

Game Theory : A Case of Infectious Diseases

Prof. Adekunle A. Yinka, Dr. Seun Ebiesuwa, Ohwo Onome Blaise

Department of Computer Science, Babcock University, Ilishan-Remo, Nigeria

ABSTRACT

Article Info

Volume 6, Issue 4 Page Number: 202-213 Publication Issue : July-August-2020

Game theory is a mathematical model which deals with interactions between various entities by analyzing the strategies and choices. In today's world, Game Theory is being extensively used in fields like computer science, economics, sociology, political science, and so on, due to its versatile nature and applications in numerous conflicts and problems. The application of game theory has been extended to real life problems also due to its versatility and robustness. In this research, various game theory methodologies applied during pandemic was reviewed. Various aspects of these methodologies were highlighted such as methods applied, description, expected result and limitation. This research will act as a reliable and efficient way of understanding the concept of game theory and its application in combating infectious diseases, analyze and eventually understand different strategic scenarios. The main importance of game theory is to formulate the alternative strategy to compete with one another and in the same sense it is an essential tool for decision making process according to fluctuations in relevant contents. These reviewed methodologies would be further categorized into prevent, control or both based on the application they favour most.

Article History

Accepted : 20 July 2020 Published : 27 July 2020

Keywords : Game Theory, Epidemiology, Pandemic, Healthcare

I. INTRODUCTION

1.0 Background to the Study

Epidemiology as a branch of medical science dealing with the incidence, distribution, and control of diseases in a population, with the aim of identifying factors that give rise to their recurrent occurrences. The advent and global spread of recurrent pandemics and severe modern epidemics have become serious threats to mankind. Therefore, understanding and curbing the transmission of infectious disease is treated with utmost concern for our society. Emerging infectious diseases have disturbing negative impacts on public health and imposes a great financial burden on the community. Thus, it is of great importance to evaluate the potential methods for controlling the outbreak of these epidemic diseases (Muntasir, Ariful, & Jun, 2020). Currently, mathematical modeling has become an important tool in analyzing the spread and control of infectious diseases, owing to key factors governing the development of a disease, such as transmission and

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

recovery rates that help to predict how the disease will spread over time. The quarantine of suspected susceptible or vaccinated individuals and the isolation of symptomatic infected individuals are two of the most common intervention measures for combating the spread of communicable emerging or re-emerging diseases. Implementing such measures, however, incurs a partial cost to every single individual living in the society. Game theory as an autonomous discipline that is used in applied mathematics, economics, engineering, computer science and philosophy (amongst other disciplines); is the scientific study of strategy and conflict, in which the success of a choice depends on the choice of others. Approaches from game theory and mathematical economics have been demonstrated to be a powerful modeling tool, applied to understanding, controlling, and efficiently design dynamic, complex networks. Game theory provides a good starting point for computer scientists in their endeavor to understand selfish rational behavior in complex networks with many agents (players). Such scenarios are readily modeled using techniques from game theory, where players with potentially conflicting goals participate in a common setting with well-prescribed interactions (Marios, Vicky, & Paul, 2007). Its initial development was in economics to understand a large collection of economic behaviours, including behaviours of firms, markets and consumers. Attempts has been made in using Game theory to develop theories of ethical or normative behaviour as well. Also, in economics and philosophy, game theory has been applied to help in the understanding of rational behaviour (Bellal, 2016). In other words, it is the analysis (using mathematical reasoning) of a conflict of interest to find the optimal choices for reaching the desired outcome, under given conditions.

