
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT206543

223

A Survey on Web Application Security
Danish Mairaj Inamdar, Prof .Shyam Gupta

 Savtribai Phule Pune University, Pune, Maharashtra, India

Article Info

Volume 6, Issue 5

Page Number: 223-228

Publication Issue :

September-October-2020

Article History

Accepted : 05 Sep 2020

Published : 15 Oct 2020

ABSTRACT

Web application security has become real concern due to increase in attacks

and data breaches. As Application becomes critical, complex and connected,

the difficulty of achieving application security increases exponentially. Also

there are tools and techniques to detect such attacks, threat and vulnerabilities

that exist in application which developer prevent and mitigate the risk

associated to it. This paper evaluates various web application attack detection

mechanisms and how resistant they are against various attacking techniques.

Such an evaluation is important for not only measuring the available attack

defense against web application attacks but also identifying gaps to build

effective solutions for different defense techniques on web application and use

it for study. Based on the research, the limitations of these application attack

detection techniques are identified and remedies proposed for improving the

current state attack detection on web applications.

Keywords : Input Validation; Open Web Application Security (OWASP);

Vulnerability Assessment

I. INTRODUCTION

Insecure software is undermining our financial,

healthcare, defense, energy, and other critical

infrastructure. The rapid pace of modern software

development processes makes risks even more critical

to discover quickly and accurately. The flaws in the

application are further exploited leading to attack on

the application. Evaluating the web application

security risks based on the recommendations from

leading practices that are adopted as an application

security standard that covers off around 80-90% of all

common attacks and threats. In order to prevent

attacks Open Web Application Security Top Ten list

is considered as Standard for Vulnerability

Assessment. It includes different vulnerabilities such

as Injection, Authorization bypass, Authentication,

Cross site Scripting and XML External Entities. The

paper is further organized as follows: the first section

introduces to different vulnerabilities in web

applications. Second section comprises ways to

mitigate the various vulnerabilities. Third section

showcases the comparison of available attack

detection mechanism based on common security

flaws.

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT206543

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Danish Mairaj Inamdar et al Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 223-228

 224

II. LITERATURE SURVEY

A. Vulnerabilities of Modern Web Application

Existing work in web application security focuses

especially on general security flaws: injection, cross-

site scripting, sensitive data leakage and user

authorization and user authentication[1].It involves

comparison of pen-testing tools and ways to mitigate

found flaws on use-case application.

B. Web Application Security Approach

The existing research works on securing the web

application showcases different approaches used such

as Web Application firewall, vulnerability assessment

and penetration testing[2]. The current scenario of

web application security has shortcomings as

preventive mechanisms are not implemented at run-

time. Also, Attackers are becoming smarter by

finding new and clever ways to create malicious

inputs that will bypass the Firewall input filters.

Passive Approaches such as Vulnerability Assessment

and Penetration Testing is effective in threat and

attack detection but it’s time consuming process.

III. PROPOSED METHODOLOGY

As long as code and data cannot be distinguished by

machines, Injection attacks will prevail. The

Proposed Methodology helps to mitigate it.Run-time

Application Self Protection (RASP) is a technology

that executes on a server and kicks in when an

application is in running state. It's designed to detect

attacks on an application in real time. When an

application begins to run, it can protect it from un-

trusted input or behavior by analyzing both the

application’s behavior and the context of that

behavior. By using this technology in the application

to continuously monitor its own behavior, attacks

can be identified and mitigated immediately without

human intervention

It incorporates security while running application

and wherever it resides on a server. It intercepts all

calls from the application to a system, making sure

they are secure, and validates data requests directly

inside the application.

Both web and non-web applications can be protected

by using it. The technology doesn't affect application

design because it's detection and protection features

operate on the server the application’s running on.

This methodology focuses on helps the application to

differentiate between the code and data present in

the web application to detect attacks and mitigate the

vulnerabilities.

A. Block -Diagram

 The Run-time Application Self protection

technology injects security at runtime and prevents

the application core layer from direct interaction

with user level request and response through security

layer protection as shown

Fig.1. Block –Diagram RASP security layer

B. Working Principle

Using Run-time Application Self Protection by

Application Programming Interface Instrumentation

and Dynamic White-list is achieved through three

methods like lexical analysis, context determination

and monkey patching.

