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ABSTRACT 

 

Extraction of itemset frequent is an important theme in Datamining. Several 

algorithm have been developed based on Apriori algorithm during the last 

decades. This paper deals with  the FP- tree and Titanic algorithms. FP-Tree is 

an improvement to the Apriori method witch generate frequents itemsets 

without generating candidate. The Titanic algorithm traverses the level search 

space by focusing on the determination of the minimum generators (or key 

Item sets).  In addition, this paper studies the differences between these two 

algorithms and shows advantages and disadvantages of each one. 
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I. INTRODUCTION 

 

Datamining is an important part of the computer 

science, it includes a lot of technologies and sciences 

and techniques, such as statistics, data base theory, 

data science and machine learning. When we speak 

about datamining, we speak about the whole process 

of discovering, uncovering and exploring patterns in 

large data sets like Big Data. 

 

During the last decade several algorithm have been 

developed [1, 2,3,4,5,6,7,8, 9]. Most of them are based 

on Apriori algorithms. Apriori scan the database on 

several passes. When the data is large, it become 

difficult. In order to avoid repetition of the database, 

Han [6] et al have proposed a method called FP-

Growth to resolve this problem. The FP-growth 

algorithm [10, 11, 12] thus provides a solution to the 

problem of searching for frequent patterns in a large 

transactional database. By storing all common 

elements of the transaction database in a compact 

structure, the need to repeatedly scan the database of 

transactions is eliminated. Moreover, by sorting the 

elements in the compact structure, one accelerates 

the search of the reasons. To avoid the limitation of 

the Apriori, Stumme has proposed the TITANIC 

algorithm for the discovery of frequent closed item 

sets [3]. The key idea is to minimize the step of 

calculating the Support Item sets. Thus, the algorithm 

traverses the level search space by focusing on the 

determination of the minimum generators (or key 

Item sets) of the different classes  of the equivalence 

relation induced by the closure operator. 

 

The organization of this paper is as follows. Section 2, 

describes the FP-Tree method. Section 3 deals with 

Titanic algorithm. Experimental results are presented 

in Section 4. Section 5 gives out the conclusions. 
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II. FP-TREE 

 

Frequent Pattern Tree is made with the initial 

itemsets of the database. The purpose of the FP tree is 

to mine the most frequent pattern. Each node of the 

FP tree represents an item of the itemset. Two 

essential elements constitute the structure of an FP-

tree [2]. Therefore, the two elements that make up 

this structure are: 

 

- A structure in the form of a tree with a root 

labelled 'null'. 

- An index (a table of frequent item pointers). 

 

The tree is therefore composed, as indicated, of a root 

'null' and a set of nodes prefixed by the represented 

element.  

 

A node of the tree is composed by: 

 

- The name of the item, the item represented by 

the node. 

- The transaction count number where the path 

portion is located to this node. 

- A link to the next node in the tree (node-link). 

This is an inter-node link to other occurrences of 

the same element (with the same item-name) in 

other transaction sequences. This value is null if 

there is no such node. 

 

The Index contains the list of frequent items and 

points to the first occurrence of each item. Each 

entry in this table contains: 

 

- The name of the element (item-name). 

- The leading pointer of the sequence of nodes 

having this same item-name. 

 

The Major steps to Mine FP-tree are: 

 

- Construct conditional pattern base for each node 

in the FP-tree  

- Construct conditional FP-tree from each 

conditional pattern-base . 

- Recursively mine conditional FP-trees 

- If the conditional FP-tree contains a single path, 

simply enumerate all the patterns. 

 

The frequent pattern growth method find the 

frequent pattern without generating candidate. The 

construction of an FP-tree structure goes through 6 

main steps. Steps 1 through 5 prepare the structure 

and insert the elements that should be there. The 

sixth step is to validate the information inserted in 

the previous steps: 

 

- Calculate the minimum support 

- Browse the transaction database to find the total 

sum of the different occurrences. 

- Define the priority of the items, and then sort the 

items according to their priority. 

- Creating the root node. 

- Insert child nodes. 