1.1 Problem Statement

The 20th century has seen tremendous achievements in infectious disease prevention, owing to the development of effective preventive vaccines, often far less costly than treatment. Still, the preference between prevention and treatment persists; as the prevention of treatable infectious diseases still poses challenges for public health authorities (Gérvas, Starfield, & Heath, 2008). Faced with the risk of infection, individuals may decide on prevention or treatment if they are infected. Whereas treatment is generally well accepted by infected individuals, prevention may be widely acceptable. A wide range of parametric conditions to suppress the disease spreading severity amid those individuals who primarily took the vaccination as a pre-emptive provision. However, due to the transient effect of vaccination and the widespread occurrence of epidemic outbreaks, there is an increasing need to seek for more sustainable approaches to protect the global community from viral diseases (Muntasir, Ariful, & Jun, 2020). Infectious diseases change social interaction patterns. During the Ebola outbreak, many studies pointed to changes in social customs playing a critical role in hindering disease spread. Similar behavioral responses played important roles in modifying disease spread in other pandemics, for example, wearing protective masks, decrease in unprotected sex or covering one's own cough and staying at home if sick. These responses to disease pervasiveness can, in turn, preempt disease spread by the infected to the susceptible individuals in the population. Individuals change their behavior during an epidemic in response to whether they and/or those they interact with are healthy or sick (Ceyhun, Jeff, & Joshua, 2017). One of the key questions of public health epidemiology, is how individual and community actions can help mitigate and manage the costs of an epidemic. Social distancing is an aspect of human behavior of particularly important because of its universality; individuals can reduce their contact rates with others by changing their behaviors, and reduced contact reduces the transmission of many diseases. Social distancing refers to the adoption of behaviors by individuals in a community that reduce those individuals' risk of becoming infected by limiting their contact with other individuals or reducing the transmission risk during each contact. Typically, this incurs some costs in terms of liberty, social capital, time, convenience, and money, so that people are only likely to adopt these measures when there is a specific incentive to do so. Social distancing practices can reduce the severity of an epidemic, but the benefits of social distancing depend on the extent of individual use. Individuals are sometimes reluctant to pay the costs inherent in social distancing, and this can limit its effectiveness as a control measure (Timothy, 2010). Visitors can play an important role in the transmission and spread of infectious diseases. They can serve as susceptible hosts and be infected while staying in one place and then act as mobile sources of case imports to other populations. Subsequently, some infectious diseases spread aggressively in major tourism destinations, and a large number of visitors can have surprising impacts on public health (Cui, Takeuchi, & Saito, 2006). Game theory attempts to analyze situations where individuals must make decisions in a group environment and where each individual's decision influences the pay-off received by the others in the group.

1.2 Scope of the Study

This research focused on the understanding of the concept of algorithmic game theory. This research would be limited to just game theory and to a single epidemic season to illustrate the stability of the epidemic models for the further evolutionary process.

1.3 Significance of Study

This research aims to show that game theory has a significantly wide application area ranging from social sciences to applied sciences and also to real life problems. Epidemiologist and healthcare practitioners can find severe areas of application of game theory in preventing and controlling the spread of infectious diseases.

II. LITERATURE REVIEW

While there are significant advances in information technology and infrastructure which offer new opportunities, cyberspace is still far from completely secured. While traditional techniques are effective in solving the particular problems they are designed for, they generally fail to respond well in a dynamically changing scenario. To this end, (Sajjan, Sankardas, & Dipankar, 2010) propose a holistic security approach - Imperfect information stochastic game. We find that game theory provides huge potential to place such an approach on a solid analytical setting.

How various methods of dynamic traffic routing can affect the performances of telecommunications network in which several telecommunications operators coexist. (Kostić-Ljubisavljević, Radonjić, Mladenović. & Aćimović-Raspopović, 2011) developed the software for Routing and Interconnection Simulation (RIS). Its main task is the simulation traffic in interconnected telecommunication network.

Designing and developing computer games can be a complex activity that may involve professionals from a variety of disciplines. (Mark, Mike, Denis, & Somasundaram, 2017) examined the use of game theory for supporting the design of gameplay within the different sections of a computer game and demonstrate its application in practice via adapted high-level decision trees for modeling the flow in gameplay and payoff matrices for modeling skill or challenge levels.

The traits (fixed and plastic) possessed by a plant, are commonly modelled as density-independent adaptations to its environment. Though, it may also represent density- or frequency-dependent adaptations to the strategies used by neighbours. (Gordon & Ray, 2013) reviewed game theoretical models of allocation; game theoretical models of enemy defence; and game theoretical models of trade with mutualistic partners.

Ecological study of various phenomena ranging from conflict behaviour to altruism to signaling and beyond. (Simon & Kevin, 2013) advocated for a more pluralistic methodology, which includes both static and dynamic game theoretic tools. Such an approach provides a more complete picture of the evolution of strategic behaviour.

