
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT206545

194

Return Oriented Programming - Exploit Implementation using Pwntools
Jayesh Zala

Computer Engineering Department, A. D. Patel Institute of Technology, Karamsad, Gujarat, India

Article Info

Volume 6, Issue 5

Page Number: 194-198

Publication Issue :

September-October-2020

Article History

Accepted : 05 Oct 2020

Published : 14 Oct 2020

ABSTRACT

A common approach to leverage software vulnerabilities in the contemporary

operating system has been the Return-Oriented Programming(ROP) attack.

Although protection mechanisms are involved in the OS, an attacker may

execute arbitrary code with the support of ROP. A decade ago, Return

Oriented programming was designed to solve the buffer overflow exploit

security mechanisms such as ASLR, DEP (or W⨁X) by reusing the machine

code in the form of gadgets that are stitched together to render a full assault on

Turing. And it will take more complex efforts to conduct a Turing complete

attack, and very little data is possible to perform it with raw input. Therefore,

in this project, we are systematizing the interpretation of the new findings that

can be used to carry out a full ROP attack with the help of pwntools python

library.

Keywords : Return-Oriented Programming, ASLR, DEP, Stack Cracking

Attack, CDECL, STDCALL, FASTCALL.

I. INTRODUCTION

Return-oriented programming is an improved variant

of the Stack Cracking Attack. Normally, when an

attacker deceives a stack by reaping the benefits of an

implementation vulnerability, often a buffer overrun,

these sorts of threats arise. It is a feature that enables

an attacker to trigger unreasonable behavior in a

program by transferring the program control flow

without embedding any code. A return-oriented

program chains together brief procedure sequences

that are already present in the address space of a

program, each terminating in a return statement.

There are various security measures, one of which is

well recognized as Data Execution Prevention is a

safety mechanism of operating systems and virtual

machines. It is just a memory management strategy

that requires any page in a processor kernel address

space either to be writable or executable, but not

both. The other is ASLR, which is an acronym for

Address Space Layout Randomization as well as being

a common safeguard against ROP attacks. This works

by arbitrarily shifting a program's fragments around

in memory, stopping the intruder from calculating

useful gadget addresses. Address space layout

randomization structure is based on the low

probability of an intruder guessing the positions of

randomly located sections. By-the search storage,

security is enhanced. Thus, as more uncertainty is

present in different offsets, random sampling of the

main memory is much more efficient. As a result,

unmounting the ASLR is a typical illustration at the

time of commencement. In this process, we

attempted to execute an ROP attack on a binary

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT206545

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Jayesh Zala Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 194-198

 195

program for our own simplicity by deactivating ASLR

before writing our program and executing the exploit

script with the help of pwntools which is the python

framework for CTFs.

II. BACKGROUND

ROP was meant to overcome the shortcomings of

Buffer overflow, whereby the attacker was able to

insert and execute his arbitrary code into the stack

fragment, this was avoided by keeping the stack

section non-executable and making it more difficult

to introduce malicious code by adding ASLR. As a

result, ROPs were designed to exploit existing

security mechanisms and reusing the code.

2.1 Buffer Overflow (BoF): is an exception when a

program overwrites the boundaries of the buffer

when writing data to a buffer and overwrites

neighboring memory locations. Buffers are storage

spaces designated for storing data when moved from

one portion of a process to another, or between

processes. Buffer overflows can also be induced by

malformed entries; when one assumes that all input

data are lesser than the specific size and the buffer is

formed to be that size, an unusual operation that

produces extra data can enable the buffer to write

beyond the buffer end. When this overwrites

adjoining information or program code, this can

result in erroneous program behavior, which includes

memory access failures, invalid performance, and

collisions. Modern languages usually synonymous

with buffer overflows include C / C++, which may

not provide built-in storage access or duplicating data

in any portion of the storage and may not

automatically validate that the data written to the

array is underneath the boundaries of that array. If

this overwrites neighboring data or program code,

this can result in varying program behavior,

including memory access failures, invalid

performance, and collisions.

Figure 1: Stack buffer overflow at work

2.2 Calling conventions: This is a low-level scheme

for how subroutines accept parameters from their

caller and how they return the response. There are

three main calling conventions that are used for C on

32-bit x86 processors: CDECL, STDCALL, and

FASTCALL.

2.2.1 CDECL: C declaration is the calling protocol

that derives from the Microsoft C language parser

which is used by many C compilers for the Intel

processors. The caller clears the arguments from the

stack in this protocol. Given below is the C pseudo-

code:

int callee1(int a, int b, int c);

int caller1()

{

 return callee1(5, 6, 7) + 8;

}

Given below is the x86 assembly code of Intel syntax:

caller1:

 push ebp

 mov ebp, esp

 push 7

 push 6

 push 5

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Jayesh Zala Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 194-198

 196

 call callee1

 add esp, 12

 add eax, 8

 mov esp, ebp

 pop ebp

 ret

After the function call returns, caller1 cleans the

stack.

2.2.2 STDCALL: The stdcall calling concept is a

variation of the Pascal calling concept where the

callee is in charge of fixing the stack, however the

arguments are transferred to a stack in the R2L order,

like in the C declaration calling procedure. The

registers EAX, ECX, and EDX are designed for use

through the procedure. The returned results are

calculated in the EAX register. The called procedure

cleans the stack, unlike c declaration. This implies

that standard call does not accept lists of variable-

length arguments.

