
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

 394

Reaching Consensus for Async Distributed Systems : A Guide

to Harmonized Data Decision-Making
Gnana Teja Reddy1, Nelavoy Rajendra2

1Software Engineer, Google, USA
2San Francisco Bay Area, USA

Article Info

Volume 6, Issue 6

Page Number : 394-418

Publication Issue :

November-December-2020

Article History

Accepted : 12 Dec 2020

Published : 30 Dec 2020

ABSTRACT

Consensus algorithms must be highly reliable in distributed systems due to

their vast use in asynchronous environments for fault tolerance and consistent

data consistency. These systems require that multiple nodes, typically spread

across large areas, replicate a common view or value, even in the presence of

hardware or network failures or a condition known as Byzantine failure. This

paper discusses consensus mechanisms essential in cloud environments,

blockchains, and real-time data management. This article reviews consensus

algorithms such as Paxos, Raft, and Byzantine Fault Tolerance and discusses

their working model, advantages, and challenges. Paxos is safe under crash

failures but may prove tough to implement. Raft also makes leadership and log

replication easy while making reliability practical in real-world applications

through BFT, preventing the influence of antagonistic actors in secure areas.

Issues that might hinder the consensus process include network ruling, leader

elections, and security threats. A comprehensive analysis of technological

consensus approaches, including quorum-based decision-making, conflict

resolution, and observability practices, is provided. The paper discusses the

various developments of consensus to establish the importance of distributed

applications such as distributed databases, blockchain systems, and

microservices orchestration for integrity and availability. Growing trends like

HCM, Layer 2 solutions like Rollups and State Channels, and serverless

infrastructure imply the continued evolution of the space. This guide is for

engineers, architects, and researchers interested in consensus to build systems

capable of handling the operational requirements that characterize distributed

systems.

Keywords : Consensus, Distributed Systems, Fault Tolerance, Paxos, Raft,

Blockchain, Consistency, Byzantine Fault Tolerance (BFT).

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 395

1. Introduction

Distributed consensus is one of the primary concerns

in the contemporary large-scale data processing

frameworks to assert that multiple systems converge

to a consensus of state or value across many nodes.

This idea is crucial for achieving safety, stability, and

failure resilience in contexts like cloud computing,

blockchains, or distributed systems. Correcting errors

and preventing record duplication, made possible

through a consensus mechanism, makes it possible to

maintain an updated view of the nodes, regardless of

the event that may occur. It will, therefore, be clear

that as organizations begin to use largely compatible

infrastructures that span geographic regions, the need

for sound consensus algorithms grows more acute.

Distributed consensus, for example, dominates

blockchain networks, where decentralized consensus

ensures that the records of transactions are secure

and immutable without requiring a central authority.

Applications include decentralized trading, money

transfer, and supply chain tracking. Despite volatile,

fluctuating networks, Cloud service providers rely on

consensus mechanisms for synchronizing container

management, microservices, and configuration data

availability.

A key challenge in asynchronous distributed systems

is the lack of a global clock. Nodes can be active at

different rates, and because of this, there is no

confirmed time for swapping messages. Moreover,

messages could come late or disappear, which

increases the possibility of making decisions for many

participants simultaneously. On the other hand,

network or hardware failure may occur and sever an

individual node, making partial fragmentation

possible. In such a situation, data consistency regimes

must be managed by complex protocols capable of

handling conflicts and retaining integrity. These

difficulties are worse in extensive systems that

implement network splits, different delays, and node

failures as regular phenomena. When a part of the

network becomes somehow disconnected from the

rest for a while, that part of the separate segment may

persist in updating the local state. Since updates may

be competitive when the partition is resolved, the

right conflict resolution follows. Other undesirable or

unpredictable behaviors, such as Byzantine faults,

may also disturb consensus with other values and

spurious data. Consequently, any good consensus

approach adherent to the cass design and SOCKware

considerations has to ensure that the prerequisites for

reliability for other security threats are met and avoid

serious repercussions on performance overheads.

This article analyzes how consensus algorithms

address such challenges and enforce data coherence

in real-world systems. It provides an extensive

explanation and review of known protocols,

including Paxos, Raft, and Byzantine Fault Tolerance

approaches, explaining their fundamental facts,

strengths, and possible weaknesses. Thus, it will

provide value to technology executives, designers,

and scientists who are trying to determine which

approach best suits their organizational goals and

technical limitations. Apart from the low-level details

of the algorithms, the topics include distributed

databases throughout consensus mechanisms,

blockchains, and leader election in large clusters. The

audience will learn about transaction validation,

replication models, and conflict-solving mechanisms,

which are crucial for developing safe and highly

available systems. Since the article will discuss real-

world case studies and explore the most frequent

mistakes, it will identify emerging trends suited to

different circumstances, ranging from company data

centers to infrastructure-level public networks.

2. Understanding Consensus in Distributed Systems

Consensus is the technique used in distributed

systems so that many nodes located in different

geographical points agree on a particular data

element or state of the system. This is easier stated

than done, especially in given asynchronous

environments, but necessary, which helps ensure that

data remains consistent, systems perform as expected,

and fault tolerant. The next sections define consensus,

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 396

explain why it is relevant in a system handling data,

specify the challenges that arise from asynchrony,

and connect the concept to various consistency

models.

Figure 1 : An Example of Consensus in Distributed

Systems

2.1. Definition of Consensus

Consensus in distributed computing refers to how

several nodes decide which value or state out of the

number of values or states should be regarded as

legitimate and used. This process ensures that any

node participating in the consensus round has the

same result regardless of whether some nodes or links

failed or are unavailable (Pease, Shostak, & Lamport,

1980). The basic purpose would be to guarantee that

all the correct or non-faulty nodes have the same

view of the system data so that it is possible to

coherently perform operations such as transactions,

updates, or stateful computations. From the reliability

perspective, consensus algorithms are a key to

avoiding data conflicts. Consensus directs a

functional decision-making process in the system

through the demand for an efficient protocol on

which nodes propose, accept, and finalize updates.

Once a decision is approved with enough nodes, at

least half are called a quorum. As such, it is integrated

as the consensus layer of processes such as replication,

fault tolerance, and consistency enforcement.

In large-scale distributed systems, the role of

consensus increases because of potential

contradictory failures between different nodes and

the general challenge of coordinating a set of large

numbers of machines. In cases where there is a data

center involvement and other geographical

configurations, each node engaged depends on

consensus to ensure all instances agree with certain

state updates, as highlighted by Lamport (1998). This

lockstep agreement is particularly important in

certain circumstances where system correctness is

desirable, such as financial requests, third-party

payments, real-time data processing information, and

enterprise resource management.

2.2. Significance of Consensus in Data Management

Consensus mechanisms are the backbone of data

replication and business continuity in distributed

databases, ledgers, and cluster-based systems.

Enforcing a state through consensus also allows the

system to maintain correct functioning even while

nodes are faulty. They also help maintain high

availability by minimizing the chances of conflicting

writes or a corrupt data state (Gray and Lamport,

2006).

In essential fields like finance, real-time consensus

guarantees transformation into an irreplaceable tool

to support the transaction's solidity. A single example

looks into providing a real-time electronic funds

transfer system for credit unions, stressing that

precise and appropriate approval of transactions

requires the nodes to agree on the transactions' states

(Gill, 2018). Where financial transactions are

concerned, it is important to ensure that each credit

and debit operation is properly synchronized in all

replicas. Content, scope, and task consistency remove

double spending or the variance of account balances,

enhancing one's confidence and system clarity. In

addition to financial transformation, consensus also

transforms system performance. Adding the

communication layer may intuitively hurt system

throughput. Consensus makes updates more efficient

because later rollbacks, management, and conflict

resolution become unnecessary (Zhang et al., 2018).

When every node performs the same sequence of

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 397

updates concurrently, there is less overhead to worry

about inconsistencies, retries, or being brought in

manually. In summary, consensus-based systems can

be stable, highly fault-tolerant, and provide a reliable

base for mission and real-time data services.

Figure 2 : Significance of Consensus in promoting

Data Integrity

2.3. Asynchronous Environments and Distributed

Complexity

In most realistic applications, no global clock exists,

and event occurrences cannot be synchronized with a

global time reference. Each node performs

computations independently, and message

occurrences follow a different pace, making the

scheduling plan arbitrary. These characteristics

introduce additional complexities, which include

partial failure, varying network delays, and message

loss (Oki & Liskov, 1988).