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Danish Mairaj Inamdar et al Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 223-228

 225

Lexical Analysis and Token Generation

RASP uses lexical analysis approach to scan the input

program and convert it into a sequence of Tokens.

Generally, Tokenization involves sequence of

characters that can be treated as a unit in the

grammar of the programming language and it divides

the program into valid tokens.

Example of tokens:

Type token (id, number, real, ..)

Punctuation tokens (IF, void, return,)

Alphabetic tokens (keywords)

Example of Non-Tokens: Comments, pre-processor

directive, macros, blanks, tabs, newline etc.

Fig. 2. Lexical Analysis for sample code

Context Determination helps to determine the

context of code by parsing the test code into

Document object Model Tree view to understand the

syntax as shown.

Fig 3. DOM Tree

A monkey patching also know as Run-time Hooking

is a way for a program to extend or modify

supporting system software locally. It helps to patch

functions and methods.

Based on the above methods, different flaws can be

protected like SQL query injection, Operating System

Command injection and Cross-site Scripting. It

involves hooking Application Programming Interface

by modifying behavior and flow of calls for un-

trusted input based on context matching. Next step

involves learning about the normal behavior of the

request and create a white-list based on rules formed.

Finally, Run-time Application Self Protection blocks

malicious request into system by detecting attacks at

run-time.

C. Algorithm Steps (Work-flow)

RASP technique can be applied to various

vulnerabilities.

For Path traversal

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Danish Mairaj Inamdar et al Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 223-228

 226

Step 1 : Hook File Input/Output Application

Programming Interface

 io.open("/directory/filename","permissions")

Step 2 : Learn about directories and file extensions

Step 3: Block any unknown file directories and

extensions

IV. RESULT AND DISCUSSIONS

Before examining the results of our research, we

provide a definition of Web Application Firewalls

and their shortcomings and justify the usage of Run-

time Application Self Protection. Web Application

Firewall intercepts’s requests to a potentially

vulnerable web application applying rules to evaluate

whether a request contains input that might exploit

the application. This process requires complex

configuration and it may fail open under high load,

leaving web applications vulnerable. For a Firewall to

function at its peak, there need to know what the

vulnerable inputs to the web application are so you

can apply the appropriate protections to these input

fields.

In contrast, Run-time application self protection

integrates with the underlying code libraries and

protect the vulnerable areas of the application at the

source code level. When a user makes a function call

containing parameters that might cause harm to the

web application, it intercepts the call at run-time,

logging or blocking the call, depending on the

configuration. This method of protecting a web

application differs fundamentally from a firewall.

The key features that differentiate run-time

application self protection is to detect attacks and

vulnerabilities, no hardware requirements, zero code

modification and easy integration. It also eliminates

false positives as it can differentiate between

application and user data.

Table 1

This technology originated as a solution not only to

simplify the test for application security risks, but to

mitigate real-time threats to production applications.

It has also evolved to provide powerful capabilities

for database monitoring and application attack

visibility leading to faster remediation. It ensures that

application is protected with no impact on operations

and performance. Early implementations of the

technology could cause as much as 10 percent

Paramet

ers

Run time

Application Self

Protection

Web

Application

Firewall

Accurac

y

Monitors Inbound

and Outbound data

and logic flaws

Detection

based on

pattern

matching

without

considering

input passed

in application.

Reliabilit

y

Will not fail under

high load,regardless

of server load

Single point of

failure under

high load on

server

Platform

s

Any Instrumented

Application

Only web

Application

Visibility May provide detailed

feedback to

developers to show

how to re mediate

code vulnerabilities.

Offers no

detailed

insight into

application.

Mainten

ance

Automatically

understands changes

to application.

Can gain

application

context

through

training only

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Danish Mairaj Inamdar et al Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 223-228

 227

increase in response times within the application tier,

but performance is constantly improving.

