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ABSTRACT 

 

A Traffic signal control is a challenging problem and to minimize the travel 

time of vehicles by coordinating their movements at the road intersections. In 

recent years traffic signal control systems have on over simplified information 

and rule-based methods and we have large amounts of data, more computing 

power and advanced methods to drive the development of intelligent 

transportation. An intelligent transport system to use the machine learning 

methods likes reinforcement learning and to explain the acknowledged 

transportation approaches and a list of recent literature in   traffic signal 

control. In this survey can foster interdisciplinary research on this important 

topic. 
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I. INTRODUCTION 

 

The intersection management for busy or major 

roads is primarily done through the traffic lights, 

whose inefficient control may cause numerous 

problems, such as long delay of travelers and huge 

waste of energy. Even worse, it may also incur 

vehicular accidents [1], [2]. The Existing traffic light 

control neither deploys fixed programs without 

considering the real-time traffic or considering the 

traffic to a very limited degree [3]. The fixed 

programs set traffic signals equal time duration in 

every cycle, or different time duration based on 

historical information. Some control programs take 

inputs from various sensors such as underground 

inductive loop detectors for detecting the existence 

of vehicles in front of traffic lights. However, the 

inputs are processed in a very coarse way to 

determine the duration of green/red lights. In some 

cases, existing traffic light control systems work, 

through only at a low efficiency. However, in many 

other cases, such as a football event or a more 

common high traffic hour scenario, the traffic light 

control systems become paralyzed. Instead, we often 

witness an experienced policeman directly manages 

the intersection by waving signals. In high traffic 

scenarios, a human operator observes the real time 

traffic condition in the intersecting roads and 

smartly determines the duration of the allowed 

passing time for each direction using his/her long-

term experience and understanding about the 

intersection, which is very effective. This 

observation motivates us to propose a smart 

intersection traffic light management system which 
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can take real-time traffic condition as input and learn 

how to manage the intersection just like the human 

operator. To implement such a system, we need ‘eyes’ 

to watch the real-time road condition and ‘a brain’ to 

process it. For the former, recent advances in sensor 

and networking technology enables taking real-time 

traffic information as input, such as the number of 

vehicles, the locations of vehicles, and their waiting 

time [4]. For the ‘brain’ part, reinforcement learning, 

as a type of machine learning techniques, is a 

promising way to solve the problem. A 

reinforcement learning system’s goal is to make an 

action agent learn the optimal policy through 

interacting with the environment to maximize the 

reward, e.g., the minimum waiting time in our 

intersection control scenario. It usually contains 

three components: states of the environment, action 

space of the agent, and reward from every action [5]. 

A well-known application of reinforcement learning 

is AlphaGo [6], followed by AlphaGo Zero [7]. 

AlphaGo, acting as the action agent in a Go game 

(environment), first observes the current image of 

the chessboard (state), and takes the image as the 

input of a reinforcement learning model to 

determine where to place the optimal next playing 

piece ‘stone’ (action). Its final reward is to win the 

game or to lose. Thus, the reward may not be 

obvious during the playing process but becomes clear 

when the game is over. When applying 

reinforcement learning to the traffic light control 

problem, the key point is to define the three 

components at an intersection and quantify them to 

be computable. Some previous works propose to 

dynamically control the traffic lights using 

reinforcement learning. Some define the states by 

the number of waiting vehicles or the waiting queue 

length [4], [8]. But real traffic situation cannot be 

accurately captured by only the number of waiting 

vehicles or queue length [9]. With the popularization 

of vehicular networks and sensor networks, more 

accurate on-road traffic information can be extracted, 

such as vehicles’ speed and waiting time [10]. 

However, rich information causes the number of 

states to increase dramatically. When the number of 

states increases, the complexity in a traditional 

reinforcement learning system grows exponentially. 

