L’0), and test

whether T2 = T1T3 .

Decrypt (M,ABF,PK,SK,CT) → m

The decryption algorithm consists of two subroutines:

ABFQuery and Dec.

ABFQuery (S,ABF,PK) → ρ' : The ABF query

algorithm takes as inputs the attribute set S, the

Attribute Bloom Filter ABF and the public key PK. It

outputs a reconstructed attribute mapping ρ' =

{(rownum, att)}s, which shows the corresponding

row number in the access matrix M for all the

attributes att ϵ S.

Algorithm 2 ABFQuery

Input: An Attribute Bloom Filter ABF, a set of

attributes S

Input: k hash functions {H1(),…,Hk()}

Input: Maximum attribute string length Latt

Input: Maximum row number string length Lrownum

Output: ρ′ = {(rownum,att)}att∈S

1: for each att ∈ S do

2: ReStr = {0}λ // initialize the reconstructed

string

3: for i= 0 to k – 1 do

4: j = Hi+1(att) //get the index of the position

5: ReStr = ReStr ⊕ ABF[j]

6: atteStr = LSBLatt(ReStr)

7: // get Latt least significant bits

8: atte = RmLeadingZeroBits(atteStr)

9: // remove all the leading zero bits

10: if atte == att then

11: rownumStr = MSBLrownum(ReStr)

12: // get Lrownum most significant

bits

13: rownum = RmLeadingZeroBits(rownumStr)

14: // remove all the leading zero

bits

15: Add (rownum,att) into ρ′

Dec (SK,CT,(M, ρ')) → m or ┴ : The data decryption

algorithm takes as inputs the secret key SK, the

ciphertext CT as well as the access matrix M and the

reconstructed attribute mapping ρ'. If the attributes

can satisfy the access policy, it outputs the message m.

Otherwise, it outputs ┴.

IV. Experiment and Result

The big data access control system can be divided

into 5 modules:

1. End User Application

2. End User Encryption

3. Cloud Service Provider

4. Data Consumer Request

5. Retrieve Data

A. End User Application

First of all end user will register into the cloud server

as shown in fig. 3. Then he can login into the system

and select data they need to share as in fig. 4.

Authorization permission to access data will be given

to some of the consumers so that authorized users can

only access the data. Details of data that need to be

shared in the system will be known to the end user.

B. End User Encryption

Data will be transferred into the Cloud Server only

after it is encrypted and converted into non plaintext

form. The key for encryption purpose will be

provided by the Attribute Authority as in fig. 5.

Attribute Authority will receive request from end

user for encryption key and it will generate a key.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 259

Using the key received from Attribute Authority end

user can encrypt the data which is shown in fig. 6.

Fig. 3 End user Login

Fig. 4 Select data

Fig. 5 Generate key and send to End user

Fig. 6 Encrypt data

C. Cloud Server

End user will transfer encrypted data into the

Cloud Server. Data Consumers will login into the

system and requests for data from the cloud.

Requested data will be granted to authorized

users or data consumers. Here cloud server is

acting as a storage place.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 260

D. Data Consumer Request

Data consumer has to register and login into the

cloud. He can send requests for data that are

available in cloud. The cloud server will send the

request to cloud service provider. Requests for

the data accesses will be processed by cloud

service provider.

E. Retrieve Data

Cloud service provider receives request for data

from the cloud consumer. It will search for

relevant data to the query from the cloud. The

data available in the cloud will be transferred to

the consumer. After receiving data, the

consumer will request for key from attribute

authority to decrypt the data. Attribute authority

will generate key as shown in fig. 7 and will send

it to the data consumer. The data consumer can

then decrypt the data using received key which

is shown in fig. 8.

Fig. 7 Generate key and send to Data consumer

Fig. 8 Decrypt data

V. CONCLUSION

This work has proposed an efficient and fine-grained

data access control scheme for big data, where the

access policy will not leak any privacy information.

Different from the existing methods which only

partially hide the attribute values in the access

policies, this method can hide the whole attribute

(rather than only its values) in the access policies.

However, this may lead to great challenges and

difficulties for legal data consumers to decrypt data.

To cope with this problem, we have designed an

attribute localization algorithm called Attribute

Bloom Filter to evaluate whether an attribute is

present in the access policy. The system also deals

with offline attribute guessing attack which is

guessing of “attribute strings” by continually

querying the ABF. The scheme is selectively secure

against chosen plaintext attacks.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 261

VI. REFERENCES

[1]. Kan Yang, Qi Han, Hui Li, Kan Zheng, Zhou

Su and Xuemin Shen, “An Efficient and Fine-

grained Big Data Access Control Scheme with

Privacy-preserving Policy”, IEEE Internet of

Things, 2018.

[2]. Qi Li, Youliang Tian, Yinghui Zhang, Limin

Shen and Jinjing Guo, “Efficient Privacy-

Preserving Access Control of Mobile

Multimedia Data in Cloud Computing”, Sep

2019.

[3]. Yujiao Song, HaoWang, XiaochaoWei and

LeiWu, “Efficient Attribute-Based Encryption

with Privacy-Preserving Key Generation and

Its Application in Industrial Cloud”, March

2019.

[4]. Yang Ming and Tingting Zhang, “Efficient

Privacy-Preserving Access Control Scheme in

Electronic Health Records System”, Oct 2018.