V. CONCLUSION

Run-time application self protection stands above any

traditional Web Application Firewall, by protecting

web applications out of the box with minimal (if any)

configuration needed. This feature could

substantially reduce risk by enabling application

protection immediately upon deployment. It’s

capability to instrument at the Application

Programming Interface layer allows it to detect

attacks precisely. It reports fewer false positives

because of it’s ability to perform context-sensitive

matching. Also there is need to deal with challenges

to build ideal Run-time application self Protection

Solution and adapt other security techniques in

combination with it.

VI. REFERENCES

[1]. F. Holik, S. Neradova, “Vulnerabilities of

Modern Web Applications, MIPRO 2017”, May

22- 26, 2017, Opatija, Croatia

[2]. Ashikali M Hasan, “Perusal of Web Application

Security Approach”, 2017 International

Conference on Intelligent Communication and

Computational Techniques (ICCT) Manipal

University Jaipur, Dec 22-23, 2017

[3]. M. Alenezi, Javed, Y., “Open source web

application security: A static analysis approach,”

in: 2016 International Conference on

Engineering MIS (ICEMIS). pp. 1–5 (Sept 2016)

[4]. S. Rafique, Humayun, M., Hamid, B., Abbas, A.,

Akhtar, Iqbal, K., “Web application security

vulnerabilities detection approaches: A

systematic mapping study,” in: 2015 IEEE/ACIS

[5]. M. Cova, V. Felmetsger, and G. Vigna,

“Vulnerability Analysis of Web Applications,

in Testing and Analysis of Web Services”, L.

Baresi and E. Dinitto, Eds. Springer, 2007.

[6]. J. Sohn, Ryoo, J., “Securing web applications

with better patches: An architectural approach

for systematic input validation with security

patterns,” in: 2015 10th International

Conference on Availability, Reliability and

Security. pp. 486–492 (Aug 2015)

[7]. Marcelo Invert Palma Salas, "Security Testing

Methodology for Evaluation of Web Services

Robustness - Case: XML Injection”, Paulo Lício

de Geus, Eliane Martins Institute of Computing,

UNICAMP, Campinas, Brazil, 2015

[8]. Z. Mao, N. Li, and I. Molloy, “Defeating cross-

site request forgery attacks with browser-

enforced authenticity protection,” in FC’09: 13

th International Conference on Financial

Cryptography and Data Security, 2009, pp.

238–255

[9]. Zhou L, J. Ping, H. Xiao, Z. Wang, GeguangPu,

and Z. Ding, “Automatically Testing Web

Services Choreography with Assertions, In

Proceedings of the 12th international

Conference on Formal Engineering Methods

and Software Engineering. ICFEM’10”.

Springer-Verlag, Berlin, Heidelberg, 2010.

[10]. H. Hakim, Sellami, A., Abdallah, H.B.,

“Evaluating security in web application design

using functional and structural size

measurements,” in: 2016 Joint Conference of

the International Workshop on Software

Measurement and the International

Conference on Software Process and Product

Measurement (IWSM-MENSURA). pp. 182–

190 (Oct 2016)

[11]. Daniel Nations, "Improve Your Understanding

of Web Applications,lifewire.com”, 17 October

2016 ..

[12]. OWASP Secure Coding Practices, "OWASP

Secure Coding Practices - Quick Reference

Guide", 11 May 2017.

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Danish Mairaj Inamdar et al Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 223-228

 228

[13]. WHITEHAT SECURITY, INC., "Web

Applications Security Statistics Report 2016,"

WHITEHAT SECURITY, INC., 2016.

[14]. Danny Allan, strategic research analyst,IBM

Software Group, "Web application

security:automated scanning versus manual

penetration testing", IBM Software Group ,

January 2008.

Cite this article as :

Danish Mairaj Inamdar, Prof .Shyam Gupta, "A

Survey on Web Application Security", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 6 Issue 5, pp.

223-228, September-October 2020. Available at

doi : https://doi.org/10.32628/CSEIT206543

Journal URL : http://ijsrcseit.com/CSEIT206543

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT206543
https://search.crossref.org/?q=10.32628/CSEIT206543
http://ijsrcseit.com/CSEIT206543

