
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

https://doi.org/10.32628/CSEIT217116

87

Recent Trends in JSON Filters
Atul Jain*, Dr. ShashiKant Gupta

CSA Department, ITM University, Gwalior, Madhya Pradesh, India

Article Info

Volume 7, Issue 1

Page Number: 87-93

Publication Issue :

January-February-2021

Article History

Accepted : 11 Jan 2021

Published : 24 Jan 2021

ABSTRACT

JavaScript Object Notation is a text-based data exchange format for structuring

data between a server and web application on the client-side. It is basically a

data format, so it is not limited to Ajax-style web applications and can be used

with API’s to exchange or store information. However, the whole data never to

be used by the system or application, It needs some extract of a piece of

requirement that may vary person to person and with the changing of time.

The searching and filtration from the JSON string are very typical so most of

the studies give only basics operation to query the data from the JSON object.

The aim of this paper to find out all the methods with different technology to

search and filter with JSON data. It explains the extensive results of previous

research on the JSONiq Flwor expression and compares it with the json-query

module of npm to extract information from JSON.

This research has the intention of achieving the data from JSON with some

advanced operators with the help of a prototype in json-query package of

NodeJS. Thus, the data can be filtered out more efficiently and accurately

without the need for any other programming language dependency. The main

objective is to filter the JSON data the same as the SQL language query.

Keywords: JSON, JSONiq, Json-Query, Node

I. INTRODUCTION

On the web when it required to send data between

the webserver to the client, it needs some lightweight

format to store and transport.[1] Here JSON to be

used: JavaScript Object Notation which is self-

describing and easy to use.

JSON Syntax Rules

1. JSON-Data Should name-value pairs

2. JSON-Data Should comma separated

3. objects hold by Curly braces

4. arrays hold by Square brackets

Basically, JSON is name-value pairs, separated with

commas. Here Objects are held by Curly braces and

arrays are hold by square brackets. The name-value

pair of JSON is consists of a field name in ” double

quotes” which is and followed by a colon that also

followed by a value

"username":"AtulJain".

The syntax of JSON syntax has been derived from

JavaScript object notation [2], however JSON format

is text only. It can use any programming language to

write code for generating and reading JSON data.

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT217116

Volume 7, Issue 1, January-February-2021 | http://ijsrcseit.com

Atul Jain et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 87-93

 88

JSON basic datatypes are Number, String, Boolean,

Array, Object, and null.

The below section has an example with JSON

representation to describe an Employee details

 Employee.

{

 "fName": "Atul",

 "lName": "Jain",

 "isActive": 1,

 "dateOfBirth": "01-11-1989",

 "ResidenceAddress": {

 "street": "G T Colony",

 "city": "Gurgaon",

 "state": "Haryana",

 "pincode": "122001"

 },

 "phoneNumbers": [

 {

 "Pref": "Office",

 "number": "9111111111"

 },

 {

 "Pref": "Resi",

 "number": "999 555-4567"

 }

],

 "kids": ["Aman"],

 "maritalStatus": "married"

}

JSON as Object Tree:

As each JSON object in a JSON document is a set of

key-value pairs, a Naturally, JSON document can be

represented as a data tree structure called JSON tree.

The value can be an atomic value, such as a string, an

integer, a number, an array, or null. To capture the

compositional structure of JSON data. Here each

value of JSON can also be a set of JSON objects.

A JSON document D is defined as

D::={Object[,Object, ...]},

where

Object ::= {Key:{Value} [, Key:{Value}, ...]},

Key ::= String,

Value ::= String|Integer|Number|Array|Null|Object.

For example, consider the following JSON document

Doc1:

{

“name”: {

“empFirstName”: “Atul”,

“empLastName”: “Jain”

},

“empAge”: 45

}

JSON document Doc1 contains 2 objects Ob1 and

Ob2 as following:

Ob1::= {

“name”: {

“empFirstName”: “Atul”,

“empLastName”: “Jain”

},

}

with key “name” and

Ob2::={

“empAge”: 45

}

with thekey “empAge” and an atomic integer value

“45”.

The value of key of Ob1 again contains 2 objects

Ob11 and Ob12 as following:

Ob11::= {

“empFirstName”: “Atul”,

}

with the key “empFirstName” and an string value

“Atul” and

Ob12::= {

“empLastName”: “Jain”

}

with the key “empLastName” and an string value

“Jain”.

http://www.ijsrcseit.com/

Volume 7, Issue 1, January-February-2021 | http://ijsrcseit.com

Atul Jain et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 87-93

 89

Of course, a value which contain nothing,can be

represented by type “Null”. For type “Array” and

“Number” see the below example.

