
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT21717

57

Improving Accuracy of The Sentence-Level Lexicon-Based
Sentiment Analysis Using Machine Learning

Titya Eng1, Md Rashed Ibn Nawab*2, Kazi Md Shahiduzzaman3
1University of Battambang, Battambang, Cambodia

*2Northwestern Polytechnical University, Xi'an, China
3Jatiya Kabi Kazi Nazrul Islam University

ABSTRACT

Sentiment Analysis studies people's attitudes, opinions, evaluations, emotions, sentiments toward some

entities such as products, topics, individuals, services, issues and classify them whether the opinion or

evaluations inclines to that entities or not. It is getting more research focus in recent years due to its benefits

for scientific and commercial purposes. This research aims at developing a better approach for sentiment

analysis at the sentence level by using a combination of lexicon resources and a machine learning method.

Moreover, as reviews data on the internet is unstructured and has much noise, this research uses different

preprocessing techniques to clean the data before processing in different algorithms discussed in subsequent

sections. Additionally, the lexicon building processes, how the lexicon is handled and combined with the

machine learning algorithm for predicting sentiment is also discussed. In sentiment analysis, sentence's

sentiment can be classified into three classes: positive sentiment, negative sentiment, or neutral. However, in

this research work, we have excluded neutral sentiment for avoiding ambiguity and unnecessary complexity.

The experiment results show that the proposed algorithm outperforms compared to the baseline machine

learning algorithms. We have used four distinct datasets and different performance measures to check and

validate the proposed method's robustness.

Keywords: Sentiment Analysis; Machine Learning; Support vector machine; Lexicon, Natural language

processing.

I. INTRODUCTION

Sentiment analysis, also known as opinion mining, is

often modeled as a classification problem. Thus, in

this paper, we will use sentiment analysis or

sentiment classification interchangeably. Generally,

sentiment analysis extracts different features from

structured or unstructured textual data and analyzes

them to get opinion, emotions, feeling out of it. In

this era of the internet, it is relatively easy to get

customer or stakeholder voice via different channels,

e.g. blog, social media, customer care service, online

form and many more. However, an organization can

adequately utilize this data when they can retrieve

these feedback's emotion or feelings, and at this

point, the necessity of the sentiment analysis

emerges. Moreover, sentiment analysis relieves us

from the manual labelling or annotating the massive

amount of data available on the internet, which

contains valuable information for business decision

making. Interestingly, sentiment analysis has vast

application areas, e.g. sales performance prediction,

election result prediction, box office revenue

prediction, stock market prediction, expert investor

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT21717

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 58

identification, trading strategy formulation,

characterizing social relations, etc.

Usually, the sentiment classification can be dug

down up to three different levels, (i) Document-level

classification, (ii) Sentence-level classification, and

the more sophisticated (iii) Aspect-level classification.

In our experiment, we have conducted a sentence-

level sentiment classification. In many reviews,

people express more than one opinion in a single

product or service review, usually distributed in

different sentences. For example, "This mobile phone

looks excellent. But it is costly!!". There are two

different opinions in this case. These cases strongly

advocate the necessity of sentence-level sentiment

analysis.

Understanding human sentiment towards different

products or services enables better service, a better

recommendation system. It also provides crucial

insights of market trends. As this data is massive,

manually analyzing the data is almost impossible. In

this scenario machine learning has come into place

to solve this problem. Many researchers have been

trying to find the most accurate way for sentiment

analysis using different supervised, unsupervised or

semi-supervised machine learning algorithms, tuning

the different parameters or modifying existing

algorithms. As the data related to human language

has a complex and ambiguous structure, the machine

learning approaches' performance is still insufficient

to model this accurately, which reasonably creates a

scientific research scope. Moreover, supervised ML

approaches have a dependency on voluminous

labelled data.

Contrarily, lexicon-based approaches are also popular

in sentiment analysis which considers semantic

orientation of words in a text and calculates

sentiment. A dictionary of positive and negative

words is developed in this approach where each

positive or negative word is assigned a sentiment

value. These values are applied to the review text,

converted into a bag of words and mapped with the

dictionaries before [1]. Next, a combining function

predicts the sentiment of that text. This approach is

easy to understand. However, this is a slower process

as it requires matching among massive data. Besides,

the lexicon building process also plays a key role.

In this context, we need to find a way to handle the

complexity of the data and provide a faster result

with better accuracy than the previous standalone

machine learning or lexicon-based methods. This

research work addresses three critical issues of

sentiment analysis

• Some words have a bipolar meaning in different

contexts, e.g. cheap.

• The complexity of articulating linguistic patterns

using ML approaches

• Performance optimization of lexicon-based

approach

II. LITERATURE REVIEW

Sentiment classification is related to natural language

processing, and it is also a part of big data and data

mining. There was insufficient research before the

beginning of the 20th century in both natural

language processing and in linguistics. The lack of

opinion text available in digital form was one of the

reasons. However, with the advancement of

scientific research and the internet and the growing

necessity for marketing, analyzing user feedback, and

subsequent business decision making, this research

area is getting more interest.