One of the most significant challenges inherent to

asynchronous systems is the issue of network

partitions, meaning a subset of nodes becomes

disconnected from the rest of the cluster for some

time. In such partitions, some nodes may carry on

serving requests in one segment while other nodes

process requests in an altogether different segment,

and there will be two different perspectives of the

system's state. Decision processes of consensus

protocols employ safeguards, more often quorum-

based, to ensure that the system only accepts changes

after most nodes are reachable. This mechanism

prevents the creation of these diverging states that

would otherwise need to be brought to the same state

when the network returns online. Furthermore, the

lack of a coherent operational environment where

everything is in harmony puts much pressure on the

consensus algorithm to cleanly address all failure

conditions. Consensus algorithms have to be designed

to either identify when such faults occur or at least

tolerate such faults while not negating the overall

cooperative synchronization that the protocol is

tasked with preserving. (Almeida et al., 2019)

2.4. Relationship to Consistency Models

Distributed systems commonly adopt one of two

broad categories of consistency models: strong

consistency and eventual consistency. High

consistency requires all nodes to retrieve the same

data concurrently and makes it possible for any

change to be reflected by all clients in real time. At

the same time, eventual consistency is when replicas

can be inconsistent, but they will become consistent

again in case there are no new updates (Cristian,

1991).

Consensus algorithms generally are stronger towards

providing a strong consistency factor. Such a

configuration means that every update must be

ratified by a quorum of nodes, ensuring that when an

update is complete, all the nodes that are not faulty

would include that update in their work. This can,

however, lead to latency, particularly in high-traffic

networks. In contrast, systems designed for

partitioned data prefer asynchronous replication and

conflict resolution schemes while sacrificing

consistency to minimize time to achieve it. However,

it is essential to mention that consensus is still

relevant even when the dependent system primarily

focuses on eventuality (Kraft, 2016). Some such

systems frequently utilize consensus to manage vital

system metadata or provide the last word for

decisions that clearly must include consistency. For

instance, membership changes, schema updates, or

the primary node election mostly require strong

consensus algorithms. This way, they keep the

fundamental design paradigm that some operations

must be acknowledged synchronously across the

network to avoid a partial or inconsistent state.

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 398

3. Key Algorithms for Achieving Consensus in

Distributed Systems

Ensure that the state is an essential prerequisite in an

asynchronous environment, where nodes

send/receive messages to other nodes and must have a

common state. For this challenge, consensus

algorithms have provisions regarding protocols

through which nodes must agree on the protocol's

result despite network latency, nodes' failure, or

concurrent occurrence.

3.1. Paxos Algorithm

Historical Context and Core Principles

Paxos is a basic consensus algorithm expected to

work correctly in systems where nodes can fail or

lose messages. While multiple Paxos exist, it is

described as a method for guaranteeing that

distributed processes may choose a single value at a

time. The growth of this design was borne out by the

general movement to have systems that can undergo

partial failure while simultaneously delivering

accurate results (Schneider, 1990). Paxos can

maintain data coherence in several failures by

regulating communication between nodes.

At its core, Paxos categorizes nodes into various

logical types. Among these, proposers are required to

collect client input and propose the values used for

the entire system. Invited voters select whether a

proposal can be chosen, and learners only witness the

result. The protocol can tolerate the absence or crash

of some proportion of nodes when a predefined

number of nodes called a quorum stays functional.

Such construction is done so that only a single node

cannot prolong the entire work forever.

Figure 3 : An Overview of Paxos Consensus

Algorithm

Phases of Paxos

Standard Paxos is often defined with two main stages,

but there can be more defined in certain

implementations for performance improvement. In

the preparation phase, a proposer chooses a proposal

number and asks other acceptors not to accept

proposals with less number. If the acceptors reply

affirmatively, the proposer proceeds to the accept

phase, where a single value accompanied by the

highest proposal number is sent to the acceptors for

acceptance (Vukolić, 2012). Instead, once a quorum

of acceptors accepts the proposal, the value is picked,

and the result is saved. All of them are closely

interconnected and require marked synchronization,

thus excluding the possibility of two proposals being

approved if they are in the same stage.

Quorum-based voting is basic to Paxos. For any two

successful proposals, they will have to be supported

by more than fifty percent of the acceptors in

question. This acceptor guarantees integrity because

it does not allow multiple different values for the

same instance. This overlapping property ensures the

system does not reach different results even when

nodes have crumbled or messages are received

incorrectly.

Strengths and Weaknesses

This zero-communication protocol Paxos is famous

for demonstrating the correct result given crash

failures of processes and message delays. It sustains

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 399

safety—resulting in two different values never being

selected—over a broad range of operating contexts.

Furthermore, once a value has been decided, correct

nodes are not likely to switch to an earlier or a

different version. This robust behavior helps us

understand why many subsequent algorithms are

based on Paxos. Nevertheless, implementation of

Paxos could be tiresome because the protocol requires

the exchange of many messages for each decision that

is arrived at (Sheehy, 2015). For example, when many

nodes contain the proposal of values, there could be

competition, thus reducing the system's throughput.

Also, Paxos cannot cope with Byzantine failures

inherently because it is designed for crash-tolerant

systems.

3.2. Raft Consensus Protocol

Motivation and Human-Readability

Paxos got the concept of fault-tolerant consensus, but

the developers frequently faced difficulties correctly

interpreting and implementing its state

transformation. Their solution was Raft, which made

it easier to reason about fasting consensus into

subproblems like leader election, log replication, and

safety (Chandra et al., 2007). This kind of partitioning

makes each step clear, considering that engineers

may want to deal with a single step based on either

error checking or performance enhancement.

It attributes most of this to the existence of a central,

strong leader who coordinates and writes for Raft.

This leader takes new client updates, adds them to its

log, and disseminates them to other nodes. While the

leader may fail, a brief election process, which will

enable another node to take the position, is healthy.

That is why such direct leadership structures can be

simpler to comprehend than more distributed ones in

the conventional Paxos modifications.

Figure 4 : An Example of Raft Protoco

Leader Election and Log Replication

Leader election in Raft follows what is known as a

candidacy-based protocol. When the system is started,

or if a follower identifies that the present leader is

inactive, it assumes the candidacy. It then actively

seeks a vote from other nodes, a majority vote. A

term-based mechanic ensures that only the candidate

possessing the latest and most comprehensive log

gains victory and becomes a leader. Once elected, the

role of the elected leader, is to confirm client

commands, record them in a log entry, and broadcast

them to the followers.

Log replication means several committed operations

are visible to all the nodes in the same order. These

are used in response to Followers who receive

AppendEntries messages that contain new log entries

(Copeland & Zhong, 2016). When followers

syndicate these entries locally, they check back to

ensure the processes are completed successfully. The

leader acknowledges these acknowledgments. When

a certain level of commitment is achieved, the

landmark is considered committed, making the

operation seen by the entire system. If a leader node

cannot operate due to network problems or has

crashed, electing a new leader node is very fast,

hence less service downtime.

Use Cases and Popular Implementations

Because Raft is simple and highly reliable, many

production systems utilize it. Simple to understand

but with a large impact on CS core infrastructural

services, such as file storage managers or key-value

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 400

stores, Raft was designed to ensure consistency. Since

all writes go through a single authoritative node,

dealing with issues of versioning, locking, and

handling concurrent operations becomes easier. Raft's

main drafts pass every main process as a separate

module that can be tested independently: the election

process or replication (Beard et al., 2015).

Raft is particularly used in the domain of cluster

coordination and metadata management. For example,

distributed container orchestration platforms rely on

Raft for node membership and scheduling updates.

The centralized leadership model offers desirable

predictability in areas that must be given instructions

or switched quickly. However, many users hissing

about when write traffic is extremely high, and

centralized control becomes a bottleneck when there

is one big leader.

3.3. Byzantine Fault Tolerance (BFT)

Understanding Byzantine Failures

In some cases, nodes are not only capable of crashing

or running slow, but they can also be malicious and

behave erratically. Such scenarios are described as

possessing byzantine characteristics. Solving these

issues often involves processes that are

understandable despite the fact that some of the

nodes are cheating. While crash-tolerant models

consider that failed nodes cease operation

permanently, Byzantine-tolerant models expand the

scale to deliberate violations during execution

(Brewer, 2012).

The presence of malicious behavior requires extra

steps of message exchange to establish entity integrity

and authenticity of every proposed action. This

involves appropriately checking and authenticating

the messages, verifying the signature of the data, and

checking the answers from different nodes. Each

layer adds additional protection from attempts to

input incorrect or inconsistent information into the

system.

Figure 5 : Practical Byzantine Fault Tolerance

Practical Approaches to BFT

To maintain the service correctly, several versions of

Byzantine Fault Tolerance algorithms are used where

some of the nodes are adversarial. Most BFT systems

use several rounds of communication and expect

honest nodes to confirm that the received message is

the same as in the entire network. These repeated

verifications permit the identification of the

dishonest parties, although at the expense of much

more strengthened needed bandwidth.

BFT consensus protocols are usually expected to work

fine if the number of bad or at least compromised

nodes is less than the set value (Yin et al., 2018). For

instance, some of them stipulate that at least two-

thirds of the nodes in the system must be correct to

ensure safety. The assumption is that cooperating

antagonists cannot make decisions regarding the

network. This threshold-based model guarantees that

even under sabotage or misrepresentation, the value

of data is finalized.