Ob3::={

“name”: {

“empFirstName”: “Mohit”,

“empLastName”: “Jain”

},

“empAge”: 28

}

and

Ob4::={

“name”: {

“empFirstName”: “Vipul”,

“empLastName”: “Jain”

},

“empAge”: 23

}

To combine Ob3 and Ob4 in JSON document Doc1,

add a new key “children” in Doc1 and arrange Ob3

and Ob4 as an array [Ob3,Ob4] and numbered by

numbers “1” and “2” sequentially as {1:Ob3, 2:Ob4}:

{

“name”: {

“empFirstName”: “Atul”,

“empLastName”: “Jain”

},

“empAge”: 32,

“children”:{1:Ob3, 2: Ob4}

}

II. LITERATURE REVIEW

Most of the Previous work on querying data

interchange formats has basically focused on XML

data [3]. A very few research for querying JSON data.

Zorba is one of the most well approved JSONiq

processor. The system is normally a virtual machine

for the purpose of query processing. Both the XML

and JSON data can be processed by using the JSONiq

& XQuery languages respectively. But, it is not

scalable and optimized to formultiple nodes with the

multiple data files, which is most important to the

focus of this work.

 In contrast, Apache VXQuery is a system that can be

deployed on a multi-node cluster to exploit

parallelism. There are many parallel approaches that

came out as well for the JSON data querying . These

systems can be divided into two categories. The first

category includes SQL-like systems such as Jaql, Trill,

Drill, Postgres-XL, MongoDB and Spark, which can

process raw JSON data. Moreover, they have been

well integrated with well-known JSON parsers like

Jackson. When the parser goes to reads raw JSON

data, it converts the whole part into an internal data

model like a table[4] .Now it can be then easily been

processed by queries.,when it is in tabular format.

This system can also read raw JSON data, but it has

the advantage that it does not require data conversion

to another format since it directly supports JSON’s

data model[5]. The Queries can thus be processed

very quickly as the JSON file is read. However

Postgres-XL (a scalable extension to PostgreSQL) has

a limitation on how it exploits its parallelism feature.

Specifically,It is not designed to scale on multiple

cores, while it scales on multiple nodes .

A. JSONiq (FLWOR Expression)

1)JSONiq [6].is a query and processing language

which is exclusively designed for the JSON data

model .

2)JSONiq is not concentrated on collaborative data, it

avoids the uncertainty about the element or

attributes, order of the decedent and namespace’s

complications. Nowadays JSONiq became expressive

query language for the semi-structured database,

because of its optimality to query and query

processing.

3)JSONiq is not only semi-structured query language,

but it could illustrate programs to process the data,

from transformations, selections, projections, joins of

heterogeneous data sets, cleansing of data,

enhancement of data, extraction of data, and so on

http://www.ijsrcseit.com/

Volume 7, Issue 1, January-February-2021 | http://ijsrcseit.com

Atul Jain et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 87-93

 90

The most dominant expression in JSONiq is the

FLWOR expression, which is an acronym for "For,

Let, Where, Order by, Return".

1. let $test1 : = <test1 JSON database>

2. for $t in $test1()

3. group by $Marks := $t.Marks

4. where count($t) gt 1

5. return {"Marks" : $Marks, "Total Count" count($t)}

Now consider two JSON to check how Its extracting

information through jsoniq.Two JSON database

namely test1 and test2

Test1 (Sno, RollNo, Name, Marks)

Test2 (Sno, RollNo, Name, Marks)

1)Json-query1: “Fetch and priint the marks in

descending order”.(Projection and selection)

for $t in $test1()

order by $t.Marks descending

return $t.Marks

2)Json-query2: “Fetch print the students who got

more than 45 marks”(Filtering)

for $t in $test1()

where $t.Marks gt 45

return $t.Marks

3)Json-query3: “Print the count-no of each mark

obtain by the

student having more than th33” (Aggregation)

for $t in $test1()

group by $Marks := $t.Marks

where count($t) gt 3

return {"Marks" : $Marks, "Total Count" :

count($t)}

4)Json-query4: “Print the students’ test1 marks and

test2

marks”(Joins)

for $t1 in $test1(), $t2 in $test2()

where $t1."Roll No" eq $t2."Roll No"

return {

"Roll No" : $t1."Roll No",

"Test1Marks" :$t1.Marks,

"Test2 Marks":$t2.Marks

}

B. Node js Library

The JSON-query module of the node used to retrieves

values from JSON objects. It also facilitates us with

offer parameters, nested, and deep Queries. It gives

the opportunity to create some custom filter function

which can be used to make some other type of

filtration and update the code as per the requirements.