Since sentiment classification is a binary

classification task, any existing supervised or

unsupervised machine learning method can be used,

e.g., Naïve Bayes classification, support vector

machine (SVM), Maximum Entropy, etc. In [2], we

can find the first application of ML algorithms in

sentiment analysis, where the researchers classified

movie reviews as positive or negative. The author

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 59

used unigrams (bag of words) as features to feed into

machine learning to train and classify the document.

This method performed better on both Naïve Bayes

and SVM algorithm. The authors in [3] proposed a

hybrid model combining KNN and SVM with

different preprocessing and feature generation

techniques and showed that their model performed

better than the standalone ML algorithm. We can

find another case of utilizing the KNN and Naïve

Bayes algorithm on movie and hotel review datasets

in [4]. However, their achieved accuracy level in

most cases is below 70%. Another machine learning-

based approach using the NLTK library on Yelp

dataset is proposed in [5]. Following their approach,

they managed to achieve 79.12% accuracy using the

Naïve Bayes algorithm.

On the contrary, sometimes researchers in sentiment

analysis also focus on reducing the dependency on

the ML technique because of its limitations in

capturing complex linguistic structure and nonlocal

contextual cues. Being inspired by this issue, authors

in [6] proposed a sentence-level, context-aware

approach which is capable of modelling both local

and global contextual information. Improving CRF

models, this approach performs better than the state-

of-the-art supervised and unsupervised methods.

A different semantic approach using a lexical

resource like SentiWordNet is proposed by Cernian

et al., where results predicted by the system are

compared against the star ratings from the Amazon

dataset [7]. A 61% average success rate is attained

while validating against 300 product reviews, which

is relatively low compared to our accuracy level.

We can find another lexicon-based approach where

the authors proposed a general-purpose WKWSCI

Sentiment Lexicon [8]. This lexicon performs similar

to other state-of-the-art lexicons in product review

categorization. However, it performed the best in

sentiment analysis of news headlines with 69%

accuracy.

As emoticon is a critical feature of review data while

performing sentiment analysis, Wang et al. examined

the connection between emoticon and opinion in

Twitter data. In this experiment, he compared the

performance with and without considering emoticon.

This study concludes that promising results can be

achieved in sentiment analysis by careful dealing

with emoticons [9].

III. METHODOLOGY

A. Proposed Architecture Overview

Our research proposed a hybrid method combining

lexical resources and machine learning for sentence-

level sentiment classification on online reviews. Fig.

1 shows the system architecture of our proposed

method where it is divisible into two main sections,

(1) lexicon resources, and (2) application of SVM

(Support Vector Machine), a machine learning

algorithm.

Our experiment's lexical resources include sentiment,

negation, intensifier, emoticon, adjective sense

disambiguation, phrase and idiom, syntax pattern,

and exception. These lexicon resources work

together with the machine learning algorithm to

calculate a given sentence's sentiment score. Like

other classification tasks, our dataset is divided into

two parts, training dataset, and testing dataset.

However, before feeding the data into the classifier,

we need to execute the following steps,

• Data Preprocessing: tokenization, remove stop

words and punctuation, cleansing symbols, and

links. After preprocessing, the Bag of Word

model is constructed.

• Transformation: As the machine learning

algorithms only accept numbers, we need to

convert text into numbers. Here we have used

the TF-IDF technique for this transformation.

Now the input data has become Bag of Features.

After this transformation, we fed the Bag of

Features into the SVM classifier to train it.

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 60

• Before feeding the testing dataset, we again need

to perform data preprocessing. In this step, we

have performed uppercase to lowercase

conversion and removed stop words and

punctuation.

• Next, we have checked the sentences with the

phrase and idiom lexicon and replaced them

with a score from the lexicon.

• After that, emoticons in the sentences are

replaced with a score from the lexicon.

• In this step, we have tokenized the sentences

into a Bag of Word.

• Finally, we have calculated the sentiment score

using lexicon resources and combined it with the

machine learning score to predict the final result.

Figure 1. System Architecture of Proposed Method

B. Dataset

Considering all the constraints, we will use the JSON

format dataset on the Yelp website [10] in our

experiment. The dataset contains many reviews from

different domains encompassing restaurants, hotels,

food, shopping, bar, beauty salon, dentists, etc.

Firstly, we will collect 10,000 records of sentence-

level reviews from the Yelp dataset in the restaurant

domain. As collecting datasets is challenging and

time-consuming, we employed an algorithm to

automatically pick up the sentiment sentences from

the reviews and automatically annotate the label

using star ratings in the dataset. Here, we picked the

last sentence of the review as it is most likely to

contain sentiment and label it according to the star

rating given by reviews. We annotated the two-star

and one-star reviews as negative sentiment sentences

and set the sentiment score to 0. Four-star and five-

star reviews are marked as positive sentiment

sentences. Hence, we set the sentiment score for

these sentences to 1. We also considered that three-

star reviews bear no sentiment, thus omitted.

Encompassing all these considerations, Algorithm-1

filters the sentiment sentences to form a suitable

dataset for lexicon preparation and testing.