Implementations in Modern Settings

Although Byzantine-tolerant protocols were

primarily hypothetical in the past, distributed ledger

technologies have become the focus of practical

engineering. Many BFT-like in-base platforms

implement the BFblockchain-based to order new

blocks of transactions without needing a central

controller. For example, structures employing proof-

of-authority, proof of SIMD, or utilizing several pre-

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 401

vetted validators participate in BFT operations to

check blocks and hinder twofold costs.

Based on the literature review, applications that work

at a mass scale and manage sensitive financial

information or inter-organizational transactions may

also consider BFT solutions when non-trusting

relationships are observed between organizations.

However, these algorithms generally are associated

with significantly higher costs measured in terms of

computational loads and messages compared to what

crash-tolerant protocols engage in. This is a tradeoff

that designers must make between more complexity

and the need for protection against malicious threats.

3.4. Two-Phase Commit (2PC) and Three-Phase

Commit (3PC)

2PC Mechanics

Two-phase Commit (2PC) has always been relevant

in realizing atomic transactions in the distributed

database. It uses a medium known as a coordinator to

interface with several parties (or resource managers)

to guarantee that all participate in a transaction, or

none of them do. The coordinator first conducts a

voting stage: every participant has an opportunity to

show that they can commit. The coordinator will

give a commit command if all signals are green.

However, the coordinator issues an abort if

participants cannot turn up. Such tight coupling

coordinates make them consistent, including

blocking vulnerability if the coordinator waits for the

votes and crashes. The participant waits, wondering

whether to commit or abort (King et al., 2011)

Nevertheless, 2PC has survived all these pitfalls

owing to issues of simplicity and conformity to the

atomic transaction semantics. It easily fits into SQL-

oriented applications and is easy to discuss with

teams that know about database transactions.

However, current practitioners adopt timeouts or the

leader-election process to reduce the inherent

blocking problem of 2PC, which is caused by a

coordinator-centric architecture.

Figure 6 : Two-phase Commit Protocol for

Distributed Transactions

3PC Improvements

3PC is similar to the 2PC protocol but adds a step

meant to indicate to the participants what the

coordinator is about to do before committing. This

additional phase, a form of pre-commit, also enables

the participants to track the coordinator's latest

decisions more closely. If the coordinator uses the

commit command to inform the participants that the

transaction will go through and something happens

before the coordinator sends the last command, but

after the participants receive a promise of a

commitment, the participants will reason that the

transaction will go through. Instead, if no

communication occurs, they can safely revert to the

timeout period if it is provided for.

It greatly reduces the time participants spend in an

uncertain state to minimize long hangs. However,

3PC's additional round of communication incurs

overhead in systems that the network may already

bind. Some partition situations can still result in an

orphaned state if a message is lost or delayed,

although 3PC is generally more efficient than 2PC in

a moderately reliable environment.

2PC and 3PC both concentrate on achieving the goal

of atomicity across multiple data stores. This focus is

relevant in companies and financial services,

particularly where partial trading is impossible. For

example, when one database transfers money, and

the other does not, the system becomes out of sync.

These commit protocols prevent such differences

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 402

since all commits must be performed uniformly, or

none can be uniformly rolled back. Practical versions

of 2PC and 3PC are widely used in transactional

managers, message queues, and software components

where updates must be coordinated across multiple

entry points (Correia, 2010). They are used less when

the highest scalability is required. Blocking is a non-

option. Most modern-day systems that call for

horizontal scaling use other consensus algorithms

that offer better Throughput and fault recovery.

3.5. Gossip Protocols and Epidemic Algorithms

Overview of Gossip Mechanisms

As opposed to the strictly ordered set of messages

characteristic of strongly coordinated algorithms,

gossip protocols base their action on repeated,

random message exchanges among nodes. These

methods, also known as epidemic algorithms, are

modeled after how gossip spreads within a social

network. Each node in a round chooses the partner

randomly and transmits any changes in the update or

state. Thus, this repeated reference forces the

network toward a state of global convergence, as has

(Corbett et al., 2012).

This approach is particularly advantageous in large-

scale environments, given that it is decentralized.

What can be said is that there is no master or central

node: each node is independent and works on its own,

thus making the system highly fault-tolerant. Further,

gossip protocols manage the join and leave activities

efficiently, and escalating is not required since the

gossip protocol adapts to new changes when nodes

are added or removed. The quintessential issue is the

make-up of convergence, where criticism is towards

the eventual outcome. Although there will always be

a tendency for the view of the different nodes in the

network to become identical in the long run, the

time and manner of synchronization could be highly

random (Nyati, 2018).

Epidemic Models in Distributed Systems

Gossip-based algorithms can be classified as anti-

entropy, where nodes try to synchronize data,

comparing their states constantly; rumor-mongering,

where updates quickly spread at the beginning but

must slow down once all nodes know the ‘rumor’;

and dissemination-based models, which aim to

optimize broadcast. Each approach represents

different design preferences that allow prioritizing a

fast speed, less traffic, or both.

In the current practice, gossip messages are applied

for membership detection, load balancing, and the

exchange of temporal data. The systems that do not

need exact and urgent synchronization, such as

heartbeat checks or approximate node latencies, use

gossip. These can also serve as the base to construct

more rigid guarantees because, while they afford the

network a loose semblance of awareness, extra

consensus methodologies can easily be overlaid on

top of them.

Table 1 : Comparison of Key Consensus Approaches

in Distributed Systems

Algorithm/Pr

otocol
Key Idea Strengths

Weaknesse

s

Typical

Use Cases

Paxos

Achieves

crash-

fault-

tolerant

consensu

s through

proposer

s,

acceptors

, and

learners

- Strong

safety

guarantee

s -

Tolerates

node

crashes -

Basis for

many

later

protocols

- Complex

to

implement

correctly -

High

message

overhead -

Not

Byzantine-

fault

tolerant

-

Distribute

d

databases

-

Replicate

d state

machines

Raft

Simplifie

s

consensu

s via a

leader-

based

mechanis

m split

into

- Easier to

understan

d and

implemen

t - Clearly

defined

roles -

Fast

leader

- Single

leader can

become a

bottleneck

-

Throughpu

t can be

limited

under high

- Cluster

coordinati

on -

Metadata

managem

ent (e.g.,

key-value

stores)

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 403

Algorithm/Pr

otocol
Key Idea Strengths

Weaknesse

s

Typical

Use Cases

subprobl

ems

(leader

election,

log

replicatio

n, safety)

election write loads

BFT

(Byzantine

Fault

Tolerance)

Handles

malicious

or

arbitrary

node

behavior

by

requiring

extra

validatio

n steps

-

Tolerates

a fraction

of

malicious

(Byzantin

e) nodes -

Ensures

correctne

ss under

attack

- Higher

communic

ation cost -

More

complex to

design and

implement

-

Blockchai

n systems

-

Financial

or inter-

organizati

onal

systems

2PC / 3PC

Coordina

te atomic

transacti

ons

among

participa

nts via a

coordina

tor (two

or three

phases)

- Ensures

all-or-

nothing

commits -

Well-

known,

simple to

explain -

Good for

atomic

DB

transactio

ns

- Potential

blocking if

coordinato

r fails -

3PC has

extra

overhead -

Not ideal

for high

scalability

-

Distribute

d

databases

-

Transacti

on

managers

- Message

queues

Gossip

Protocols

(Epidemic)

Nodes

periodica

lly and

randoml

y

exchange

data/upd

ates,

convergi

ng over

time

-

Decentral

ized and

fault-

tolerant -

Scales

easily -

Handles

node

joins/leav

es

-

Eventually

consistent

(weaker

consistenc

y

guarantees

) -

Convergen

ce speed

can vary

-

Members

hip

detection

- Load

balancing

- Systems

requiring

partial or

eventual

sync

Algorithm/Pr

otocol
Key Idea Strengths

Weaknesse

s

Typical

Use Cases

gracefully

Leaderless

Consensus

Any

node can

accept

client

writes/re

ad

requests,

with a

quorum

required

for

commits

-

Eliminate

s single-

leader

bottlenec

k -

Improves

availabilit

y - Good

in geo-

distribute

d setups

- Must

resolve

conflicts

(e.g.,

version

vectors) -

High

overhead

for each

write

(multiple

replica

contacts)

-

Distribute

d key-

value

stores -

Real-time

analytics -

Systems

needing

minimal

downtime

3.6. Leaderless Consensus Approaches

Introduction to Leaderless Protocols

Leaderless consensus is meant to eliminate possible

problems with having one leader carry out updates

on the network. In such a system, any node can

accept client requests and also manage the update

among the replicas. A common requirement is that a

fixed number of nodes should confirm that an update

is made before it is considered committed. This

design improves availability and may be used to

lower latency when nodes are spread throughout the

Global Area (Schneider, 1990).

When there are no leaders, write operations are

federated, and read operations frequently verify the

most recent copy. The most important principle here

is that a majority intersection across read and write

quorums will be consistent. Thus, if read requests

query enough replicas, and writes must be approved

by enough nodes, there is a non-witnessing replica

with the other replica’s latest update in its log.