It can simply install it via npm [7] and used in out in

code by including it above the code with the help of

the “require” function.

Sytnax for install

npm install json-query

Just copy this command and run in the terminal.npm

latest version will install into the system.

Syntax

var jsonQuery = require('json-query');

jsonQuery(query, options);

The above lines specify how to add the module in the

code with the "require" function and how to use it in

the application to the filtration of required object in

the main object. Second-line describing what to

query and from which data it needs to be queried.

The return type of this function will also an Object

which will be the result of that query.

Example :

Sample Data ->

var dataObj = {

 employee: [

 {username: 'Mohit', location: 'IN'},

 {username: 'Vipul', location: 'AU'},

 {username: 'Prashant', location: 'NZ'}

]

}

Query ->

http://www.ijsrcseit.com/

Volume 7, Issue 1, January-February-2021 | http://ijsrcseit.com

Atul Jain et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 87-93

 91

jsonQuery('people[location=IN].username', {

 data: dataObj

})

Result ->

{

 value: 'Mohit',

 key: 'username',

 references: [{ username: 'Mohit', location: 'IN' }],

 parents:

 [

 { key: null, value: [Object] },

 { key: 'employee', value: [Array] },

 { key: 0, value: [Object] }

]

}

1) Options

There are 7 options some are mandatory and some

are optional.

• data or rootContext: This is the query’s main

Object.

• source or context (optional): This is the current

object which is interested or which is accessed

in query with

• parent : Its an additional optional context for

looking further up the tree.

• locals: It is specify an object containing helper

functions. Accessed by ':filter Name'. It Expects

function(inputValue, arguments...) with this set

to original passed in options.

• globals: when no local function found , it falls

back to globals.

• force : It is Specify an optional object to be

returned from the query if the query fails. It

will be store into the place where query

expected the object to be.

• allowRegexp (optional): Enable the ~ operator.

Before enabling regexp match to anyone

2)Queries:

Queries in the npm manager can be defined as strings

that used to describe an object or value to pick out, or

manipulate from the given object having some mixed

syntax of CSS and little bit JS but in more formatted

and beaudiful way.

1) Accessing properties (dot notation) : Object name

with dot(.) operator

person.username

2) Array accessors : Array name with index

employee[0]

3) Array pluck: : Array name with dot(.) operator

employee.username => return all the username of

employee

4) Get all values of a lookup

lookup[*]

5) Array filter: By default only the first matching

item will be returned:

employee[username=Mohit]

Here when add an “asterisk” (*), all matching items

will be returned:

employee[*location=NZ]

6) comparative operators: To compare with some

numeric value and return the result

employee[*rating>=3]

7) use boolean logic: To check the boolean value of

some specific elements

employee[* rating >= 3 & starred = true]

8) Negate

It can also negate any of the object value by adding a !

before the = or ~:

employee[*location!=NZ]

9) Deep queries

Search through multiple levels of Objects/Arrays

using [**]:

http://www.ijsrcseit.com/

Volume 7, Issue 1, January-February-2021 | http://ijsrcseit.com

Atul Jain et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 87-93

 92

var data = {

 candidate: {

 'student': [

 {name: 'Atul', country: 'NZ'},

 {name: 'Vipul', country: 'US'},

 {name: 'Mohit', country: 'AU'},

 {name: 'Mayank', country: 'NZ'},

],

 'teacher': [

 {name: 'Prashant', country: 'AU'}

 {name: 'Vishal', country: 'NZ'},

]

 }

}

var result = jsonQuery('candidate[**][*country=NZ]',

{data: data}).value

The result will be:

[

 {name: 'Atul', country: 'NZ'},

 {name: 'Mayank', country: 'NZ'},

 {name: 'Vishal', country: 'NZ'}

]

III. INDUCTION OF PROBLEM

Json-Query manager package providing us the basic

operators like equals to (=), greater than(>), less than

(<), both logical operator (AND, OR) only, which are

not sufficient to filter some specific information from

the large data to give an efficient output to the user,

these operation only are able to handle single and

straight forward data Extraction, but when handling

with a huge amount of data, there are various

scenarios which deal with conditional Data.