2.2.3 FASTCALL: The FASTCALL call protocol also

isn't fully common for all compilers, so that should be

used with precautions. In the FASTCALL convention,

its first 2 to 3 32-bit arguments were entered in the

registers, the most widely used being EAX, ECX, and

EDX. Here, below is the example of C function:

_fastcall int MyFunction4(int c, int d)

{

 return c + d;

}

y = MyFunction4(5, 6);

Will produce the following assembly code fragments

for the called, and the calling functions, respectively:

MyFunction4:

 push ebp

 mov ebp, esp

 add eax, edx

 pop ebp

 ret

mov eax, 5

mov edx, 6

call MyFunction4

2.3 Tools for gadget searching: In return-oriented

programming, the main concept is to combine

valuable instruction sequences from the code and

chain these instructions.

2.3.1 Ropper: You may use ropper to display binary

file information in various file types and search

gadget to create sequences for various architectures

(x86 / x86 64, ARM / ARM64, MIPS). The awesome

Capstone System is used for disassembly of the ropper.

$ ropper --file <afile> --semantic "<any constraint>"

2.3.1 ROPgadget: ROPgadget allows PE, ELF, and

Mach binary variants on the x86, x64, ARM, ARM64,

and other architectures.

$ ROPgadget --binary <afile> --only "<gadget>"

III. WORKFLOW

The aim of this segment is to show the chaining of

gadgets and with the help of pwntools framework of

python exploit the ELF binary file.

3.1 Source Code: Given below is the functional code

of the binary file which we are going to exploit:

void main() {

 int buffer[32];

 memset(buffer, 0, 32);

 puts("Input your data");

 read(0, buffer, 96);

 return;

}

void win(void) {

 system("/bin/ls");

 return;

}

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Jayesh Zala Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 194-198

 197

Here, we have to overwrite the buffer, call the win

function and execute the system function with

"/bin/sh" argument instead of "/bin/ls".

3.2 Find length of buffer and return address: We will

use the GDB-PEDA to find the padding offset to the

return address of the main function.

Here, we found that the offset value is 40 bytes, x64

system checks the address is valid or not before

popping it into RIP. Therefore, we found the offset

with the help of the value presented in RSP.

3.3 Writing exploit script in python: We’re going to

exploit the x64 system so our raw payload structure is

offset + pop_rdi + bin_sh + system_addr. But we will

ease our process with the ROP API of python

pwntools.

from pwn import *

elf = context.binary = ELF('./binary')

rop = ROP(elf)

info("%#x system", elf.symbols.system)

system = p64(elf.symbols.system)

info("%#x /bin/sh", elf.symbols.binShString)

bin_sh = p64(elf.symbols.usefulString)

pop_rdi = rop.find_gadget(['pop rdi', 'ret'])[0]

info("%#x pop rdi",pop_rdi)

rop.call(pop_rdi)

rop.call(system, [bin_sh])

payload = b"A"*40

payload += rop.chain()

io = process(elf.path)

io.recvuntil('your data')

io.sendline(payload)

io.interactive()

We have used the ROP class of pwntools to create

the instance rop and by utilizing its find_gadget

method to find the address of pop rdi, ret instructions

to add to the payload. After that, we called the call

method to add the pop_rdi address and system

address with bin_sh string as an argument. Finally,

we called the chain method to chain together all the

gadgets, added it with payload, and sent it to binary

to get sh shell.

IV. CONCLUSION

Return Oriented Programming may have been a

decade old and not many vulnerabilities have been

documented using ROP, because this is a stealth

feature that can not be detected by Intrusion

Detection Systems or other Signature-based detection

systems because it reuses the system's trusted library

to execute malicious acts. ROP seems to be very

limited, so in our project, we illustrated gadget

chaining in the form of chaining pwntools functions,

which is the same duplication that can be used to

execute a Turing complete attack.

V. REFERENCES

[1]. “Smashing The Stack For Fun And Profit” by

Aleph One

[2]. x86 calling conventions

https://blog.csdn.net/Scotthuang1989/article/de

tails/42969393

[3]. Calling conventions

https://www.tfzx.net/article/6972315.html

[4]. “Penetration Testing with Shellcode” by

Hamza Megahed.

http://www.ijsrcseit.com/

Volume 6, Issue 5, September-October-2020 | http://ijsrcseit.com

Jayesh Zala Int J Sci Res CSE & IT, September-October-2020; 6 (5) : 194-198

 198

[5]. “The advanced return-into-lib(c) exploits” by

Ihsahn, "Alsvartr"

[6]. ROP Emporium https://ropemporium.com/

[7]. “Programming in ANSI C” by E.

Balaguruswamy

[8]. pwntools documentation

http://docs.pwntools.com/en/stable/

[9]. “Beginning Ethical Hacking with Python” by

Sanjib Sinha

[10]. “Hacking: The Art of Exploitation” by Jon

Erickson

[11]. “Practical Reverse Engineering: X86, X64,

ARM, Windows Kernel, Reversing Tools, and

Obfuscation” by Alexandre Gazet, Bruce Dang,

and Elias Bachaalany

[12]. “The Shellcoder's Handbook: Discovering and

Exploiting Security Holes” by Chris Anley,

Felix Lindner, and John Heasman

[13]. “When to use __fastcall” by Kent Reisdorph

http://bcbjournal.org/articles/vol4/0004/When_

to_use___fastcall.htm

[14]. GDB-PEDA https://github.com/longld/peda

[15]. “Beginning X64 Assembly Programming: From

Novice to AVX Professional” by Jo Van Hoey

Cite this article as :

Jayesh Zala, "Return Oriented Programming - Exploit

Implementation using Pwntools", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 6 Issue 5, pp.

194-198, September-October 2020. Available at

doi : https://doi.org/10.32628/CSEIT206545

Journal URL : http://ijsrcseit.com/CSEIT206545

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT206545
https://search.crossref.org/?q=10.32628/CSEIT206545
http://ijsrcseit.com/CSEIT206545