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 404

Figure 7 : Leaderless Consensus for Blockchains

Mechanics and Trade-offs

In a typical leaderless write, the initiating node

communicates with a set of replicas, sometimes

referred to as a write quorum. The client is informed

that the operation is completed when enough replicas

return a positive response. In reads, the client

contacts a read quorum of replicas to pull data from

the current version. This approach guarantees strong

consistency when the read-and-write quorums are

chosen aptly. However, the coordination overhead

can be high because each writer must communicate

with multiple replicas.

Conflict resolution is also an important issue that can

be considered nontrivial. Parallel writes by two

clients may lead to a situation where, d, the data

reaches different subsets of replica during writing,

and versioning occurs. Some leaderless systems

implement vector clocks, version vectors, or other

merging strategies to join the conflictive updates at

the end. The degree of these merges varies according

to whether the application can afford to be

occasionally out of synch. Therefore, although the

leaderless design may generally benefit large-scale

read-intensive workloads, it will necessarily lead to a

problem coordinating write conflicts.

However, leaderless architectures continue to

represent a viable solution in environments where

minimizing the risk of single points of failure and

maximizing the availability of services is critical. The

nodes are managed simply because the system does

not prioritize any single node head. For the system to

still work, it only requires a quorum of multiple

replicas, even when other replicas go down. Such

robustness makes leaderless consensus a favorite in

distributed key-value stores, real-time analytics

platforms, and distributed applications with stringent

minimum downtime.

4. Challenges in Achieving Consensus for Data

Consistency

Reaching an agreement in distributed systems is

complex, especially when data must be kept coherent

when the environment is unfavorable.

Communication delay, network splitting, measures to

deal with failures, vulnerabilities of the leader nodes,

and malice pose challenges to designers of consensus

protocols. These problems require systematic

planning that considers factors such as black swans

and system failures. The subsequent sections discuss

how each factor affects the consensus and cite the

current literature highlighting strategies for

addressing the issues.

4.1. Network Partitions and Delays

There exists a problem of network partition and

communication delay that affects the reliability of

the consensus. Whenever nodes fail to communicate

with other nodes or suffer higher or lower latency

rates, one node will likely have disparate views from

another node about the system's state. Such

discrepancies can result in a split-brain situation,

where one subset of the nodes proposes one update

while another subset of the nodes proposes an update

of a different value for the record. This risk is higher

where the organization is spread geographically, and

communication is deferred (Lamport, 1998). Issues

that are yet to be solved prevent some of the nodes

from updating their database, meaning they might be

working with old information when the connection

is made; this increases the chances of inconsistency.

Most mitigation mechanisms employed within

organizations base their voting systems on the

quorum, so the decision must be unanimous. By

requiring more than half the nodes to vote in favor of

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 405

an amending update, the system eliminates the

chances of a small partition pushing the consensus to

a wrong state of affairs (Gilbert & Lynch, 2002). This

reliance on quorums implies that no matter how any

part of the total system becomes isolated for a while,

the total system will not make incompatible changes.

However, strict quorum demands often have

problems because nodes in minority partitions cannot

proceed until reconnection or restructuring occurs.

Designers, therefore, can mitigate the aspect of

consistency with the need to keep operations running

in environments that make frequent responses

paramount.

4.2. The CAP Theorem

The CAP theorem states that a distributed system can

meet only two properties: consistency, availability,

and partition tolerance (Bernstein & Newcomer,

2009). Concretely, after a network partition, a system

has only two options: to limit access or to accept

inconsistency. As with most consensus protocols,

they lean more towards consistency and partition

tolerance, which means strict state syncing at the

expense of availability in partitions.

This tradeoff shows that many consensus algorithms

demand a coherent view worldwide before making

updates. In the case of partition, nodes may not be

able to participate in or validate new data transitions.

These measures, while maintaining the correctness of

the transactions, also prolong the time they require.

Some designers compromise for availability in

exchange for high consistency, as in GPS systems,

where data must be accurate and not fluctuate. This

position is consistent with the fact that some domains

like financial services or high-integrity storehouses

prefer availability occasionally for a short time to be

better than contradicting systems. Common with

other contexts, correctness can then be seen as

crucial in creating the trust required for

complementary services that depend on standard

results (Kumar, 2019).

4.3. Fault Tolerance in Node Failures

Faithful nodes are almost always inevitable in a large,

widespread system contact that multiple machines

and abrupt hardware halts can make. They must thus

also include fault tolerance for both fail-stop and

crash-failure situations (Castro and Liskov, 1999).

When a node is not functioning properly, it should

not compromise the functioning of the entire system.

Instead, the rest of the nodes should be able to detect

the failure, appreciate changes in responsibilities, and

be consistent.

Figure 8 : Fault Tolerance in Distributed System

There are two basic processes for this resilience—the

first concerns national infrastructure. One is

replication, whereby vital data is copied elsewhere,

such as nodes. If one node falls, others will be

available to take the load. The second method is a

strong failure detection method where all suspect

nodes are automatically removed from the quorum

decision. This prompt exclusion eliminates indefinite

blocking where a system waits for the failed node to

respond endlessly. Despite this, consensus algorithms

can keep going as long as most of the remaining

functioning; qualified nodes can continue an activity

(Tanenbaum & van Steen, 2007). Despite replication

and detection strategies requiring additional

overhead, such costs are considered reasonable in

critical applications requiring the system always to be

available and preserve data integrity.

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 406

4.4. Leader Failures and Elections

It is precisely why leader-based protocols like many

Raft or Paxos variations need a stable leader to

manage log replication and order client request

acceptance. This central role, however, means that

the leader's failure is a particularly disruptive event.

Whenever a leader node disappears, instability occurs

because the followers have to decide whether it is

permanent, and the election of a new leader is

required (Ongaro & Ousterhout, 2014). During this

interval, old writes may lock while the system waits

for a cluster to select the new successor.

Procedures of conduct during elections assist in

reducing disruption by providing that if the leader

fails, one follower should be promoted after gaining a

sufficient vote. This approach establishes the

command structure and enables the cluster to return

to operation normalcy quickly. However, frequent

changes in the leader can lead to intermitting

instabilities, especially in networks with random,

occasional high latency or small failures. Designers

consequentially have to set election timeouts and

thresholds cautiously when aiming at high

responsiveness while avoiding the simultaneous

election of multiple leaders. Moreover, a good leader

election strategy complements the replication

algorithms so that once a new leader takes over the

leadership role, he or she receives the latest entries in

the log, thus preserving the distributed data.

The availability during transition is a function that

must be meticulously planned for. However, the

closer to real-time that a system checks the status of a

leader, the more time can be wasted waiting in line.

On the other hand, if it is involved in top

management leadership changes too often, then the

cluster is likely to experience proliferating

reconfigurations. Both affect the total throughput and

user-visible reliability, pulling consensus architects to

adjust re-election mechanisms on the operating

modalities.

4.5. Malicious Actors and Security Risks

Besides those friendly failures, the presence of some

hostile participants extends another factor that might

complicate consensus issues. Systems designed for an

open or consortium can be face nodes that may act

adversarially, produce and propagate false updates,

delete messages, or collude with others to deceive the

other nodes (Lamport, 1998). Under these

circumstances, basic trust assumptions are violated,

thus making it very challenging, if not impossible, to

maintain a single data state. Additional data integrity

protection mechanisms that face stringent

cryptographic strength tests include digital signatures,

hash-based message authentication, and secure node

identities (Bernstein & Newcomer, 2009). These

techniques ensure that each transaction or message

can be substantiated before acceptance. Most public

networks use consensus processes that imply the

existence of hostile nodes and make provisions for

them (Castro & Liskov, 1999). Private networks can

also be more selective and less open, allowing only its

members and using very strict monitoring to

minimize the number of possible attacks. However,

even in private systems, the algorithms must address

internal threats arising from compromised nodes.

Analysis of threats emanates from the necessity to

establish uniform and appropriate strategies in the

private and public sectors. Designers must decide

what types of behavior are thinkable of the attackers,

regardless of using stolen credentials, having formed

collusion groups, or containing targeted denial-of-

service (Barnickel, 2013). By combining appropriate

security features with incurred consensus algorithms,

such systems can maintain data integrity in the face

of adversarial activity. Although it is impossible to

guarantee absolute security, research offers

progressive developments in cryptography, fault

tolerance, and node integrity to increase the

dependability of contemporary distributed networks.

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 407

5. Practical Applications of Consensus in Distributed

Systems

A consensus in distributed systems is essential and

provides data correctness, availability, and resilience

in complex geographical environments. The idea of

consensus derives from the ability to integrate

disparate aspects of a problem into a single view of

the data. When looking into five key areas of

application—extensive global databases, distributed

real-time systems, global messaging, mood swings,

and smart microservices—the consensus algorithm is

evident in making the system admit failures,

coordinate important procedures, and allow for

scaling. The consensus prevents a situation where

transaction systems or cluster tools have different

states and could cause split-brain or data corruption.