Algorithm-1: Filter Review Sentence from Dataset

1
2
3
4
5
6
7
8
9
10
11
12
13

Input: 𝑁 ← 𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 [𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 , 𝑙𝑎𝑏𝑒𝑙]
𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐

 𝑅 ← 𝑖𝑡𝑒𝑚 [′ 𝑡𝑒𝑥𝑡 ′]
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠

 ST ← 𝑠𝑒𝑛𝑡_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 𝑅 [−1]
 𝑆𝑅𝑆 ← 1

 𝒊𝒇 𝑖𝑡𝑒𝑚 [′ 𝑠𝑡𝑎𝑟𝑠 ′] == 3 𝐭𝐡𝐞𝐧

 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆

 𝒊𝒇 𝑖𝑡𝑒𝑚 [′ 𝑠𝑡𝑎𝑟𝑠 ′] < 3 𝒕𝒉𝒆𝒏

 𝑆𝑅𝑆 ← 0

 𝑇 ← 𝑅 , 𝑆𝑅𝑆
𝒆𝒏𝒅 𝒇𝒐𝒓

𝑊𝑟𝑖𝑡𝑒 𝑙𝑖𝑠𝑡 𝑇 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 𝐹

TABLE I. SUMMARY OF THE DATASETS

Dataset
Positive

Sentence

Negative

Sentence
Total

Dataset 1

[10]
7,408 2,592 10,000

Dataset 2

[11]
923 1,320 2,243

Dataset 3

[12]
1,500 1,500 3,000

Dataset 4

[13]
5,331 5,331 10,662

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 61

To validate the performance and to check the

robustness of our proposed method against the

baseline sentiment classification algorithms (naïve

Bayes, support vector machine, random forest, k-

nearest neighbor, maximum entropy, Vader

Sentiment, and TextBlob), along with the Yelp

dataset, we are going to use three other datasets as

described in Table I.

C. Lexicon Generation Algorithms and Scoring

(i) Sentiment Lexicon

Sentiment words are an essential part of the lexicon-

based analysis. Though we use many sentiment

words in our daily life, reviewers use many different,

new, and strange sentiment words on the internet.

Hence, to achieve better accuracy, we should not just

consider commonly used words. In this experiment,

we have used the available resources from [13] and

the Yelp dataset to build a sentiment lexicon. As the

dataset is huge and searching sentiment words

manually is a tedious job, we have exploited

Algorithm-2 to automate the process.

Algorithm-2: Finding Sentiment Word

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Input: 𝑁 ← 𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑆 = (𝑅 , 𝑆𝑆𝑊 , 𝑆𝑅𝑆)
𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐
 𝑅 ← 𝑖𝑡𝑒𝑚[′ 𝑡𝑒𝑥𝑡 ′]
 𝒊𝒇 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑤𝑜𝑟𝑑 𝑓𝑟𝑜𝑚 𝑁𝐺:
 𝑆𝑅𝑆 ← 1
 𝒊𝒇 𝑖𝑡𝑒𝑚[′ 𝑠𝑡𝑎𝑟𝑠 ′] == 3 then
 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆
 𝒊𝒇 𝑖𝑡𝑒𝑚[′ 𝑠𝑡𝑎𝑟𝑠 ′] < 3 𝒕𝒉𝒆𝒏
 𝑆𝑅𝑆 ← 0
 𝑇 ← [𝑅 , 𝑆𝑅𝑆]
𝒆𝒏𝒅 𝒇𝒐𝒓
𝐿 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑟 , 𝑠𝑟𝑠 ∈ 𝑇 𝒅𝒐
 𝑇 ← 𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑟)
 𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠 (𝑇)
 𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑠 (𝑇)
 𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 (𝑇)
 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑑𝑒𝑥 , 𝑤 ∈ 𝑇 𝒅𝒐
 𝒊𝒇 𝑠𝑟𝑠 > 0 𝒕𝒉𝒆𝒏
 𝑆𝑊𝑆 ← 𝑆𝑒𝑛𝑡𝑖𝑊𝑜𝑟𝑑𝑛𝑒𝑡_𝑆𝑐𝑜𝑟𝑒(𝑤)
 𝒊𝒇 𝑆𝑊𝑆. 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒 > 0.4 𝒕𝒉𝒆𝒏
 𝐿 ← [𝑤 , 1 , #]
 𝒊𝒇 𝑆𝑊𝑆. 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒 > 0.4 𝒕𝒉𝒆𝒏
 𝐿 ← [𝑤 , 𝑆𝑊𝑆. 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒 , 1]
 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑠𝑟𝑠 == 0 𝒕𝒉𝒆𝒏
 𝑆𝑊𝑆 ← 𝑆𝑒𝑛𝑡𝑖𝑊𝑜𝑟𝑑𝑛𝑒𝑡_𝑆𝑐𝑜𝑟𝑒(𝑤)
 𝒊𝒇 𝑆𝑊𝑆. 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒 > 0.4 𝒕𝒉𝒆𝒏
 𝐿 ← [𝑤 , 𝑆𝑊𝑆. 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒 , −1]
 𝒊𝒇 𝑆𝑊𝑆. 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒 > 0.4 𝒕𝒉𝒆𝒏
 𝐿 ← [𝑤 , 0 , #]
 𝒆𝒏𝒅 𝒇𝒐𝒓
𝒆𝒏𝒅 𝒇𝒐𝒓
𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑖𝑡𝑒𝑚 𝑓𝑟𝑜𝑚 𝐿
𝑊𝑟𝑖𝑡𝑒 𝑙𝑖𝑠𝑡 𝐿 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 𝐹