- Validation 

 

Step 1: The first step is to scan the database to find 

the occurrences of the itemsets in the database. This 

step is the same as the first step of Apriori. The count 

of 1-itemsets in the database (Table 1) is called 

support count or frequency of 1-itemset. 

 

        Table 1: Transaction database 

 

TID Items 

1 f,a,c,d,g,I,m,p 

2 a,b,c,f,l,m,o 

3 b,f,h,j,o 

4 b,c,k,s,p 

5 a,f,c,e,l,p,m,n 
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Suppose the minimum support is set to 50 in our case, 

to get a support of 50%, it must be calculated as 

follows: 

 

Support minimum = (50/100 * 5) = 2.5. 50 being the 

minimum percentage requested, five being the total 

number of transactions in the database. If the value 

obtained is not complete, it will be rounded. (For 

example: ceiling (50/100 * 5) = 3. The result obtained 

is 3 in our case, constitutes the minimum support and 

consequently all the items of the database of 

transactions having a support lower than 3 minimum 

occurrences will be ignored (Table 2). 

 

This step being completed let us go to the next step. 

 

Step 2: In this step, we will go through the database 

of transactions to calculate the frequencies of the 

elements that are there [3]. Subsequently, once the 

different frequencies obtained, only the elements 

whose frequency is greater than the minimum 

support defined in step 1 (table 1) will be retained, 

the others will be ignored. In our case, the following 

table represents the selected items and their 

respective occurrence numbers. 

 

The table obtained constitutes the table of headers 

(Headers Table) also called the table of the pointers. 

Now that we have determined our different items, 

we must prioritize them. This task is performed in 

the next stage of construction. 

 

Table 2: Items with their frequencies. 

Item Frequency 

f 4 

a 3 

c 4 

b 3 

m 3 

p 3 

 

Step 3: This step consists of ordering the different 

elements according to their weight. They are sorted 

according to their number of frequencies (Table 3). 

This sorting is done in descending order, the element 

with the highest number of occurrences is placed at 

the top, and the element with the least number of 

occurrences is placed at the bottom. This processing 

will be done for each of the transaction lines 

contained in the transaction database. 

 

Table 3: items with their frequencies ordered. 

 

Step 4: From the result obtained in the previous step 

(Table 3), we begin the construction of the FP-tree 

structure. First, the 'Root' element of the tree is 

created. This root element will not contain any 

element. It will only contain links to its child 

elements. We begin by going through each element 

of the transaction (figure 1). Then for each element of 

the transaction we check the existence of a 

corresponding node, if it does not exist, the node is 

created, otherwise the number of occurrences is 

incremented. Then for each element created we will 

establish a link from the header table to the element 

inserted in the tree. At this point the tree is still 

empty, so the procedure to check the existence of a 

particular node will indicate that it does not exist and 

therefore it will have to be created. The first 

transaction is composed of the elements (f, c, a, m,p) 

sorted in descending order according to their weight. 

Since the element f is the first in the list, a 

corresponding node is inserted from the root element 

of the tree. Node f contains the count of 1 because 

this is the first time, we have inserted this element. A 

TID Items Frequent items 

arranged 

1 f,a,c,d,g,I,m,p f,c,a,m,p 

2 a,b,c,f,l,m,o f,c,a,b,m 

3 b,f,h,j,o f,b 

4 b,c,k,s,p c,b,p 

5 a,f,c,e,l,p,m,n f,c,a,m,p 
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link is established between the root element of the 

tree and the element f and another link is established 

from the header table. The same goes for the 

following elements (c, a, m, p). Thus, we obtain the 

structure illustrated by this figure below. 

 

Figure 1: First creation of the FP-TREE

 

Figure 2: Final result of the FP-Tree 

 

Step 5: The construction continues with the second 

transaction which is composed of elements (f, c, a, b, 

m) (figure 1). This time the tree contains elements 

and therefore for each element found its number of 

occurrences is incremented by 1.  It is the same for 

the elements c, and a. We arrive at element b. There 

are no matching elements, so a new node is created 

from our current position, node a and a new link is 

created from a to b and then a link from the header 

table to the new inserted element. Regarding the 

remaining m element, since there is no 

corresponding node from our position (node b) a new 

node is created and initialized with a value of 1, then 

in addition to the link created from element b, a link 

is created from the already existing node m. 