5.1. Distributed Databases

Regarding large-scale data replication, databases use

consensus protocols to control information dis-

synchronization across distant sites. One good real-

world example is Google Spanner, which uses

synchronized clocks in combinatiowithwith the

consensus model to generate externally consistent

transact, challenging the traditional two-phase-phase

commit approach (Corbett et al., 2012). This ensures

that updates are applied within a well-defined order

and do not produce some abnormality during

network delays. It also uses replication techniques to

maintain availability, even when some data centers

are out of reach. In both scenarios, most nodes must

vote for a given commit before it can be considered

the definitive state to settle, eliminating splits. Such a

system can achieve strong consistency,

straightforward disaster recovery, and fast multi-

region queries when following the consensus

protocol. By adopting these databases, organizations

eliminate operational complexity and globally

experience predictable low latency performance. In

addition, the consensus-driven synchronization

approach makes it possible to prevent as many

transaction anomalies as possible when dealing with

transient nodes' failures.

5.2. Blockchain Networks

Blockchains are distributed ledgers that presuppose

consensus to sustain a universally authoritative

record of operations. Bitcoin mining utilizes the

Proof-of-Work that forces miners to dedicate

computational power to produce valid blocks of

transactions (Nakamoto, 2008). This design dissuades

the bad actors from altering the historical data

because it is very costly once a block is recorded. In

later platforms, voting power is tied to the ownership

of coins in the Proof-of-Stake to cut out energy

consumption characterized by mining. Although the

models utilize different incentives, they seize

decentralized consensus to ensure all participants

trust the correctness of the ledger. This trust stems

from the fact that it cannot be done unilaterally

without coordinating with a larger part of the

network. Therefore, blockchains provide high

security and testify to the impossibility of making

changes without consent from the parties involved in

shared data systems decentralized by their essence.

These properties form the basis of the basic

permissionless distributed applications layer.

5.3. Configuration Management and Service

Discovery

Consensus is essential in managing dynamic

configurations and services and their end-points

within vast and constantly changing clusters. Various

software such as Etcd and Consul use the Raft to

replicate key-value data, meaning every node can

possess similar configuration data (Ongaro et al.,

2014). IT administrators can easily change the

system's server-side settings from the administration

center, ensuring it will cascade through all other

connected platforms regardless of partial network

breakdown. By making a new configuration obtain a

majority, these systems keep bad information from

circulating, decreasing the potential for application

misconfiguration. In addition, the consensus is also

for the advantage of service discovery as it has a

centralized repository of finding components. When

workloads move to different target hosts, consensus

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 408

allows for the fact that new services that have been

registered or services that have been deleted are

correctly displayed. In this case, automation reduces

the chance of extending downtimes and consistently

provides zero-friction, perfectly repeatable

deployments regardless of infrastructure fluctuations.

This methodology also raises the role of consensus in

cluster management.

Table 2 : Core Applications of Consensus in

Distributed Systems

Domain
Role of

Consensus
Examples Key Benefits

Distribute

d

Databases

- Ensures

strong

consistency

across distant

sites

- Orders

updates to

prevent

transaction

anomalies

and split-

brain issues

Google

Spanner

- Disaster

recovery and

simplified

operations

- Predictable

low-latency

performance

- Strong

consistency

Blockchai

n

Networks

- Maintains a

universally

authoritative

ledger

- Prevents

unilateral

modification

through

Proof-of-

Work or

Proof-of-

Stake

Bitcoin

(Proof-of-

Work),

Ethereum/ot

hers (PoS)

- Decentralized

trust and high

security

- Immutability

and resistance

to tampering

- Universal

agreement on

the ledger

Configura

tion

Managem

ent &

Service

Discovery

- Replicates

key-value

data for

consistent

configuration

- Ensures

correct

service

discovery and

Etcd, Consul

- Single source

of truth for

configurations

- Reduced risk

of

misconfiguratio

n

- Automated

service

Domain
Role of

Consensus
Examples Key Benefits

updates registration/disc

overy

Leader

Election

in

Distribute

d Clusters

- Selects a

single

coordinator

for

workload/res

ource

management

- Prevents

conflicting

directives or

split-brain

scenarios

Apache

Kafka

(controller),

Hadoop

Resource

Manager

- Clear and

consistent

leadership

transitions

- High

availability

through quick

failovers

- Streamlined

replication and

updates

Microserv

ices

Orchestra

tion

- Records and

shares cluster

state (pods,

scaling,

network)

- Automates

failover and

rolling

upgrades

Kubernetes

- High

availability and

dynamic load

balancing

- Automated

resiliency in

transient

infrastructures

- Standardized

deployments

5.4. Leader Election in Distributed Clusters

Many distributed systems are organized so that one

particular node is responsible for the coordination

problems, including decision-making. Apache Kafka,

for example, elects a single broker as the controller to

assign partitions and track cluster metadata (Kreps et

al., 2011). If this leader meets a failure, there are

general procedures for choosing the next controller

to prevent the interruption of service. Similarly,

Hadoop's resource manager must rely on consensus to

efficiently distribute workloads while preventing

enemy masters from issuing contradicting directives.

To ensure that the election of Leadership occurs and

is not a result of the split-brain situation, these

platforms mandate a quorum-based change in

Leadership. Secondly, clear Leadership enhances

replication procedures since the particular node in

charge can easily and quickly update the follower's

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 409

nodes. Therefore, correct Leadership by choosing by

consensus when managed effectively contributes to

reasonable resource management, avoiding

redundancy, and ensuring constant availability. The

present design improves cluster dynamics and ease of

repair and maintenance.

5.5. Microservices Orchestration

The container-based platforms are based on

consensus to address rapidly varying loads in

microservices settings. These state changes are

recorded through distributed key-value stores

regarding cluster state in Kubernetes, including pod

Deployments, Scale, and Network Configurations. As

it will be seen, through consensus, the orchestrator

guarantees that information is updated and shared

correctly, even if some nodes are offline or have been

restarted (Dragoni et al., 2017). This centralized

perspective makes it easy to apply rolling upgrades

while simultaneously enabling dynamic load

balancing at all times because the system is always

aware of available resources. Regarding node failure,

although consensus can provide a quick solution for

rescheduling decisions, it does not need human input.

Therefore, the container orchestration frameworks

can stand high availability and guaranteed service

levels, given that the infrastructure underneath is

inherently transient. These capabilities show how

consensus helps achieve automated resiliency and

standardized management of new and ongoing

microservices deployments. As such, administrators

obtain the means to coordinate various containerized

applications.

Consensus is the binding theme for these five

domains, indicating how distributed systems

synchronize, maintain data consistency, or recover

from failure (Kemme et al., 2014). Thus, smooth

functioning is ensured, which means that users

consistently perceive various functions regardless of

the changes in the environment of modern

decentralized infrastructures. Such an outcome raises

the issue of the sustainability of consensus

environments.

6. Technological Best Practices for Reaching

Consensus on Data

Achieving reliable consensus in the asynchronous

distributed environment depends on the use of sound

best practices that seek to overcome the challenges of

data replication, coordination, and failures. Scientists

have realized for a long time that the nodes'

agreement is essential to keeping reliable data in

different network conditions (Fischer et al., 1985;

Spivak & Johnson, 1991). The following is a set of

guidelines focusing on how systems can enhance

consensus protocols, given the adverse effects of

unpredictable communication.

6.1 Quorum-Based Decision Making

Quorum sensing continues to be a fundamental

practice in deciding on consensus, where most nodes

must vote for the update before it is deemed valid. As

a result, systems use strict majority votes to avoid

situations where two disconnected sets of nodes may

have different decisions. It ensures that if a few

cluster members are occasionally out of service or

slow in responding, the cluster does not accept what

Birman has referred to as the mutually conflicting

states. However, quorum consensus is quite

straightforward and requires precise planning for

node placement to have a minimum latency and a

high probability that most nodes would be available.

Figure 9 : Techniques for Reaching Consensus

6.2 Timeouts and Retries

Interruption and requeuing are fundamental building

blocks of consensus protocols for asynchronous

systems that can endure arbitrary pauses. By putting

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 410

clearly defined timeout values, systems do not waste

time waiting for responses that may never come

while at the same time preventing the prolongation

of decisions waiting for responses that may never be

forthcoming (Chandy & Lamport, 1985). Once the

timeout is set in a peer, a retry is initiated to start a

new attempt to collect the needed votes or select the

new leader if necessary. There is, therefore, a need to

configure timeouts properly such that they are not

very small since this will trigger false alarms

repeatedly, nor should they be very long since this

will hamper the overall response time of the system.

6.3 Version Control and Conflict Resolution

In large distributed systems, version control systems

are used to track the current status of copies of data

that can be changed concurrently at different sites.