After getting the Yelp dataset as input, Algorithm-2

filters out reviews that have negative words. Then it

labels the review texts according to the star rating. If

the review item has a four or five stars rating, then

the algorithm labels it as positive. For one or two

stars, the review item is labeled as negative. The

review item that has a three-star rating is omitted as

it might contain no sentiment. Next, the result is

saved with structure S = (R, SRS) to list T. For every

item in list T, the algorithm tokenizes the sentences

using the natural language processing toolkit

(NLPTK), and then it filters out unnecessary words

such as negative words, stop words, numbers, and

symbols. After that, for every word in the tokenized

sentence, if the label of that sentence is positive,

check the score S of the word using the

SentiWordnet lexicon resource. If the positive score

of S is bigger than 0.4, append S=(W, 1, #) to list L or

if the negative score of S is bigger than 0.4, append

S=(W, SSW-, 1) to list L. Contrarily, in case of the

tokenized sentence labeled as negative, if the positive

score of S is bigger than 0.4 then append S=(W,

SSW+, -1) to list L or if the negative score of S is

bigger than 0.4 then append S=(W, 0, #) to list L.

Finally, all duplicate words are removed from list L,

and an output file is generated. The sentiment word

lexicon is also stored in an SQLite3 database with

structure (id, word, value, comment) for further and

faster retrieval in our experiment. Next, for score

calculation of any review sentence, we need to

utilize SQL command and check word by word in

the sentiment lexicon. If found, the algorithm

retrieves the associated score. The algorithm

proceeds searching otherwise.

(ii) Intensifier Lexicon

Intensifier words are adverbs that can influence the

strength of the sentiment word. It can lower or

higher the strength of the sentiment words or even

reverse the value to negative or positive, e.g., very, so,

amazingly, tremendously, extremely, totally,

amazingly, etc., are intensifiers that strengthen the

value of sentiment. The intensifiers such as slightly,

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 62

almost, could, might, hardly, rarely, seldom, fairly,

nearly, etc., lower the strength of the sentiment

words. There are also some words that can reverse

the sentiment, e.g., less, few, etc. We have used

Algorithm-3 and Yelp dataset to build an intensifier

lexicon in our experiment.

Algorithm-3: Find Intensifier Words in Dataset

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Input: 𝑁 ← 𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟

𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐

 𝑅 ← 𝑖𝑡𝑒𝑚[′ 𝑡𝑒𝑥𝑡 ′]
 TK ← 𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑅)

 P ← 𝑝𝑜𝑠_𝑡𝑎𝑔 (𝑇𝐾)

 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑤𝑜𝑟𝑑 , 𝑝𝑜𝑠 ∈ 𝑃 𝒅𝒐

 𝒊𝒇 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 𝑘 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑤𝑜𝑟𝑑 && 𝑖𝑡 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝒕𝒉𝒆𝒏

 𝒊𝒇 𝑘 > 1 && 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 𝑘 − 1 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑣𝑒𝑟𝑏 𝒕𝒉𝒆𝒏

 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 𝑘 − 1 𝑖𝑠 𝑙𝑖𝑘𝑒𝑙𝑦 𝑡𝑜 𝑏𝑒 𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑜𝑟𝑑

 𝑇 ← 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 [𝑘 − 1]
 𝒆𝒏𝒅 𝒇𝒐𝒓

𝒆𝒏𝒅 𝒇𝒐𝒓

𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑖𝑡𝑒𝑚 𝑓𝑟𝑜𝑚 𝑇

𝑊𝑟𝑖𝑡𝑒 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 𝐹

In Algorithm-3, after tokenizing the review text item,

if any tokenized word is an adjective and resembles a

sentiment word, the word before it is likely to be an

intensifier. Besides, if there exists a word before

sentiment word and that word is an adverb, the word

also needs to enlist. Finally, after removing all

duplicate words from the list, an output file

containing the list of intensifier words is generated.

The final list is checked manually to remove the

wrong words if there is any, and a score is assigned to

each intensifier according to its meaning. The score

lies between [-0.1, 2].