[5]. Shangping Wang, Keke Guo and Yaling Zhang,

“Traceable ciphertext-policy attribute-based

encryption scheme with attribute level user

revocation for cloud storage”, Sep 2018.

[6]. P. Jayasree and V. Saravanan, “High Secure and

dynamic Access Control Scheme for Big Data

Storage in Cloud Environment”, July 2018.

[7]. Harsha Bhat, Yudhish N,Yadunandan R and

Shreyas LS, “A Secure and Verifiable Access

Control Scheme for Big Data Storage in

Clouds”, May 2018.

[8]. Kai Fan, Qiong Tian, Junxiong Wang, Hui Li

and Yintang Yang, “Privacy Protection Based

Access Control Scheme in Cloud-Based

Services”, Jan 2017.

[9]. K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-

domain attribute-based access control for

cloud-based video content sharing: A

cryptographic approach,” IEEE Trans. on

Multimedia (to appear), February 2016.

[10]. K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios,

K. Yang, and W. Xiang, “Big data-driven

optimization for mobile networks toward 5g,”

IEEE Network, vol. 30, no. 1, pp. 44–51, 2016.

[11]. Z. Su, Q. Xu, and Q. Qi, “Big data in mobile

social networks: a qoeoriented framework,”

IEEE Network, vol. 30, no. 1, pp. 52–57, 2016.

[12]. H. Li, D. Liu, K. Alharbi, S. Zhang, and X. Lin,

“Enabling fine-grained access control with

efficient attribute revocation and policy

updating in smart grid,” KSII Transactions on

Internet and Information Systems (TIIS), vol. 9,

no. 4, pp. 1404–1423, 2015.

[13]. H. Li, D. Liu, Y. Dai, and T. H. Luan,

“Engineering searchable encryption of mobile

cloud networks: when qoe meets qop,” IEEE

Wireless Communications, vol. 22, no. 4, pp.

74–80, 2015.

[14]. H. Li, Y. Yang, T. Luan, X. Liang, L. Zhou, and

X. Shen, “Enabling fine-grained multi-keyword

search supporting classified sub-dictionaries

over encrypted cloud data,” IEEE Trans. on

Dependable and Secure Computing DOI:

10.1109/TDSC.2015.2406704], 2015.

[15]. K. Yang, X. Jia, and K. Ren, “Secure and

verifiable policy update outsourcing for big

data access control in the cloud,” IEEE Trans.

Parallel Distrib. Syst., vol. 26, no. 12, pp. 3461–

3470, Dec 2015.

[16]. R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao,

“Toward efficient and privacy-preserving

computing in big data era,” IEEE Network, vol.

28, no. 4, pp. 46–50, 2014.

[17]. K. Yang and X. Jia, “Expressive, efficient, and

revocable data access control for multi-

authority cloud storage,” IEEE Trans. Parallel

Distrib. Syst., vol. 25, no. 7, pp. 1735–1744, July

2014.

[18]. L. Lei, Z. Zhong, K. Zheng, J. Chen, and H.

Meng, “Challenges on wireless heterogeneous

networks for mobile cloud computing,” IEEE

Wireless Communications, vol. 20, no. 3, pp.

34–44, 2013.

http://www.ijsrcseit.com/

Volume 6, Issue 4, May-June-2020 | http://ijsrcseit.com

Nisha J William et al Int J Sci Res CSE & IT, July-August-2020; 6 (4) : 254-262

 262

[19]. J. Hur, “Attribute-based secure data sharing

with hidden policies in smart grid,” IEEE

Trans. Parallel Distrib. Syst., vol. 24, no. 11, pp.

2171–2180, 2013.

[20]. C. Dong, L. Chen, and Z. Wen, “When private

set intersection meets big data: an efficient and

scalable protocol,” in Proc. of CCS’13. ACM,

2013, pp. 789–800.

[21]. J. Lai, R. H. Deng, and Y. Li, “Expressive cp-abe

with partially hidden access structures,” in

Proc. of ASIACCS’12. ACM, 2012, pp. 18–19.

[22]. B. Waters, “Ciphertext-policy attribute-based

encryption: An expressive, efficient, and

provably secure realization,” in Proc. of

PKC’11. Berlin, Heidelberg: Springer-Verlag,

2011, pp. 53–70.

[23]. J. Lai, R. H. Deng, and Y. Li, “Fully secure

cipertext-policy hiding cpabe,” in Information

Security Practice and Experience. Springer,

2011, pp. 24–39.

[24]. P. Mell and T. Grance, “The NIST definition of

cloud computing” Recommendations of the

National Institute of Standards and

Technology- Special Publication 800-145],

2011.

Cite this article as :

Nisha J William, Nisha O S, "A Secure and Fine-

Grained Big Data Access Control Scheme for Cloud-

Based Services", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 6 Issue 4, pp. 254-262, July-August

2020. Available at

doi : https://doi.org/10.32628/CSEIT206448

Journal URL : http://ijsrcseit.com/CSEIT206448

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT206448
https://doi.org/10.32628/CSEIT206448
https://search.crossref.org/?q=10.32628/CSEIT206448
https://search.crossref.org/?q=10.32628/CSEIT206448
http://ijsrcseit.com/CSEIT206448
http://ijsrcseit.com/CSEIT206448