Coordination mechanisms, including those based on

Conflict-Free Replicated Data Types (CRDTs), let the

nodes combine different changes made to a given

version without finding out about them in advance

(Oki & Liskov, 1988). Since operations are recorded

as deltas, and each delta is associated with a particular

time stamp or vector clock, it is possible to integrate

conflicts that evolve from concurrent write activity

systematically. This way, data integrity is ensured

without necessarily reaching a halt of all nodes

during management conflict resolution phases.

6.4 Performance Tuning and Scalability

In a Hadoop ecosystem and the distributed

environment, any consensus-based system must

consider performance tuning to control the system's

throughput and latency rates as nodes increase.

Tuning the associated factors like replication factors,

batching time and intervals, and network-bound

protocols may significantly enhance overall

performance (Chandra, Griesemer & Redstone, 2007).

Regarding horizontal scaling approaches, where new

nodes are added to the existing cluster and become

part of it, they may be particularly effective in load

balancing. However, each new node also adds

communication overhead and synchronization,

making designing protocols for group membership

more complex. When fine-tuned, performance

optimizations guarantee that a system arises to the

occasion and delivers according to service-level

agreements.

6.5 Monitoring, Observability, and Alerting

Maintaining observability is important in keeping the

consensus layer stable and ensuring that problems do

not become enormous before they can be addressed.

Commit latency, node uptimes, and log replication

metrics show the operators the system's status so that

they can recognize abnormal readings and intervene

(Lynch, 1996). This also means that it is possible to

have critical parameters set as alarms in real-time,

and as soon as the system notices degrading

performance or failing nodes, it will immediately

notify the systems administrator to localize the cause

of the problem straight away. Further, it is crucial to

log as many events as possible because reviewing

them after an incident helps identify patterns that

might indicate problems in the system's design and

that could be addressed in updates to the consensus

mechanism.

In addition, linking to detailed observability solutions

already in their planning phase promotes preventive

work over fire-fighting work. The functionalities that

make up a distributed cluster can also be used flexibly

as functionality is added or consolidated. The

increase in cluster size can be managed by the

administrators using various metrics to determine

how the consensus performance of the system is

affected. Maintaining this feedback loop leads to

knowledge-based adjustments of parameters such as

heartbeat frequencies, election timeouts, and log

compaction intervals. This is borne by the fact that

over time, the coupling between monitoring and

performance enhancements enhances the integrity of

consensus protocols by reacting faster to situations

where nodes may go off sync due to difficult

transactional loads or network fluctuations.

These technological best practices offer a strong

foundation for designing and implementing reliable

and scalable consensus mechanisms. The primary

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 411

problems of asynchronous distributed environments

include limitations of using quorum-based decision-

making and affecting system performance, choosing

well-timed timeouts, choosing and deploying

effective conflict resolution methods, and achieving

higher system availability by suitable performance

parameters and comprehensive observability. It

provides higher reliability and availability of data-

sharing architecture at scale, able to handle variable

workloads and failures. While it remains important

for academics to continue to discover new ways of

improving consensus, practitioners would greatly

benefit from the interplay between cornerstone

concepts and real-world practices (Wang et al., 2017).

It is evident that the best strategies and ways to

establish more robust distributed systems all involve

applying these time-tested measures. In this respect,

by fortifying each layer of the consensus pipeline,

organizations can ensure that they are in a position to

deliver identical experiences to the end users despite

variability in network conditions and failure modes.

This coordination of strategic ideas and the

corresponding technology forms the basis of today's

well-constructed, survivable availability architectures.

7. Evolving Trends and Future Directions

As other important areas of innovation on distributed

systems, one may mention hybrid consensus

mechanisms, layer 2 scalability solutions, serverless

edge deployments, and consortium-based consensus

models. These emerging trends are critical to the

future of consensus technologies as global networks

unfold and as more organizations build secure and

fault-tolerant infrastructures. There has been an

increasing interest in scalability and sustainability in

consensus mechanisms. (Nyati, 2018). Continuing

efforts are being made to combine the best of

traditional and contemporary algorithms and

methods to improve efficiency, flexibility, and

robustness.

7.1. Hybrid Consensus Models

Hybrid consensus models are definitions that address

newly developed solutions that possess features of

several consensus protocols. For instance, some

architectures integrate some aspects of PoS with

others of PoW while aiming at energy efficiency

without compromising security (Nakamoto, 2008).

Similarly, many scholars have investigated the use of

BFT in conjunction with the traditional replication

models to prevent infringement by destructive

participants (Castro & Liskov, 1999). Hybrid methods

are designed to combine the indicated types of

different mathematical approaches so that their

distinct methods can be used to overcome the

problems inherent to single-model consensus.

More specifically, one important advantage is related

to the option that may come in handy for the flexible

security and scalability improvement. The PoW

components put forward an assurance that

participants offer a real computational resource for an

equivalent amount of an agenda, while the PoS

components, on the other hand, lessen the energy

consumption and enable fast confirmation of the

transaction. Furthermore, the hybrid model offers

flexibility regarding applicable scenarios with

thousands of nodes in a public chain and focused

throughput in private networks with limited access.

However, continuous prototype development shows

that deploying the hybrid models can be technically

challenging since it is necessary to test whether

combined parameters create new vulnerabilities

(Lamport 1998).

Figure 10: Understanding Hybrid Consensus Models

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 412

7.2. Layer 2 Scaling Solutions for Blockchains

Layer 2 solutions work as overlying networks for the

base blockchain and provide high throughput and

low fees without exerting excessive pressure on the

base ledger. Mechanisms like payment systems and

side chains enable a transaction to take place off the

central blockchain and report the outcomes only

occasionally to the primary chain (Nakamoto et al.,

2008). One of the most widely known applications is

the Lightning Network, which enables nearly

instantaneous and low-fee micropayment for Bitcoin

based on trustless and secure channels.

The same idea has been used in other ecosystems

where sidechains provide engineers with an

additional environment for experimenting with new

features while maintaining the primary chain's

security. To guarantee consensus integrity off-chain,

cryptographic proofs, and hashed state commitments

are applied to tie sidechain information to the main

ledger (Merkle, 1988). These mechanisms mean that

no off-chain participant can easily control the

transaction history, and malicious actors can be kept

at bay. While layer 2 solutions, in particular, may

help reduce congestion and bring faster settlements,

the professionals are concerned about the need to

work on layer 2 standards to create a welcoming

integration environment across various services.

7.3. Serverless and Edge Computing

Unlike fully open and permissionless systems,

federated and consortium-based consensus models

attract a set of participants under a restricted setting.

These models are often used in enterprise settings

and are trust-assuming and governance-based, using a

shared ledger or replicated database (Gifford, 1979).

That is, membership as a participant is limited to

organizations that can be verified by the system or

are partially trusted. This can simplify the

identification of participants and optimize the

number of computations when dealing with

unbounded participant sets.

These models could be useful for enterprises sharing

data with other enterprises; the participants can more

easily accept compliance, regulatory standards, and

node requirements (Castro & Liskov, 1999). The

trade-off is that federated systems will depend on the

limited number of nodes, which may restrict the

polymorphic nature and decentralization of fully

public blockchains (Lamport, 1998). However,

numerous organizations believe that the benefits of

predictable governance, faster transactions, and

simpler consensus mechanisms outweigh the

demerits of fewer participants. This approach also

respects the new trends of privacy and confidentiality

since the federated blockchains can integrate

authorities to regulate access to the data.

Forecasting into the future, researchers assume that

consortium frameworks will develop further and

include new innovative applications, starting from

the traceability of supply chains and ending with the

management of digital identities and the acute issues

of international settlements. With the help of other

sophisticated cryptographic constructs, such as zero-

knowledge proofs, federated models promote

confidentiality while maintaining secure records of

the data being exchanged (Bernabe et al., 2019). This

strategy makes it possible for many stakeholders to

carry out their activities within a given project easily

and in the most controlled manner, a development

that aligns with the latest trends in forming industry-

specific consortia and alliances.

These changing trends explain why the distributed

consensus mechanism is uniquely positioned to

revolutionize today's systems. Hybrid models intend

to derive solutions from PoW, PoS, and BFT to

improve blockchains' structures. Layer 2 scaling

solutions reduce the number of transactions and

provide security guarantees through mechanisms off-

chain. Serverless and edge computing environments

allow for the exploration of new consensus paradigms

designed for lightweight protocols that should

efficiently operate on long-living but limited

resources. Federated and consortium models provide

stronger governance for enterprises that can define

cooperation in semi-trusted environments. While

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 413

speed, privacy, and security are increasing, such

technology will remain a focus in consensus research

as future distributed networks emerge to meet global

performance and reliability standards.