To explain how these behavioral adaptations may affect the epidemiology of highly pathogenic avian influenza in domestic poultry and the outcome of the implemented control policies. (Alexis & Maciej, 2020) studied a symmetric population game where the players are broiler poultry farmers at risk of infection and where the between-farms disease transmission is both environmental and mediated by poultry trade.

Investigating the dynamics of disease conferring temporary or waning immunity with several forcedcontrol policies. (Muntasir, Ariful, & Jun, 2020) proposed vaccination game theory.

An assumption in game theory is that players are opaque to one another, that is, if a player changes strategy, it does not affect the choice of other players' strategies. In many scenarios this assumption is unrealistic. (Joseph & Rafael, 2018) developed a framework for reasoning about games where the players may be translucent to one another; that is, a player may believe that their change strategies would require other players to also change their strategies The rational choice theory is based on this idea that people rationally pursue goals for increasing their personal interests. (Gholamreza, Madjid, & Choonkil, 2019) presented a new concept of rational choice, Hyper-rational choice: in which the decision-maker thinks about profit or loss of other decision-makers in addition to his personal profit or loss and then will decide on an action that is desirable.

(Gregory & Bryan, 2019) presented a basic framework of psychological game theory (PGT) and linkages to the public choice literature. The distinction between PGT and other game-theoretic frameworks rests on the inclusion of beliefs about strategies directly within the players' objective functions. Thus, a natural extension of PGT includes the consideration of non-monetary drivers of behavior.

III. METHODOLOGY

In this chapter the methodology applied to solving the research problem is presented. Research methodology refers to the complete process that describes the type of research to be done, how the data used was collected and how it will be analysed, this information is presented in this chapter.

 Table 3.1 : Proposed Methods

S/N	Author(s)	Proposed Methodology(ies)	
1	(Timothy,	Method: A differential-game to	
	2010).	identify how individuals would	
		best use social distancing and	
		related self-protective behaviors	
		during an epidemic.	
		Description: The epidemic is	
		described by a simple, well-	
		mixed ordinary differential	
		equation model. Using the	
		differential game to study	
		potential value of social	
		distancing as a mitigation	
		measure by calculating the	
		equilibrium behaviors under a	
		variety of cost-functions.	
		Numerical methods are used to	
		calculate the total costs of an	
		epidemic under equilibrium	
		behaviors as a function of the	

2	(Ceyhun, Jeff, & Joshua, 2017)	the self-interests of individuals during the spread of a susceptible-infected-susceptible disease. The goal is to determine how behavior can change whether a disease will become endemic or not. Description: This explore the interrelationship among contact network structure, individual behavior, and disease spread dynamics. A stochastic network game where individuals respond to the current risk of disease spread, and their responses together with the current state of the disease and the contact network structure stochastically determine the next stage of the disease. In particular the game is played among the healthy and the sick with an SIS (Susceptible- Infected-Susceptible) infectious disease. In this scenario, the concern for disease contraction of a healthy individual increased with the number of sick contacts that are not taking any preemptive measures. Similarly,	3	(Sofía, Virginie, & Romulus, 2017)	that do not take protective measures. This meant that the incentives for a healthy individual taking a measure decreased as more of individual's sick contacts took preemptive measures, for example, staying at home. Similarly, the incentive for preemptive measures decreased for sick individuals as the healthy got more cautious. The consequences of these incentives are not trivial in a disease contact network setting where an individual care about the behaviors of contacts who themselves care about their neighbors and so on. Hence, analysis focused on the impact of rational behavior on disease spread. Method: An imperfect vaccine, which confers protection only to a fraction of vaccinees for a limited duration. The mathematical model combines a single-player game for the individual-level decision to get vaccinated, and a compartmental model for the epidemic dynamics. Description: A characterization for the effective vaccination coverage, as a function of the relative cost of prevention versus treatment; note that cost may involve monetary as well as nonmonetary aspects. Three behaviors are possible. First, the
					nonmonetary aspects. Three