1) Here its need to check any value in the given

array or if need any value except then that array then

its required to write an extra algorithm in the

development code which increases complexity of the

code and is relatively time consuming which in terms

affects the overall performance of the application.

2)There is no operator provided for extracting

information with a specific range and to find Distinct

values.

3)There are many operators equivalent to SQL which

are not provided by npm manager. Json-Query

Manager has no solution for retrieval of these Data

and for these extractions, users have to go through

various stages or create their own structural piece of

code which is always time-consuming and demands a

good skill set to write such a piece of code.

IV. PROPOSED TECHNIQUE

The objective of this research is to take NPM json-

query manager extension to be as close and as easy as

SQL is for RDBMS in terms of Data Extraction.

NPM JSON-query package is a packaged prototype to

manage and merge advanced operators to filter data

on the basis of filters and queries. This research is to

find some advanced techniques and operators to

provide efficient filtration with more operators by

using a basic Javascript function to develop a more

efficient and optimized filtration and provide custom

filters like DISTINCT, IN, NOT IN, BETWEEN.

Further research aims to reduce the time complexity

of programmers by providing the complied library

function. The function will be developed prior to the

use of basic JavaScript methods. To maintain the

speed of result, it needs to first convert the JSON into

a collection and implement all the related functions

of collection to sort and filter according to given

queries. JavaScript Collection already has inbuilt

methods that are optimized to work on collections.

These advanced methods will help to filter data to

the maximum level and can be used in conjunction

with each other as well.

V. CONCLUSION

By using existing methods and models to filter out

the JSON, a developer can work only on limited

JSON data and with limited methods to filter out.

http://www.ijsrcseit.com/

Volume 7, Issue 1, January-February-2021 | http://ijsrcseit.com

Atul Jain et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 87-93

 93

However, in today's digital era,most of the web

application using JSON as a data format on a big scale,

So data manipulation and filtration need some mode

advanced techniques to work with such data. It

always needs to merge two or many operators to

fulfill the requirements of the current filter with

some extra models. This paper compares the existing

JSON filters with the SQL operators and found there

are many SQL operators equivalent that can be

implemented in the JSON filters and save the time of

code execution and increases the overall performance.

VI. REFERENCES

[1] Eko Wahyudi,Sfenrianto Sfenrianto, M. Jundi

Hakim, Reko Subandi, Okky Robiana Sulaeman,

Rochmat Setiyawan ."Information Retrieval

System for Searching JSON Files with Vector

Space Model Method" Computer Science

Faculty, STMIK Nusa Mandiri, Jakarta,IEEE

Indonesia.September 2019

[2] [online] Available: http://www.json.org/.

[3] Aayush Goyal,Curtis Dyreson USA,"Temporal

JSON",February 2020

[4] Pierre Bourhis,Juan L. Reutter ,"JSON: Data

model, Query languages and Schema

specification" www.researchgate.net ,May 2017

[5] R. Vinothsaravanan,C. Palanisamy,"Extracting

information from JSON database as simple as

extracting in SQL using JSONiq", IEEE Xplore:

April 2020.

[6] Daniela Florescu,Ghislain Fourny,"JSONiq: The

History of a Query Language" Switzerland IEEE

Internet Computing (Volume: 17, Issue: 5, Sept.-

Oct. 2013)

[7] [online] Available Npm package library for json-

query filter

https://www.npmjs.com/package/json-query.

[8] Mahfuzul Amin, Rashedur M Rahman

Bangladesh "Universal database access layer to

facilitate query" IEEE December 2014

[9] Khiem Minh Nguyen,Thanh-Hai Nguyen,Xuan

Hiep Huynh "Automated translation between

RESTful/JSON and SPARQL messages for

accessing semantic data", Cantho

University,IEEE, Vietnam September 2016

[10] Tang Lv, Ping yan , "Survey on JSON Data

Modelling",www.researchgate.net, August 2018

Cite this article as :

Atul Jain, Dr. ShashiKant Gupta, "Recent Trends in

JSON Filters", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 7 Issue 1, pp. 87-93, January-February

2021. Available at

doi : https://doi.org/10.32628/CSEIT217116

Journal URL : http://ijsrcseit.com/CSEIT217116

http://www.ijsrcseit.com/
http://www.json.org/
https://doi.org/10.32628/CSEIT217116
http://ijsrcseit.com/CSEIT217116