8. Case Studies and Success Stories

8.1. Real-World Implementations

Large technology corporations invest majorly in

consensus protocols to ensure reliable data states,

especially when handling large volumes of real-time

requests. When organizations extended their

operations worldwide, they discovered that a strong

layer of consensus was critical when managing

distributed transactions and ensuring no data

inconsistencies occurred. Some examples of Paxos-

like algorithms in practice are using leading e-

commerce providers' order processing systems, where

each purchase is guaranteed to be recorded, even if

individual nodes fail. However, financial service

firms have used Raft-based techniques to increase

scalability and synchronize account balances across

distributed data centers at different distances by

assuring transaction consistency irrespective of

latency.

An example of such a system is from the large-scale

cloud vendors where consensus is included within

fundamental storage subroutines. These engines rely

on quorum for writing since they inform most nodes

regarding updates before processing any record. The

approach adheres to the principles set by the original

research of state machine replication as introduced

by Lamport in 1998. Such replication schemes allow

the system operators to contend with spikes in client

traffic without compromising the quality of the

delivered service. Using consensus logic for critical

MD transactions has also helped providers ensure

SLAs that guarantee response uniformity across

globally distributed areas. Another success story is

that social media sites have applied consensus to

make consumer profile information consistent across

multiple microservices to reduce mixed updates that

would erode trust.

Similarly, Big tech companies have testified to

significant gains in application development speed if

standardized consensus platforms are employed. This

way, it is easily understandable that complexities like

the leader election and log replication, the

development teams can use what has already been

developed thanks to such libraries and focus on

defining the value proposition rather than figuring

out what mechanisms for fault tolerance would look

like. This pattern is becoming more observable in the

open-source world, where small startups pull

consensus-based data layers into container

orchestration systems. Intuitively enough, the

industry experience over time made it clear that

leveraging such protocols can minimize data

corruption incidents, therefore removing the cause of

downtime. Therefore, consensus algorithms have

evolved from concept to well-engineered primitives

for constructing fault-tolerant systems.

Another area is the development of blockchain

consortia, which has been initiated by large

enterprises and major supply chain partners using the

same shared ledger. Consistency checks on

transactions become rigged in their favor and

automated. These companies employ protocols that

fit in with the assumptions of partial synchrony to

overcome the real-life realities of the networks. The

fact that early adopters have demonstrated that

organizations who are willing to invest in specialized

teams for the implementation of consensus

complexities are rewarded with strong auditing tools

and the least double-spend problems (Belotti et al.,

2019). These deployments have been pioneered by

firms suggesting that stable consensus protocols are

applicable and go beyond financial uses, including

cross-company identity and decentralized data

markets.

8.2. Lessons Learned in Production

There are indeed some potential problems in the

consensus application in large systems. The

configuration parameters that are frequently touched

often include leader timeout and heartbeat frequency,

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 414

and it is often easy to set off leader thrashing. This

happens when continuous leadership handovers

decrease performance, which is usually associated

with network traffic. Most commentators have

highlighted the need to conduct pre-deployment

testing of the infrastructure under different traffic

intensity levels to discover parameters that allow for

the sustained selection of a leader in light of

observations captured in early consensus work by

Bracha and Toueg (1985). The thorough test cycles

give guiding engineering teams the interpretation of

adjusting the sizes of clusters and the intervals of a

heartbeat.

Another significant threat is the issue of performance

saturation with frequent reads or writes, or more

often writes. Cloud environments demonstrate

latency fluctuations, and these become an

educational tool for ordering data partitions and

caching sub-layers to minimize the load on the

consensus layer. In some systems prone to ultra-high

levels of throughput, employing some form of

replication is inevitable. The scholarly studies of

distributed processes (Gilbert & Lynch, 2002) show

that partition tolerance needs to consider trade-offs

between consistency and tolerable time on pause.

Those operators who include load-balancing

algorithms that rebalance traffic to healthier replicas

will be in a better position to counter the effects of

transient node failures. In the cases where abuse is

feasible, system designers have learned that

cryptographic signatures can impose extra burdens.

Although such overhead is justified for general

blockchains, it negatively affects throughput in

private blockchain networks with high levels of trust.

Focusing on a change in the replication process is

useful in these contexts, although replicating as in the

primary-copy replication model (Oki & Liskov, 1988).

However, such teams have to perform aggressive

monitoring for early detection of hidden faults and to

segregate low-performing nodes quickly.

The existing operational best practices heavily rely on

observability through metrics and alerts. CPU

overloads in leaders should be considered a sign of

potential service deterioration, and memory leaks in

the follower nodes may cause partial cluster crashes.

Broadcast message initialization studies in distributed

simulation by Misra and Chandy in 1982 revealed the

necessity of checking the messaging capability on

every node to achieve consistent state replication.

Production teams further confirm the above findings

by regularly conducting health checks and updates

that allow patches to be deployed without stopping

the entire cluster. They build up knowledge that

enhances future architecture decisions, leading to the

enhancement of subsequent cycles. Any adherence to

the state machine approach reflects the tutorial

observations discussed in the work (Schneider, 1990).

Figure 11 : A Crash Course on Distributed Systems

9. Conclusion

Distributed consensus mechanisms are the

foundation for preserving consistent, simply reliable,

and achieving fault-tolerant states in large

asynchronous systems. The consensus algorithms

have been described in this paper to show how they

respond to the inherent problems in other distributed

systems, such as asynchronous communication,

network failures, and Byzantine faults. Even when

considering fundamental algorithms like Paxos, Raft,

or Byzantine Fault Tolerance (BFT), through to

protocols like 2PC/3PC or leaderless, the theme

remains that of central importance in the

coordination and consistency of Big Distributed

Systems over large, geographically distributed

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 415

networks. Consensus mechanisms fulfill their

primary goal. To make all the non-faulty nodes in a

distributed system operate under the same state of

the protocol by capturing the essence of asynchrony,

partial failure, and data inconsistency. The resilience

of these algorithms lies in their ability to uphold the

three primary guarantees: From the viewpoint of

computer system parameters, cloud computing

possesses consistency, availability, and fault tolerance.

However, as the CAP theorem noted, it is impossible

to achieve all three simultaneously, and system

architects must decide based on the needs of the

application they are implementing. This paper has

also considered the tradeoffs that accompany

consensus choices and demonstrated how these

tradeoffs define the performance and resource use in

distributed systems.

Consensus algorithms in use in real-life scenarios

across blockchain networks, distributed databases,

configuration management, and microservices

orchestration, to name a few, clearly portray how

important consensus algorithms have become. For

instance, in blockchains, consensus is used to validate

the records of transactions and their decentralized

immutability, whereas, in cloud-based distributed

systems, the algorithms mentioned above are used for

the coordinated discovery of services and

organizational clusters. These use cases show

consensus mechanisms as the basis of contemporary

distributed architectures that organizations can use to

provide dependable, high-availability services.

Nonetheless, consensus algorithms are not devoid of

cardinal challenges, such as scalability, pump and

dump schemes, extraordinary load of inter-node

communications, and susceptibility to hardौ ट attacks.

These solutions remain more of a work in progress,

including hybrid models, Layer 2 scaling solutions,

and consortium-based models. For example, some

models incorporate the elements of both PoW and

PoS to attain a balance between energy consumption

and protection. The layer 2 solutions, like the

Lightning Network, alleviate congestion on base

layers by providing better throughput while

maintaining the same level of quality. Likewise, the

models based on consortium have stellar governance

and efficient performance, which makes them

qualified to provide solutions for enterprises.

The prospective directions for distributed consensus

account for tendencies like edge computing,

serverless, and advanced cryptographic methods.

These advancements could recast the typical

dynamics of consensus mechanisms in settings

defined by limited resources and low latency

requirements. Moreover, development in the use of

observability tools and autonomous approaches for

conflict-solving is anticipated to strengthen the

stability of the systems that build the consensus and

duplicate distributed architectures. From the point of

view of a practitioner, the choice of the consensus

algorithm is determined by the functional

requirements of the system under consideration as to

latency, fault tolerance, and required degree of

consistency. Both Paxos and Raft perform well in

cases where strong consistency and leader infractions

are expected and needed. At the same time, the

options based on leaderless and gossip protocols are

suitable for the systems emphasizing high availability

and decentralization. In environments that are prone

to Byzantine faults, higher reliability is provided by

BFT protocols, although at the cost of increased

computational power.

Consensus algorithms are not just technical concepts

but tools that help build reliable and efficient

contemporary distributed systems. Since more

organizations now use decentralized and distributed

systems, the role of sound consensus mechanisms can

only continue to rise. To get the full range of

consensus algorithms, developers and architects must

align to best practices and adopt the innovations that

are still emerging, ensuring the systems they design

are scalable, fault-tolerant, and operationally solid.

Due to its nature of distributed consensus, distributed

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 416

computing is still advancing with a history of

challenges and milestones.

References

1) Almeida, J., Rufino, J., Alam, M., & Ferreira, J.

(2019). A survey on fault tolerance techniques for

wireless vehicular networks. Electronics, 8(11),

1358.

2) Barnickel, J. (2013). Authentication and identity

privacy in the wireless domain (Doctoral

dissertation, Aachen, Techn. Hochsch., Diss.,

2013).