To calculate the intensifier score, firstly, we look for

sentiment words in the sentence. If found, need to

search for the intensifier to the left for the window

size of five. After finding an intensifier, we need to

multiply the sentiment word score with the

intensifier word score. The searching continues

otherwise. The score calculation process is as follows,

S = S(I)*S(SW)

good => very good = (2) * (1) = 2 => positive sentiment

bad => so bad = (2) * (-1) = -2 => negative sentiment

amazing => absolutely amazing = (2) * (1) = 2 => positive sentiment

good => totally good = (2) * (1) = 2 => positive sentiment

(iii) Negation Lexicon

Negation lexicon resource is a list of negative

indicating words. Handling negation is a crucial step

in our research work, as it can reverse the polarity or

reduce the strength of the sentiment word. Improper

management of the negation lexicon may also lead to

lower sentiment prediction accuracy. In our

experiment, we divided the negation lexicon into

three categories, (1) Negative words which change

the polarity of the sentiment, e.g. "not good", "lack of

good point", "nothing is good", "need to improve",

"none of this work", "hasn't any good", "missing good

part", "won't work", etc. (2) Negative words which

lower the strength of the sentiment when occurred

before some sentiment words. It is a list of words

that does not invert the meaning of the sentiment,

but it changes the intensifier of the opinion words;

for example, "not the best" means it's okay, "not

perfect" means it is okay, "not excellent" also means

it's okay. (3) Negative words with no effect on the

sentiment when used before some specific words, e.g.

"not only", "no wonder", "no end of", "not to

mention", "no matter what", etc.

Negation score is calculated after intensifier scoring.

Next, the algorithm searches for a negative word that

precedes the sentiment word for a window of five. If

found, the sentiment word score is multiplied with

the intensifier score. Besides, if the intensifier meets

with superlative in sentiment word, then it will not

change the polarity of the sentiment word; it only

changes the strength to lower value. Score

calculation for negation, intensifier, and sentiment

word is as follows,

(iv) Emoticon Lexicon

In recent times, we can see the huge popularity and

use of different emoticons on social networks, online

stores, and review websites like Amazon, Yelp, eBay,

etc. Emoticons are also a vital feature in sentiment

analysis. Here, we have utilized the compiled list of

positive and negative emoticons used in [9]. We also

took the effort to manually add more emoticons to

S = S(N) * S(I) * S(SW)

very good => not very good = (-1) (2) * (1) = -2 => negative sentiment

 bad => not bad = (-1) *(-1) = 1 => positive sentiment

 the best => not the best => (1/2) * (2) = 1 => still positive sentiment

 the worst => not the worst => (1/2) * (-1) = 1 => still negative sentiment

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 63

the list. After that, each emoticon is labelled with a

score depending on the polarity of the sentiment. A

positive emoticon has a +2 score, and a negative

emoticon has -2 score. If an emoticon is found in a

sentence, it is replaced by # and assign its score to the

algorithm for further calculation. Importantly, the

score for the emoticon needs to calculate before the

symbol preprocessing step. The algorithm first gets

each of the pair of (emoticon, value) in the lexicon

and search for emoticon in the review sentence. If

found, then it removes that emoticon and assigns the

score to the review sentence.

(v) Phrase and Idiom Lexicon

Phrase and idiom is another critical lexicon to deal

with in our research. Here we have considered the

phrases and idioms which trigger sentiment, e.g.,

phrases like "stay away", "hardworking", "mess up",

"over price", "can't stand", "let down", "make fun of"

etc. and idioms like "chew someone out", "cost

someone an arm and a leg", "shooting fish in a barrel",

"a piece of cake", and many more. As phrases and

idioms are formed by more than one word, so it must

be handled after text preprocessing and before

tokenization. For dealing with this issue, if any

phrase and idiom are found in a sentence, our

proposed method would replace those words with a

word, "good" or "bad", depending on the meaning of

the phrase and idiom. So it can be further processed

by our negation and intensifier algorithm for score

calculation. For example,

There are also some group of words which contain

negation word, but it does not change the meaning

of that phrase at all. We have addressed these phrases

as the exception lexicon. This lexicon is stored

together with the phrases and idioms lexicon file

because we will process them at the same time with a

very similar algorithm before the tokenization step

and obviously after text preprocessing. The only

difference is it will not add any score to the total

score of the sentence. To do so, we need to check

each item in the exception lexicon, and if found, we

need to simply remove the phrase from the sentence,

e.g.

(vi) Adjective Sense Disambiguation

Adjective sense disambiguation is a technique used to

differentiate the meaning of an adjective in a

different context. For example, cheap ticket, cheap

flight, reveals positive sentiment. Contrarily, cheap

seller, cheap quality, cheap material triggers negative

sentiment towards the seller. In our proposed

method, we explored the adjective sense

disambiguation using a nearby noun.

Algorithm-4 and Yelp dataset is used to query nearby

nouns of sentiment words and label the sentiment of

that co-occurrence. In this task, we have only

considered the most commonly used and bipolar

adjective only, e.g., great, hot, cheap, crazy, small,

big, high, low, heavy, light, huge, thick, deep, and

few, etc.