		vaccinated. Second, the relative			costs/benefits; and (iii) can
		cost may be moderate, such that			manifest either in a higher travel
		some individuals get vaccinated			volume for individual optimal
		and voluntary vaccination			than group optimal strategies, or
		alleviates the epidemic. In this			vice versa.
		case, the vaccination coverage	5	(Muntasir,	Method: Vaccination game
		grows steadily with decreasing		Ariful, &	theory, considering pre-emptive
		relative cost of vaccination		Jun, 2020)	vaccination and forced control
		versus treatment. Third, where			policies, two major protective
		relative cost is sufficiently low so			approaches against the repeated
		epidemics may be averted			pandemics and severe epidemics
		through the use of prevention,			of several infectious diseases.
		even for an imperfect vaccine.			This study uses a mixed control
4	(Shi, Chris,	Method: Incorporate an epidemic			strategy relying on quarantine
	& Daihai,	model into a game theoretical			and isolation policies to quantify
	2018).	framework to investigate the			the optimum requirement of
	/ -	effects of travel strategies on			vaccines for eradicating disease
		infection control.			prevalence completely from
		Description: Potential visitors			human societies.
		must decide whether to travel to			Description: Relying on the basic
		a destination that is at risk of			concepts of the voluntary
		infectious disease outbreaks. The			vaccination program, individuals
		research compared the			are requested to decide at the
		individually optimal (Nash			beginning of every recurring
		equilibrium) strategy to the			season whether to be vaccinated
		group optimal (Pareto) strategy that maximizes the overall			again or not. This is because the
					protective efficacy of most
		population utility. Economic			vaccines lasts less than a year due
		epidemiological models often			to waning antibodies and year-
		find that individual and group			to-year changes of the
		optimal strategies are very			circulating virus. Hence, the
		different. By contrast, perfect			evolutionary dynamics of this
		agreement between individual			proposed model consists of two
		and group optimal strategies			stages. The first stage includes a
		across a wide parameter regime.			vaccination campaign that allows
		For more limited regimes where			individuals to make a rational
		disagreement does occur, the			decision to be vaccinated or not
		disagreement is (i) generally very			before any individuals are
		extreme; (ii) highly sensitive to			exposed to the epidemic strains.
		small changes in infection			Vaccination inflicts a certain cost
		transmissibility and visitor			to every individual who is

vaccinated. This stage	of
vaccination comes with the co	ost
price which includes t	he
monetary cost of the vacci	ne
itself and the cost	of
miscellaneous perceived ri	isk
factors. However,	an
unvaccinated individu	ıal
undergoes a risky state	of
becoming infected anytim	ne
during an epidemic. The seco	nd
stage occurs during the epidem	nic
season when the epidemic stra	in
enters the population and	а
number of randomly select	ed
	are
marked as initially infect	ed
persons. Hereafter, the epidem	
behaviors can be analyzed by	
non-linear deterministic SVEI	
model proposed for t	-
transmission dynamics of	
infectious disease wi	
quarantine–isolation contr	
policies.	.01
policies.	

IV. Results and Discussion of Findings

In this paper, we attempted a glimpse at the captivating field of game theory; as it is presently experiencing intense investigation by the community of game theorists as well as computer scientists and epidemiologist. Although some essential theoretical questions have been resolved, there are still a lot of challenges ahead of us. The aim of game theory is to provide a systematic approach to decision making. It is being applied to evaluate scenarios between individuals health organizations with and contradictory objectives, in a pandemic. And the main aim of applying game theory is to find out the best strategy to resolve the pandemic problems. The applications of game theory are more varied and are

forcing us towards more and more collaborations across behavioral sciences, biology and computer science in particular. After reviewing the literatures on the reviewed methodologies, a table of their expected results and limitation are highlighted in the Table 4.1 below.