3) Beard, J. C., Li, P., & Chamberlain, R. D. (2015,

February). RaftLib: a C++ template library for

high performance stream parallel processing.

In Proceedings of the Sixth International

Workshop on Programming Models and

Applications for Multicores and Manycores (pp.

96-105).

4) Belotti, M., Božić, N., Pujolle, G., & Secci, S.

(2019). A vademecum on blockchain

technologies: When, which, and how. IEEE

Communications Surveys & Tutorials, 21(4),

3796-3838.

5) Bernabe, J. B., Canovas, J. L., Hernandez-Ramos,

J. L., Moreno, R. T., & Skarmeta, A. (2019).

Privacy-preserving solutions for blockchain:

Review and challenges. Ieee Access, 7, 164908-

164940.

6) Bernstein, P. A., & Newcomer, E. (2009).

Principles of transaction processing (2nd ed.).

Morgan Kaufmann.

7) Birman, K. P. (1993). The process group approach

to reliable distributed computing.

Communications of the ACM, 36(12), 37-53.

8) Bracha, G., & Toueg, S. (1985). Asynchronous

consensus and broadcast protocols. Journal of

Algorithms, 4(4), 557–573.

9) Brewer, E. (2012). CAP twelve years later: How

the "rules" have changed. Computer, 45(2), 23–

29.

10) Castro, M., & Liskov, B. (1999). Practical

Byzantine fault tolerance. In Proceedings of the

Third Symposium on Operating Systems Design

and Implementation (pp. 173-186).

11) Castro, M., & Liskov, B. (1999). Practical

Byzantine Fault Tolerance. In Proceedings of the

Third Symposium on Operating Systems Design

and Implementation (OSDI '99).

12) Chandra, T. D., Griesemer, R., & Redstone, J.

(2007). Paxos made live: An engineering

perspective. In Proceedings of the twenty-sixth

annual ACM symposium on Principles of

distributed computing (pp. 398–407).

13) Chandy, K. M., & Lamport, L. (1985). Distributed

snapshots: Determining global states of

distributed systems. ACM Transactions on

Computer Systems (TOCS), 3(1), 63-75.

14) Copeland, C., & Zhong, H. (2016). Tangaroa: a

byzantine fault tolerant raft. Stanford University.

15) Corbett, J. C., Dean, J., Epstein, M., Fikes, A.,

Frost, C., Furman, J., & Woodford, D. (2012).

Spanner: Google’s globally-distributed database.

In OSDI (Vol. 12, pp. 261-264).

16) Correia Júnior, A. T. (2010). Practical database

replication.

17) Cristian, F. (1991). Synchronous and

asynchronous recovery primitives. Proceedings of

the Twenty-First IEEE International Symposium

on Fault-Tolerant Computing, 82–89.

18) Dragoni, N., Giallorenzo, S., Lafuente, A. L.,

Mazzara, M., Montesi, F., Mustafin, R., & Safina,

L. (2017). Microservices: yesterday, today, and

tomorrow. In Present and Ulterior Software

Engineering (pp. 195-216). Springer, Cham.

19) Fischer, M. J., Lynch, N. A., & Paterson, M. S.

(1985). Impossibility of distributed consensus

with one faulty process. Journal of the ACM,

32(2), 374-382.

20) Fischer, M. J., Lynch, N. A., & Paterson, M. S.

(1985). Impossibility of Distributed Consensus with

One Faulty Process. Journal of the ACM (JACM),

32(2), 374-382.

http://www.ijsrcseit.com/

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 417

21) Gifford, D. K. (1979). Weighted voting for

replicated data. In Proceedings of the seventh

ACM symposium on Operating systems principles

(pp. 150-162).

22) Gilbert, S., & Lynch, N. (2002). Brewer’s

conjecture and the feasibility of consistent,

available, partition-tolerant web services. ACM

SIGACT News, 33(2), 51-59.

23) Gill, A. (2018). Developing a real-time electronic

funds transfer system for credit unions.

International Journal of Advanced Research in

Engineering and Technology (IJARET), 9(1),

162–184. [Primary Source]

24) Gray, J., & Lamport, L. (2006). Consensus on

transaction commit. ACM Transactions on

Database Systems, 31(1), 133–160.

25) Kemme, B., Schiper, A., Ramalingam, G., &

Shapiro, M. (2014). Dagstuhl seminar review:

Consistency in distributed systems. ACM

SIGACT News, 45(1), 67-89.

26) King, V., Saia, J., Sanwalani, V., & Vitta, E.

(2011). Scalable leader election. In Distributed

Computing (pp. 490–502). Springer.

27) Kraft, D. (2016). Difficulty control for

blockchain-based consensus systems. Peer-to-

peer Networking and Applications, 9, 397-413.

28) Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: a

distributed messaging system for log processing.

In Proceedings of the NetDB (pp. 1-7).

29) Kumar, A. (2019). The convergence of predictive

analytics in driving business intelligence and

enhancing DevOps efficiency. International

Journal of Computational Engineering and

Management, 6(6), 118-142. https://ijcem.in/wp-

content/uploads/THE-CONVERGENCE-OF-

PREDICTIVE-ANALYTICS-IN-DRIVING-

BUSINESS-INTELLIGENCE-AND-

ENHANCING-DEVOPS-EFFICIENCY.pdf

30) Lamport, L. (1998). The part-time parliament.

ACM Transactions on Computer Systems, 16(2),

133–169.

31) Lamport, L. (1998). The Part-Time Parliament.

ACM Transactions on Computer Systems, 16(2),

133-169.

32) Lynch, N. (1996). Distributed Algorithms.

Morgan Kaufmann.

33) Merkle, R. (1988). A Digital Signature Based on a

Conventional Encryption Function. In C.

Pomerance (Ed.), Advances in Cryptology —

CRYPTO’ 87 (pp. 369-378). Springer.

34) Misra, J., & Chandy, K. M. (1982). Distributed

simulation: A case study in design and

verification of distributed programs. IEEE

Transactions on Software Engineering, SE-5(5),

440–452.

35) Nakamoto, S. (2008). Bitcoin: A peer-to-peer

electronic cash system. Retrieved from

https://bitcoin.org/bitcoin.pdf

36) Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer

Electronic Cash System.

37) Nyati, S. (2018). Revolutionizing LTL Carrier

Operations: A Comprehensive Analysis of an

Algorithm-Driven Pickup and Delivery

Dispatching Solution. International Journal of

Science and Research (IJSR), 7(2), 1659–1666.

https://www.ijsr.net/getabstract.php?paperid=SR2

4203183637

38) Nyati, S. (2018). Transforming Telematics in Fleet

Management: Innovations in Asset Tracking,

Efficiency, and Communication. International

Journal of Science and Research (IJSR), 7(10),

1804-1810.

https://www.ijsr.net/getabstract.php?paperid=SR2

4203184230

39) Oki, B. M., & Liskov, B. (1988). Viewstamped

replication: A new primary copy method to

support highly-available distributed systems.

Proceedings of the Seventh Annual ACM

Symposium on Principles of Distributed

Computing, 8–17.

40) Ongaro, D., & Ousterhout, J. (2014). In search of

an understandable consensus algorithm (Raft). In

http://www.ijsrcseit.com/
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://www.ijsr.net/getabstract.php?paperid=SR24203184230

Volume 6, Issue 6, November-December-2020 | http://ijsrcseit.com

Gnana Teja Reddy et al Int J Sci Res CSE & IT, November-December-2020; 6 (6) : 387-393

 418

USENIX Annual Technical Conference (pp. 305-

319).

41) Pease, M., Shostak, R., & Lamport, L. (1980).

Reaching agreement in the presence of faults.

Journal of the ACM, 27(2), 228–234.

42) Schneider, F. B. (1990). Implementing fault-

tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys,

22(4), 299–319.

43) Sheehy, J. (2015). There is No Now: Problems

with simultaneity in distributed

systems. Queue, 13(3), 20-27.

44) Tanenbaum, A. S., & van Steen, M. (2007).

Distributed systems: principles and paradigms.

Prentice Hall.

45) Vukolić, M. (2012). Latency-efficient Quorum

Systems. In Quorum Systems: with Applications

to Storage and Consensus (pp. 81-108). Cham:

Springer International Publishing.

46) Wang, X., Sun, N., & Wickersham, K. (2017).

Turning math remediation into" homeroom:"

Contextualization as a motivational environment

for community college students in remedial

math. The Review of Higher Education, 40(3),

427-464.

47) Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G.,

& Abraham, I. (2018). HotStuff: BFT consensus in

the lens of blockchain. arXiv preprint

arXiv:1803.05069.

48) Zhang, I., Sharma, N. K., Szekeres, A.,

Krishnamurthy, A., & Ports, D. R. (2018).

Building consistent transactions with inconsistent

replication. ACM Transactions on Computer

Systems (TOCS), 35(4), 1-37.

http://www.ijsrcseit.com/