Algorithm-4: Adjective Sense Disambiguation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Input: 𝑁 ← 𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 , 𝐴𝑊 ← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠
 𝑁𝐺 ← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠
Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑆 = (𝑁𝑁 , 𝑆𝑊 , 𝑆𝑉 , 𝐶𝑆)
𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐
 𝑅 ← 𝑖𝑡𝑒𝑚[′ 𝑡𝑒𝑥𝑡 ′]
 𝒊𝒇 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑤𝑜𝑟𝑑 𝑓𝑟𝑜𝑚 𝑁𝐺:
 𝑆𝑅𝑆 ← 1
 𝒊𝒇 𝑖𝑡𝑒𝑚[′ 𝑠𝑡𝑎𝑟𝑠 ′] == 3 then
 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆
 𝒊𝒇 𝑖𝑡𝑒𝑚[′ 𝑠𝑡𝑎𝑟𝑠 ′] < 3 𝒕𝒉𝒆𝒏
 𝑆𝑅𝑆 ← 0
 𝑇 ← [𝑅 , 𝑆𝑅𝑆]
𝒆𝒏𝒅 𝒇𝒐𝒓
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑤𝑜𝑟𝑑 ∈ 𝐴𝑊 𝒅𝒐
 LW 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡
 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑟 , 𝑠𝑟𝑠 ∈ 𝑇 𝒅𝒐
 𝑇 ← 𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑟)
 𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠 (𝑇)
 𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑠 (𝑇)
 𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 (𝑇)
 P ← 𝑝𝑜𝑠_𝑡𝑎𝑔(𝑇)
 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑑𝑒𝑥 , 𝑤 , 𝑝𝑜𝑠 ∈ 𝑃 𝒅𝒐
 𝒊𝒇 𝑤 == 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏
 𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (𝑖𝑛𝑑𝑒𝑥 + 1 , 𝑖𝑛𝑑𝑒𝑥 + 3) 𝒅𝒐
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[𝑤][𝑖] 𝑖𝑠 𝑎𝑛 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑤𝑜𝑟𝑑
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[𝑝𝑜𝑠][𝑖] 𝑖𝑠 𝑎 𝑛𝑜𝑢𝑛
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃 𝑤 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐿𝑊
 𝐿𝑊 ← [𝑆𝑅𝑆 , 𝑤 , 𝑃 𝑤 𝑖 , 𝑟]
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑖𝑛𝑑𝑒𝑥 − 1 , 𝑖𝑛𝑑𝑒𝑥 − 5 , −1) 𝒅𝒐
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃 𝑤 𝑖 𝑖𝑠 𝑣𝑒𝑟𝑏 𝑡𝑜𝑏𝑒
 𝒇𝒐𝒓 𝒋 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (𝑖 − 1 , 𝑖 − 3 , −1) 𝒅𝒐
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[𝑤][𝑖] 𝑖𝑠 𝑎𝑛 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑤𝑜𝑟𝑑
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[𝑝𝑜𝑠][𝑖] 𝑖𝑠 𝑎 𝑛𝑜𝑢𝑛
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃 𝑤 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐿𝑊
 𝐿𝑊 ← [𝑆𝑅𝑆 , 𝑤 , 𝑃 𝑤 𝑖 , 𝑟]
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝒆𝒏𝒅 𝒊𝒇
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑛𝑎𝑚𝑒 ′𝑤𝑜𝑟𝑑. 𝑐𝑠𝑣′
 𝐹 ← 𝐿𝑊
𝒆𝒏𝒅 𝒇𝒐𝒓

not only => remove from sentence

no wonder => remove from sentence

not to mention => remove from sentence

not just => remove from sentence

over price => bad => negative sentiment,

not over price => not bad => positive sentiment

can’t stand => bad => negative sentiment

thumb up => good => positive sentiment

break a leg (means good luck) => good => positive sentiment

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 64

After manual inspection to remove wrong words,

this file is saved into the SQLite3 database with the

following structure S = (Id, Word, Value,

IsAmbiguous, Pos_Nouns, Neg_Nouns). Here, Word

is the sentiment word. Value is the value of a

sentiment word, and it can be [-1, -2, 1, 2].

IsAmbiguous indicates if that sentiment word is

ambiguous. Pos_Nouns contains a list of nouns that

change the polarity of sentiment words to positive.

Neg_Nouns contains a list of nouns that change the

polarity of sentiment words to negative.

(vii) Syntax Pattern

Besides all the different types of lexicons, there exists

some syntax that looks like a negative sentence, but

it is actually a positive sentence, e.g., I can't

recommend it enough, I couldn't agree more, I can't

recommend this any higher, etc. So, if we follow the

steps we just discussed, it may result in an incorrect

prediction. For example, "Can't" in "I can't

recommend it enough" is an intensifier word that is

equal to -1, recommend is a sentiment word that is

equal to 1. Hence, "can't recommend" = (-1) * (1) = -1,

which is definitely not the real meaning of the

sentence. Actually, this is a positive sentiment

sentence that means it is so good that the opinion

holder cannot describe it enough. These sentences

can be handled by looking for sentences that contain

sentiment words in the pattern: "couldn't…more" or

"can't…more", "…can't recommend…higher", etc.,

then score them according to the intrinsic meaning.