With the rapid development of deep learning [11], 

deep neural networks have been employed to deal 

with the large number of states, which constitutes a 

deep reinforcement learning model [12]. A few 

recent studies have proposed to apply deep 

reinforcement learning in the traffic light control 

problem [13], [14]. But there are two main 

limitations in existing studies: (1) the traffic signals 

are usually split into fixed-time intervals, and the 

duration of green/red lights can only be a multiple of 

this fixed-length interval, which is not efficient in 

many situations; (2) the traffic signals are designed to 

change in a random sequence, which is not a safe or 

comfortable way for drivers. In this paper, we study 

the problem on how to control the traffic light signal 

duration in a cycle based on the extracted 

information from vehicular networks or sensor 

networks. The general idea is to mimic experienced 

operator to control the signal duration in every cycle 

based upon information gathered from vehicular 

networks. To implement such an idea, the operation 

of the experienced operator is modeled as a Markov 

Decision Process (MDP). The MDP is high-

dimension model, which consists of time duration 

for every phase. The system learns the control 

strategy based on the MDP by trial and error in a 

deep reinforcement learning model. To fit a deep 

reinforcement learning model, we divide the whole 

intersection into grids and build a matrix, each 

element of which is the vehicles’ information in the 

corresponding grid collected by vehicular networks 

or extracted from cameras via image processing. The 

matrix is defined as the states and the reward is the 

cumulative waiting time difference between two 

cycles. In our model, a convolutional neural network 

is employed to match the states and expected future 

rewards. Note that, every traffic light’s action 

produced from our model affects the environment. 
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When the traffic flow changes dynamically, the 

environment becomes unpredictable. To solve this 

problem, we employ a series of state of-the-art 

techniques in our model to improve the performance, 

including dueling network [15], target network [12], 

double Q-Learning network [16], and prioritized 

experience replay [17]. Our contribution of the paper 

includes 1) We are the first to combine dueling 

network, target network, double Q network and 

prioritized experience replay into one framework to 

solve the traffic light control problem, which can be 

easily applied into other problems. 2) We propose a 

control system to decide the phases’ time duration in 

a whole cycle instead of dividing the time into 

segments. 3) Extensive experiments on a traffic 

micro-simulator, Simulation of Urban Mobility 

(SUMO) [18], show the effectiveness and high-

efficiency of our model. The reminder of this paper is 

organized as follows. The literature review is 

presented in Section II. The model and problem 

statement are introduced in Section IV. The 

background on reinforcement learning is introduced 

in Section III. Section V details our reinforcement 

learning model in the traffic light control system. 

Section VI extends the reinforcement learning model 

into a deep learning model to handle the complex 

states in our system. The model is evaluated in 

Section VII. Finally, paper is concluded in Section 

VIII. 
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III. REINFORCEMENT LEARNING 

Reinforcement Learning (RL) is a type of algorithms 

in machine learning. It interacts with the 

environment to learn better actions to maximize the 

objective reward function in the long run through 

trial and error. In reinforcement learning, an agent, 

the action executor, takes an action and the 

environment returns a numerical reward based on 

the action and the current state. A four-tuple S, A, R, 

T can be used to define the reinforcement learning 

model: 

 S: the possible state space.  

A: the possible action space.  

R: the reward space.  

T: the transition function space among all states, 

which represents the probability of the transition 

from one state to another. 

 

                    Fig. 1: Deep reinforcement learning 

agent of traffic signal control [21]. 

Action Set is used to control traffic signal phases, it 

defines a set of possible actions A = {North/South 

Green (NSG), East/West Green (EWG)}. NSG allows 

the vehicles to pass from North to South and vice 

versa, and also indicates the vehicles on East/West 

route should stop and not proceed through the 

intersection.  

Reward Function typically an immediate reward rt ∈ 

R is a scalar value which the agent receives after 

taking the chosen action in the environment at each 

time step. We set the reward as the difference 

between the total cumulative delays of two 

consecutive actions. 

 

IV. NETWORK-WIDE TRAFFIC CONTROL WITH 

VEHICULAR COMMUNICATIONS 

 

A. Network-Wide Traffic Control with Real-Time 

information on vehicle 

 The isolated intersection control, highway ramping 

control and urban road network control also require 

accurate vehicle position information. 

For example, different algorithms were proposed in 

the last few years to estimate the vehicle queue 

lengths at metered onramps [09], [10] and the queue 

lengths and the travel times for congested signalized 

arterials [11]–[15] and for a road network [16], [17]. 

All these studies used certain a priori knowledge of 

traffic flow dynamics to infer/predict the required 
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traffic flow parameters (flow rate, occupancy, speed, 

etc.) at the locations with no measurements.  The 

parameters are flow rate, occupancy, speed, etc. 