Table 4.1 : Expected Results and Limitations of the
Reviewed Methodologies

S/N	Author(s)	Expected Results and Limitation(s)
1	(Timothy,	Expected Result: Social
	2010).	distancing is most beneficial to
		individuals for basic
		reproduction numbers (R0)
		around 2. In the absence of
		vaccination or other
		intervention measures, optimal
		social distancing never recovers
		more than 30% of the cost of
		infection. Also, shows how the
		window of opportunity for
		vaccine development lengthens
		as the efficiency of social
		distancing and detection
		improves.
		Limitation: The net savings
		from social distancing reaches a
		maximum around R0~2, and
		never saves more than 30% of
		the cost of the epidemic per
		person. For larger R0's, social
		distancing is less beneficial.
2	(Ceyhun,	Expected Result: Individuals
	Jeff, &	strategically modify their
	Joshua, 2017)	behavior based on current
		disease conditions. These
		reactions influence disease
		spread. Also, there is a critical
		level of concern, that is,

		empether 1 1 1	handle of the
		empathy, by the sick	benefits of vaccination, as
		individuals above which	disease incidence declines. This
		disease is eradicated rapidly.	yields a low relative cost of
		Furthermore, the risk averse	prevention versus treatment,
		behavior by the healthy	resulting in a vaccination
		individuals cannot eradicate	coverage high enough to avert
		the disease without the	the epidemic. However, the
		preemptive measures of the	modeling results show that
		sick individuals. Empathy is	disease epidemic elimination is
		more effective than risk-	only temporary. Indeed, as
		aversion because when	vaccination coverage increases,
		infectious individuals change	leading to less epidemic
		behavior, they reduce all of	adversity, individuals may also
		their potential infections,	lose their initial motivation to
		whereas when healthy	vaccinate. Hence, with
		individuals change behavior,	epidemic elimination, the
		they reduce only a small	perception of cost in the
		portion of potential infections.	dilemma of prevention versus
		Limitation: This imbalance in	treatment may change and
		the role played by the response	increase. In turn, this causes a
		of the infected versus the	decrease in vaccination
		susceptible individuals on	coverage and reverses disease
		disease eradication affords	elimination. However, it is very
		critical policy insights.	important to note that, once
3	(Sofía,	Expected Results: Voluntary	the epidemic is averted (in
	Virginie, &	vaccination may lead toward	region (a)), the dynamics
	Romulus,	epidemic elimination if two	toward the situation may be
	2017)	conditions are met. First, the	slowed down significantly,
	,	duration of vaccine-induced	owing to continuous effort
		immunity should be	from the public health
		sufficiently long. Second, the	authority to maintain a low
		relative cost of prevention	cost for vaccination.
		versus treatment must be	Limitation: Disease elimination
		sufficiently low. Disease	is only temporary—as no
		elimination may occur when a	equilibrium exists for the
		high-performance vaccine is	individual strategy in this third
		made available, at low cost, in	case—and, with increasing
		an endemic setting where	perceived cost of vaccination
		individuals witness disease-	versus treatment, the situation
		related morbidity and	may be reversed toward the
		mortality, as well as the	•
		mortanty, as well as the	epidemic edge, where the

		effective reproductive number		cost, these control policies
		is 1. Thus, maintaining relative		applied by the governing
		cost sufficiently low will be the		authority can somehow provide
		main challenge to maintain		an ambience of relief amid
		disease elimination.		them. Backed by the numerical
4	(Shi, Chris,	Expected Result: The		simulation, it is obvious that
1	& Daihai,	simulations show qualitative		adopting a quarantine–isolation
	2018).	agreement with the 2003		policy can calm a difficult
	2010).	severe acute respiratory		situation in a hopeless region
		syndrome (SARS) outbreak.		too. The theoretical analysis
		The research concluded that a		also suggests that a joint policy
		conflict between individual and		should be implemented when
		group optimal visitor travel		the disease spreading rate is
		strategies during outbreaks may		higher. The relative
		not generally be a problem,		contributions from either pre-
		although extreme differences		emptive vaccination or late
		could emerge suddenly under		control policies are equally
		certain changes in economic		important to keep the final
		and epidemiological conditions.		epidemic size at a controllable
		When a disagreement between		state.
		the individual and group		This model can successfully
		optimal strategies occurs, the		address the importance of dual
		discrepancy was very large and		provisional safety in terms of
		highly sensitive to small		public health issues which has
		changes in disease		never been investigated before
		transmissibility and visitor		using the framework of
		costs/benefits.		evolutionary game theory.
		Limitation: Travelling players		Unlike some of the previous
		may not always be informed		studies, this model does not
		about outbreak events in a		encounter any intermediate
		timely manner.		protection measure <i>vis-a-vis</i>
5	(Muntasir,	Expected Result: The numerical		wearing a mask, gargling,
	Ariful, &	-		drinking an energy drink, as a
	Jun, 2020)	study emphasize the		distinct strategy like being
	/	importance of applying a		vaccinated or any other control
		quarantine or isolation policy		policies. On another note,
		in preventing the spread of		analysis can also be extended
		infection. Especially at times		further by integrating other
		when the majority of people do		control methods such as source
		not prefer vaccination due to		reduction, information
		its meager efficacy or higher		spreading, free-vaccination,
L		0	L	 · · · · · · · · · · · · · · · · · · ·