(viii) Score Calculation Algorithm

Finally, Algorithm-5 is used to accumulate and

combine all the calculated scores using the lexicon

Algorithm-5: Score Calculation Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Input: 𝑁 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝
 𝑆 ← 𝑠𝑐𝑜𝑟𝑒 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑚𝑜𝑡𝑖𝑐𝑜𝑛 𝑙𝑒𝑥𝑖𝑐𝑜𝑛
Output: 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
𝑇 ← 𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑁)
Total ← 𝑆
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑑𝑒𝑥 , 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐
 𝑠 ← 0
 𝒊𝒇 𝑁[𝑖𝑛𝑑𝑒𝑥] 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑤𝑜𝑟𝑑:
 r𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ #
 𝒊𝒇 𝑁 𝑖𝑛𝑑𝑒𝑥 𝑖𝑠 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝒕𝒉𝒆𝒏. # 𝑐ℎ𝑒𝑐𝑘 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑙𝑒𝑥𝑖𝑐𝑜𝑛
 𝑛𝑙𝑖𝑠𝑡 ← 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑛𝑜𝑢𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑤𝑜𝑟𝑑 𝑁[𝑖𝑛𝑑𝑒𝑥]
 𝒊𝒇 𝑁 𝑖𝑛𝑑𝑒𝑥 + 1 𝑜𝑟 𝑁 𝑖𝑛𝑑𝑒𝑥 + 2 𝑖𝑛 𝑛𝑙𝑖𝑠𝑡 𝒕𝒉𝒆𝒏
 𝑠 ← −1 ∗ 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒(𝑁 𝑖𝑛𝑑𝑒𝑥)
 𝒆𝒍𝒔𝒆
 𝑠 ← 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒(𝑁 𝑖𝑛𝑑𝑒𝑥)
 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ #
 𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑖𝑛𝑑𝑒𝑥 − 1 , 𝑖𝑛𝑑𝑒𝑥 − 5 , −1) 𝒅𝒐
 𝒊𝒇 𝑁 𝑖 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏
 𝑠 ← 𝑠 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟𝑆𝑐𝑜𝑟𝑒(𝑁 𝑖) # 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑙𝑒𝑥𝑖𝑐𝑜𝑛
 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ #
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 → 𝒈𝒐 𝒕𝒐 33
 𝒇𝒐𝒓 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 𝑖 − 1 , 𝑖 − 5 , −1 𝒅𝒐
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡
 𝒊𝒇 𝑁 𝑖 𝑖𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 # 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑥𝑖𝑐𝑜𝑛
 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ #
 𝑠 ← 𝑠 ∗ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑐𝑜𝑟𝑒 𝑁 𝑖 → 𝒈𝒐 𝒕𝒐 33
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝒊𝒇 𝑁 𝑖 𝑖𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏
 𝑠 ← 𝑠 ∗ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑐𝑜𝑟𝑒 𝑁 𝑖 # 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑥𝑖𝑐𝑜𝑛
 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ #
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 → 𝒈𝒐 𝒕𝒐 33
 𝒇𝒐𝒓 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 𝑖 − 1 , 𝑖 − 5 , −1 𝒅𝒐
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡
 𝒊𝒇 𝑁 𝑖 𝑖𝑠 𝑎 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 #𝑐ℎ𝑒𝑐𝑘 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑙𝑒𝑥𝑖𝑐𝑜𝑛
 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ #
 𝑠 ← 𝑠 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟𝑆𝑐𝑜𝑟𝑒 𝑁 𝑖 → 𝒈𝒐 𝒕𝒐 33
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝑇 ← 𝑇 + 𝑠
 𝑠 ← 0
𝒆𝒏𝒅 𝒇𝒐𝒓

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 65

resources discussed above to get the sentiment

prediction score.

D. Machine Learning Model Training Phase

As per our proposed methodology (Fig. 1), we also

involved the machine learning algorithm (SVM)

with our score calculation algorithm to predict the

final result. Fig. 2 depicts the processes before

feeding training data into the machine learning

algorithm.

Figure 2. ML Model Training

Here, we have used natural language processing

techniques for data preprocessing, including

removing hyperlinks, removing all punctuations,

removing all stop words, lowercase all words in the

sentence, cleaning all symbols, and tokenizing to

split the input sentence into a list of words. In the

transformation step, the TF-IDF technique is used to

transform the tokenized words into a vector. Finally,

the processed data with the sentiment label of each

sentence is fed into the machine learning classifier.

E. Machine Learning Model Testing Phase

In this section, we will discuss how we get the final

score on the testing data. The overall testing phase is

portrayed in Fig. 3. The preprocessing in the testing

phase is slightly different from the training phase as

it requires removing hyperlinks and making

lowercase only before the lexicon-based scoring.

Next, the data is cross-checked with Phrase and

Idiom, Exception, and Emoticon lexicon and

processed as discussed in the previous section. After

removing symbols and tokenization, the data is fed to

the score calculation algorithm, which utilizes

different techniques discussed above to handle

intensifier, negation, sentiment, adjective sends

disambiguation to calculate the total score of the

sentences. According to our proposed method, the

final sentiment prediction score is calculated using

the following expression,

𝑆 𝑠𝑒𝑛𝑡 =
𝑆 𝑠𝑒𝑛𝑡𝐿 , 𝑓𝑜𝑟 𝑆 𝑠𝑒𝑛𝑡𝐿 ≠ 0

𝑆 𝑠𝑒𝑛𝑡𝑆𝑉𝑀 , 𝑓𝑜𝑟 𝑆 𝑠𝑒𝑛𝑡𝐿 = 0

Where: - S(sentL): total score of the sentence using lexicons.