However, if the position and movement information 

of all     vehicles can be achieved via vehicular 

communications, such difficulties will be solved 

neatly. changes indeed reflect a transition of design 

philosophies for traffic control systems. As pointed 

out in many literatures [08]–[10], most existing traffic 

control systems conform to the concept of feedback 

control, because they specify the control rules in 

response to the current values of state variables. In 

many recent approaches, researchers have begun to 

integrate both feedback and feedforward characters 

to build traffic control systems. When traffic 

demands can be measured or effectively predicted 

before they enter the current system, we can take a 

pre-emptive action to optimize the traffic efficiency.  

In such systems, we can formulate a new 

optimization problem (6), with control u(k) 

determined upon future states x(k + i) and demands 

d(k + i), where i may equal to (1, 2, . . ..). Although 

the dimensions of variables are much larger than 

those that had been considered for isolated 

intersections, their instinct natures the same. 

Different preferences on choosing control u(k) will 

be discussed in   Section IV.  

 

B. Network-Wide Cooperative Driving 

Suppose we divide the studied road network into 

several nonoverlapped segments (nodes) and define a 

graph to model the connection properties of these 

segments. Further assume that each vehicle has a 

specified route from its origin to its destination and 

will pass a few segments sequentially, the desired 

trajectory for any vehicle can be then roughly 

sketched as a series of time slices when the vehicle 

enters the selected segment. The control design 

problem becomes finding a set of trajectories that 

allow vehicles reach their destination nodes in the 

shortest time.  

It is apparent that such a discrete-time graph-

scheduling problem is much more complex than the 

simple tree scheduling problem formulated for 

isolated intersections. Even if we omit the detailed 

driving plans of any vehicle in the segments, the 

solution space will expand quickly with the 

increasing number of intersections. Currently, 

knowledge on the feasibility and benefit of the 

network-wide cooperative driving is very meagre. To 

the authors’ knowledge, only [13] had proposed a 

greedy search strategy. 

 

V. DIFFERENT PREFERENCES 

 

A. Model-Based Versus Simulation-Based Predictive 

Controls 

How to utilize the rich information collected via 

vehicular communications is a key problem in future 

traffic control system designs. One representative 

approach in this direction is based on the model 

predictive control (MPC) theory [14]– [17]. In such 

approaches, the dynamics of traffic flows at different 

locations (nodes) are abstractly described by a set of 

difference equations, such as (3) previously. When 

the current states of the nodes are known or at least 

partly known, we can foretell the future states of 

traffic flows by recursively solving this set of 

difference equations with desired control actions. 

Searching the solution space for control actions, we 

finally adopt the control actions that will lead to the 

best future states of traffic flows. 

 

 
Fig. 4. Schematic view of MPC and ATS control [20] 
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Notice that the difference equations may not be able 

to accurately characterize the time-varying stochastic 

traffic flow dynamics; researchers now show 

increasing interests in the parallel simulation of 

traffic systems. In such approaches, the so-called 

artificial transportation systems (ATSs) [08]–[12] 

were built to model and analyses traffic flow 

dynamics. Through the parallel interactions of an 

actual transportation system and its corresponding 

ATS, we can evaluate the effectiveness of different 

traffic strategies under various conditions. Both MPC 

and ATS control use online optimization to design 

control actions. Their difference is that MPC uses an 

explicit prediction model, whereas ATS control uses 

an implicit prediction model. Usually, both MPC and 

ATS control simultaneously schedule the control 

inputs u (0), u (1), . . ., u(K) for a relatively long-time 

horizon to find a global optimal solution for J. In 

addition, both of them allow modifying 

inappropriately scheduled control inputs in the 

following time intervals. Compared with difference-

equation-based MPC, parallel simulation- based ATS 

control provides more flexible and living ontology to 

represent and organize knowledge of transportation 

systems (see Fig. 4). This enables us to choose even 

better control strategies by using ATSs. However, the 

computation costs of ATS methods are much higher, 

too [10]. Obviously, intervehicle communication can 

serve as a key component in all these new traffic 

control systems, since we can capture the variation of 

traffic demands in advance. However, the best way to 

fuse the predicted/simulated traffic states 

conveniently and promptly with the sampled states 

still need further discussions. We are expecting the 

shift of research interests into this promising area in 

the near future. 