Step 6: This last step consists in validating the 

information of the tree (Figure 2). How to know if 

they are correct? The answer to this question is very 

simple; it is enough to compare the information 

obtained from the different nodes of the tree with the 

information of the header table. For that, it is 

necessary to count, and to add if necessary all the 

occurrences of an element in the tree and to compare 

the result obtained with that stored in the table of the 

headings (Table 1). Thus, after having counted all the 

elements of the structure, one obtains the following 

result: (f: 4, c: 4, a: 3, b: 3, m: 3, p: 3) which is in 

conformity with the table of headers. Table 4 shows 

the result of mining patterns by creating conditional 

patterns base. 

 

Table 4: Conditional Pattern Bases 

Item Conditional 

Pattern Bases 

Conditional FP-

tree 

p {(fcam:2), (cb:1)} {(c:3)}|p 

m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m 

b {(fca:1), (f:1), 

(c:1)} 

Empty 

a {(fc:3)} {(f:3, c:3)}|a 

c  {(f:3)} {(f:3)}|c 

f Empty Empty 
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III.  TITANIC ALGORITHM 

 

A. Pseudo code 

 

The TITANIC algorithm has been proposed by 

Stumme for the discovery of frequent closed item 

sets. The key idea is to minimize the step of 

calculating the Support Item sets [5]. Thus, the 

algorithm traverses the level search space by 

focusing on the determination of the minimum 

generators (or key Item sets) of the different classes 

of the equivalence relation induced by the closure 

operator. The TITANIC algorithm instantiates the 

two steps of the generic algorithm:  Pruning step 

and the construction step. The pseudo algorithm is 

as follows: 

input: K : Extraction context, minsup 

output: FC=∪kFCk : Set of frequent closed itemsets  

1: FFC0={∅}     /*(FFCK: Set of K-generators 

candidates. FCK: Set of minimal frequent K-

generators.)*/ 

2: ∅.support=| K | 

3: FFC1={1-item sets} 

4: for (k=1 ; FFCk.gen 6= ∅ ;k + +) faire 5: FFCk= 

CALCUL-SUPPORT(FFCk) 

6: FCk−1= closing-calculation (FFCk−1) {/* ∀ i ∈ FCk 

(i)00= i ∪{x ∈ A -{i} | support(i)= support(i ∪ {x}) } */} 

7: FCk= Prune -Notfrequent-Nokey(FFCk) 

{/* ∀ i ∈ FCk si support (i) < minsup ou ∃ j ∈ i | 

support(i)= support (i -{j}) 

*/} 

8: FFCk+1=Genereate-Candidate(FFCk) 

9: end for 

10: return FC=∪kFCk 

 

The particularity of this algorithm is that he 

considers the empty set ∅. In the Pruning step, the 

CALCUL-SUPPORT function is applied to each FFC 

generator k, this determining its support. Knowing 

that this calculation requires access to the extraction 

context. Note that each item is assigned an estimated 

support, which is equal to the minimum value of the 

media of the two joined items to obtain it. The 

infrequent k-generators are eliminated by calling the 

function ELAGUER-INFREQUENT-NOT- CLOSED. 

No-key k-generators, whose value of their estimated 

support is equal to the actual support value, are also 

eliminated. At this level, the algorithm TITANIC 

proposes to calculate the closures of the minimal 

generators which were retained during the previous 

iteration, those belonging to FCk¡1. 

B.  Illustration of Titanic 

The tables illustrate the execution trace of the 

TITANIC algorithm on the extraction context K 

for minsup=2. During the initialization phase 

(Table 5), the 1-generators of the set FC1 are 

considered as key item sets is pruned by calling the 

ELAGUE-INFREQUENT-NOT-CLOSED function 

to obtain the FC1 set (Table 6). 