campaigns with differe		&	Vaccination game theory	Yes	Yes
modes of action in rotation a combination.	and Jun, 202	20)			
	om From 7	'abla /	4.2, it can be so	oon that th	a mathad
			Muntasir, Ariful,		
emptive vaccination to	a better a	nd mo	re robust solution	l .	
forcefully applied quarantine isolation policy seems way t extreme in reality.	too Game	•	provides appro	-	

The various aforementioned game theory framework for infectious diseases can be further categorized into prevent or control, based on the application each framework favours the most. Prevent means it can be utilized in case of a pandemic, to administer vaccines to individual and treatment to infected individuals. While control means it can be utilized in case of a pandemic, to control the wide spread of the infection.

Table 4.2 : Categorization of the Reviewed Methodologies

Author(s)	Game Theory	Prevent	Control
and Year			
(Timothy,	A differential-		Yes
2010)	game		
(Ceyhun,	A stochastic		Yes
Jeff, &	network		
Joshua,	disease game		
2017)	model		
(Sofía,	An imperfect	Yes	
Virginie, &	vaccine		
Romulus,			
2017)			
(Shi, Chris,	A game		Yes
& Daihai,	theoretical		
2018)	framework		
	(Nash		
	Equilibrium		
	and Pareto)		

proposed by (Muntasir, Ariful, 8	k Jun, 2020) offer a
better and more robust solution.	

а se conditions, often called assumptions are:

- Assumes that decision-makers can adopt multiple strategies for solving a problem
- Assumes that there is an availability of predefined outcomes
- Assumes that the overall outcome for decisionmakers would be zero at the end of the game
- Assumes that decision-makers are aware of the rules as well as outcomes of other decisionmakers
- Assumes that decision-makers take a rational decision to increase their profit.

V. Summary, Conclusion and Recommendations

Game-theoretic models has been used to discuss the dilemma of prevention versus control. Demonstrating the circumstances under which non-cooperative, self-interested individuals arrive to alleviate, and potentially eliminate, an epidemic through the use of Game theory. Maintaining a low relative cost of prevention versus control will be the main challenge to maintain disease elimination unless incentives are considered.

Game theory is the study of conflict and cooperation amongst intelligent rational decision-makers. It is a prevailing analytical tool in understanding the phenomena that can be observed when decision makers interact. To stay up-to-date with the various realities of game theory applications, game theorists must arrangement and maintain a dialogue with the industry practitioners. Game theory may influence practice, but practice must influence the development of appropriate models if game theory is to be more than an exercise in a minor branch of pure sciences.

Furthermore, appropriate models cannot be built without an understanding of context and both the models and their formal analysis are required to bring the influence of game theory into the domain of public discourse and appreciation. It also allows researchers to analyze the performance of scenarios relative to the theoretical optimum. Game theoretic models has been successfully applied to a wide variety of disciplines including computer science, medicine, economics. sociology, psychology, philosophy. And, has helped improve our perceptions, allowing a rational reconstruction of different ideas, norms, values among decision-makers for significant philosophical expositions.