 

B. Planning-Based Versus Self-Organization-Based 

Controls 

Whether to apply global planning-based control or 

local self-organization- based control is another 

interesting and important problem. Generally, global 

planning-based approaches refer to control city-wide 

road networks that may contain tens of intersections 

or on/off-ramps via long-term scheduled control 

actions [13], [14], whereas local self-organization 

approaches refer to build short-term changeable 

control actions [15], [16]. Intuitively, global 

approaches seem better, because more information 

will be used to obtain an even better nongreedy 

solution. However, the temporal–spatial size of an 

independent traffic control system is restricted by 

many factors in practice. The first constraint lies in 

the performance limit of vehicular communications. 

The packet drops rates, end-to-end packet delays, and 

network throughputs all influence the amount of 

information that can be correctly delivered in time 

and thus limit the temporal–spatial size of traffic 

control systems [3]–[7].  

 

The second constraint comes from the possible 

vulnerability of control systems. It was argued in [15], 

and [16] that many man-made systems become 

unstable and create uncontrollable consequences, as 

the complexity and interaction strengths in a 

networked subsystem increase, even when decisions 

are well planned. Noticing that all the measurements 

may be distorted or inaccurate due to various reasons 

(e.g., transmission errors in wireless communications), 

applying local self-organization-based control is 

believed by many researchers as a better choice. 

 

C. Big-Data-Based Versus Concise-Data-Based 

Controls 

 

Similar to studies in many other fields, there are two 

diversions in employing the amount of traffic 

information to design traffic control systems. One is 

to use the rich information, as what had been 

discussed earlier [15]. The other is to use concise 

information that is necessary.  

A representative example of the second kind of 

approach is the traffic control system based on urban-
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scale macroscopic fundamental diagrams (MFDs) 

[15]–[18]. Since modelling the traffic flow dynamics 

of each link and intersection in a large urban 

network is a complex task, such approaches aim to 

capture the primary characteristics between 

network-wide vehicle densities and network-wide 

space-mean flow rates. That is, we consider the 

collective behaviours of a lot of vehicles rather than 

the movements of individual vehicles. Then, 

parsimonious control rules can be designed for the 

whole road network, based on the measurements 

collected at sparsely located sensors. 

 

A typical example of MFD-based control is perimeter 

control for a city-wide network with complicated 

structures. Here, perimeter control means the access 

metering to maintain the mobility of cars at a 

stabilized level. The detailed traffic dynamics in the 

studied region are not studied. Instead, we describe 

the average degree of congestion for the region by 

means of average vehicle densities and space-mean 

flow rates estimated by a few fixed detectors and 

floating vehicle probes. To prevent overcrowding, 

traffic flow toward a congested region is restricted, 

whereas traffic flow toward an underutilized area is 

facilitated. Although we do not know the evolution 

details of traffic flow at every part of a region, the 

overall traffic is under control. Differently, the 

aforementioned vehicle-coordination-based approach 

will track every vehicle in this region, analyses their 

traveling plans, and set up the signal timing plan for 

each intersection within this region to make the 

overall traffic smoother. MFD-based approaches have 

many merits, such as a simpler design algorithm that 

is relatively robust to traffic demand disturbances and 

much lower implementation costs. However, the 

drawbacks of MFD-based approaches, including 

inaccurate estimation of performance indexes (e.g., 

queue length at every intersection), are apparent, too. 

 

 

 

V. CONCLUSION 

 

Due to the ever-increasing need for more efficient 

transport, vehicle-to-vehicle communications are 

introduced into traffic control systems to better 

coordinate vehicles and traffic signals nowadays. This 

change promotes new research frontiers to be further 

explored. Constrained by the length limit, we just 

focus on a few questions on the advance of control 

systems in this paper. 

 

First, the performance limits of vehicle coordination 

are left untouched in this survey. It was estimated in 

[21] that the benefit-to-cost ratio of retiming 

conventional traffic signal systems was typically 40: 1. 

We believe the potential benefit of the intelligent 

vehicle coordination might be even higher. However, 

this technology cannot dramatically eliminate traffic 

congestion when all the roads are crowded. The 

estimation of performance limits needs further 

investigations. Second, the achievements of any 

intelligent traffic control system previously 

mentioned are rooted in a successful integration of 

lots of sensors, controllers, operations software, and 

hardware [17], [18]. The failure of any component in 

this integrated system will result in performance 

degradation [19], [20] or even severe traffic accidents. 

How to identify failure (maybe at individual vehicle 

level) in time and tolerate faults of some components 

(maybe at regional control system level) also needs to 

be carefully studied. 
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