The set of 2 FFC2 (Table 7) candidate generators is 

obtained by calling the GENERATE-CANDIDATE 

function, which performs a self-join on the set 

FC1. The CALCUL-SUPPORT function determines 

the support of each candidate of FCC2 . Non-

frequent and non-key 2-generators are eliminated. 

For example, the frequent 2-generators AC and BE 

are eliminated, since their estimated support is 

equal to the value of their real support. During this 

iteration, the closures of the elements of the set FC1 

are calculated. The function 

GENEREATCANDIDAT is applied to the set FC2 

to obtain the set FFC3 composed of 3-generator 

candidates (Table 12). 

The single item in this set is pruned by calling the 

function ELAGUE-INFREQUENT-NOT-OUT. 

Before ending, since FC3 is empty, the algorithm 

calculates the closures of the 2-generators retained 

in FC2 (Table 10). Table 14 illustrate the final 

result. each element of this set is composed of 4 
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field:  the item (generator), Estimatif support (S-E), 

Real support (S-R) and the Key (Yes/No). 

Table 5: Transaction database table 

ID Item      

1 A,C,D  Itemset S-E  Key 

2 B,C,E      

3 A,B,C,E  ∅ 5  Yes 

4 B,E      

5 A,B,C,E      

 

                   Table 6: FFC1 

Item S-E S-R key 

A 5 3 yes 

B 5 4 yes 

C 5 4 yes 

D 5 1 yes 

E 5 4 yes 

 

                            Table 7: FC1 

 

Item S-E S-R key 

A 5 3 yes 

B 5 4 yes 

C 5 4 yes 

E 5 4 yes 

Table 8: FC0 Closing calculation 

key closing 

∅ ∅ 

 

Table 9: FFC2 

Item S-E S-R key 

AB 3 2 yes 

AC 3 3 No 

AE 3 2 yes 

BC 4 3 yes 

BE 4 4 no 

CE 4 3 yes 

 

 

Table 10: FC2 

Item S-E S-R key 

AB 3 2 yes 

AE 3 2 yes 

BC 4 3 yes 

CE 4 3 yes 

 

Table 11: FC1 Closing calculation 

key closing 

A AC 

B BE 

C C 

E BE 

Table 12:FFC3 

Item S-E S-R key 

ABE 3 3 No 

 

Table 13:FC2 Closing calculation 

 

 

 

 

 

 

 

Table 14: Output 

key Frequent closed 

itemset 

A AC 

B BE 

C C 

E BE 

AB ABCE 

AE ABCE 

BC BCE 

CE BCE 

key closing 

AB ABCE 

AE ABCE 

BC BCE 

CE BCE 
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FIG.3: EXAMPLE OF TID 

 

II. EXPERIMENTAL RESULTS 

 

Figure 3 and Figure.4 show respectively the result 

obtained by applying Titanic algorithm and FP-

Tree. The computing time is given seconds. 

 
(a) 

 
(b) 

 
(c) 

Fig.3: Execution of Titanic algorithm 

 

FIG.4: RESULT OBTAINED BY FP-TREE 

IV. CONCLUSION 

 

In this paper we described an implementation of a 

pattern growth based on frequent itemset mining 

algorithm called FP-TREE on the first hand, which 

is useful in cases when we have to deal with a large 

dataset and make a lot of passes and scans. As well 

as, FP-tree is the first of the dataminig algorithms 

that success in mining the frequent item sets. On 

the other hand, we worked on TITANIC algorithm 

that the key idea is to minimize the steps of 
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calculating the support item sets and to be able to 

traverse the level search space by focusing on the 

determination of the minimum generators (or key 

Item sets) of the different classes of the equivalence 

relation induced by the closure operator. In 

addition, for comparing these two algorithms, we 

have noticed that FP-TREE is faster than 

TITANIC. The computing time obtained by FP-

TREE is  0.048 second to find the final result  while 

for TITANIC is 0.066 second. The TITANIC 

algorithm begins to take over as the number of 

items increases. For sparse contexts, the TITANIC 

algorithm gives better results, and FP-TREE does 

not take up more memory space. 
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