VI. REFERENCES

- [1]. Alexis, D., & Maciej, F. B. (2020). Game theory of vaccination and depopulation for managing livestock diseases and zoonoses on small-scale farms. Epidemics, 1-13. doi:10.1016/j.epidem.2019.100370
- [2]. Bellal, A. B. (2016). AN OVERVIEW OF GAME THEORY AND SOME APPLICATIONS. Philosophy and Progress, 112-128. doi:10.3329/pp.v59i1-2.36683
- [3]. Ceyhun, E., Jeff, S. S., & Joshua, S. W. (2017). Disease dynamics in a stochastic network game:
 a little empathy goes a long way in averting outbreaks. Scientific Reports, 1-13. doi:10.1038/srep44122
- [4]. Cui, J., Takeuchi, Y., & Saito, Y. (2006). Spreading disease with transport-related

infection. Journal of Theoretical Biology, 376–390. doi:10.1016/j.jtbi.2005.08.005

- [5]. Gérvas, J., Starfield, B., & Heath, I. (2008). Is clinical prevention better than cure? The Lancet, 372(9654), 1997–1999. doi:10.1016/S0140-6736(08)61843-7
- [6]. Gholamreza, A., Madjid, E. G., & Choonkil, P.
 (2019). The behavioral model and game theory.
 PALGRAVE COMMUNICATIONS, 1-8.
 doi:10.1057/s41599-019-0265-2
- [7]. Gordon, G. M., & Ray, D. (2013). Game theory and plant ecology. Ecology Letters, 1-11. doi:10.1111/ele.12071
- [8]. Gregory, D., & Bryan, C. M. (27 de June de 2019). Psychological game theory in public choice. Public Choice, 1-22. doi:10.1007/s11127-019-00676-6
- [9]. Joseph, Y. H., & Rafael, P. (7 de May de 2018).
 Game theory with translucent players.
 International Journal Game Theory, 1-28.
 doi:10.1007/s00182-018-0626-x
- [10]. Kostić-Ljubisavljević, A., Radonjić, V., Mladenović, S., & Aćimović-Raspopović, V.
 (2011). An Application of Game Theory for the Selection of Traffic Routing Method in Interconnected NGN. En V. Snasel, J. Platos, & E. El-Qawasmeh, ICDIPC 2011, Part II, CCIS 189 (págs. 107-122). Berlin Heidelberg: Springer-Verlag.
- [11]. Marios, M., Vicky, P., & Paul, S. (2007).Algorithmic Game Theory and Applications. 285-313.
- [12]. Mark, T., Mike, B., Denis, R., & Somasundaram, R. (2017). Game Theory for Computer Games Design. Games and Culture, 1-13. doi:10.1177/1555412017740497
- [13]. Muntasir, A., Ariful, K. K., & Jun, T. (2020).
 Based on mathematical epidemiology and evolutionary game theory, which is more effective: quarantine or isolation policy? Journal of Statistical Mechanics: Theory and

Experiment, 1-29. doi:10.1088/1742-5468/ab75ea

- [14]. Sajjan, S., Sankardas, R., & Dipankar, D. (2010).Game Theory for Cyber Security. 1-4.
- [15]. Sasmita, P. A., Sha, M., Yu-Ju, W., Yu-Ping, M., Rui-Xue, Y., Qing-Zhi, W., . . . Huan, Z. (2020). Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious Diseases of Poverty, 1-12. doi:10.1186/s40249-020-00646-x
- [16]. Shi, Z., Chris, T. B., & Daihai, H. (2018). Strategic decision making about travel during disease outbreaks: a game theoretical approach. J. Royal Society Interface, 1-10.
- [17]. Simon, M. H., & Kevin, J. S. (2013). Methodology in Biological Game Theory. Britain Journal of Philosophical Sciences, 637– 658.
- [18]. Sofía, J., Virginie, S., & Romulus, B. (2017). Prevention of treatable infectious diseases: A game-theoretic approach. Vaccine, 1-7.
- [19]. Timothy, C. R. (2010). Game Theory of Social Distancing in Response to an Epidemic. PLoS Computational Biology, 6(5), 1-10. doi:10.1371/journal.pcbi.1000793

Cite this article as :

Prof. Adekunle A. Yinka, Dr. Seun Ebiesuwa, Ohwo Onome Blaise, "Game Theory : A Case of Infectious Diseases", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 6 Issue 4, pp. 202-123, July-August 2020. Available at doi : https://doi.org/10.32628/CSEIT20647 Journal URL : http://ijsrcseit.com/CSEIT20647