- S(sent): final score of the proposed system.

- S(sentSVM): score by Support Vector Machine.

Figure 3. ML Model Testing

F. Performance Optimization

As our proposed method involves a lexicon-based

approach with huge text preprocessing job, the

system is prone to longer execution time. Nowadays,

even personal computer is getting more powerful

with multiple cores and hyper-threading technology.

As each record of testing data is independent, we can

take the advantage to split it into n partitions and

share every partition with each core of the CPU.

Here, each partition performs the classification task

independently using the proposed method. As

depicted in Fig. 4, all predictions are combined to get

the final score, which brings sufficient improvement

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 66

in execution time than the single-core utilizing

approach.

Figure 4. Performance Optimization

G. System Evaluation Methods

To validate the results by our proposed method, we

have used different performance measures, e.g.,

Accuracy, Confusion Matrix, ROC (Receiver

Operating Characteristics) Curve, and MCC

(Matthews Correlation Coefficient) Score, and

Algorithm Efficiency.

IV. RESULT ANALYSIS

Fig. 5 demonstrates that our proposed method performs

better than any standalone machine learning classifier

like NB, SVM, KNN, etc., or lexicon-based sentiment

classifiers like Vader or TextBlob. Although Naïve

Bayes and SVM's accuracy performance is closer to our

proposed method and relatively stable in all four cases,

other algorithms fluctuated on different datasets. Our

accuracy claim is further strengthened by the ROC

Curve (Fig. 6), Confusion Matrix (Fig. 7), and MCC

Score (Table II). An efficiency comparison is also

portrayed in Table III, where efficiency is a

performance measure that expresses the average

execution time an algorithm takes to complete a specific

task. Here, because of using lexical resources, our

proposed method takes a bit longer training and testing

time; utilizing SQLite3 and the parallel computing

techniques discussed above, the training time of 6.73s

and testing time of 7.20s is attained.

Figure 5. Accuracy Comparison

Figure 6. ROC Curve

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 67

Figure 7. Confusion Matrix

TABLE II. MCC SCORE COMPARISON

Classifier MCC

Score

on

Dataset1

MCC

Score

on

Dataset2

MCC

Score

on

Dataset3

MCC

Score

on

Dataset4

NB 0.47 0.42 0.66 0.54

SVM 0.55 0.48 0.63 0.55

MaxEnt 0.11 0.21 0.56 0.53

KNN 0.23 0.28 0.49 0.47

Random

Forest

0.39 0.37 0.56 0.50

Vader 0.33 0.30 0.62 0.28

TextBlob 0.26 0.35 0.55 0.27

Proposed 0.60 0.54 0.73 0.58

TABLE III. EFFICIENCY COMPARISON

Classifier Training Time Testing Time

NB 0.12 0.05

SVM 6.73 2.48

MaxEnt 5.06 1.37

KNN 1.19 1.17

Random

Forest

10.89 4.46

Vader N/A 1.40

TextBlob N/A 0.77

Proposed 6.73 7.20

V. CONCLUSION

Sentiment analysis has become one of the vital

techniques in making business decisions as it directly

involves the consumer group. Despite the current

progress in this research area, there are still many

challenges as the human opinion and write up in the

form of review is complex and ambiguous. In our

research work, we made an effort to combine the

lexical resources and machine learning model like

SVM to classify sentiment at the sentence-level, and

we have got promising results (>85%) compared to

popular lexicon-based or standalone machine

learning classification algorithms.

VI. REFERENCES

[1] . A. Jurek, M. D. Mulvenna, and Y. Bi,

"Improved lexicon-based sentiment analysis

for social media analytics," Secur. Inform., vol.

4, no. 1, p. 9, Dec. 2015.

[2] . B. Pang, L. Lee, and S. Vaithyanathan,

"Thumbs up?: sentiment classification using

machine learning techniques," in Proceedings

of the ACL-02 conference on Empirical

methods in natural language processing -

EMNLP '02, Not Known, 2002, vol. 10, pp. 79–

86.

[3] . A. Gupta, J. Pruthi, and N. Sahu, "Sentiment

Analysis of Tweets using Machine Learning

Approach," Int. J. Comput. Sci. Mob. Comput.,

vol. 6, no. 4, pp. 444–458, Apr. 2017.

[4] . Department of Computer Science &

Engineering, Heritage Institute of Technology,

Kolkata, India, L. Dey, S. Chakraborty, A.

Biswas, B. Bose, and S. Tiwari, "Sentiment

Analysis of Review Datasets Using Naïve

Bayes' and K-NN Classifier," Int. J. Inf. Eng.

Electron. Bus., vol. 8, no. 4, pp. 54–62, Jul.

2016.

[5] . H. S and R. Ramathmika, "Sentiment Analysis

of Yelp Reviews by Machine Learning," in

Volume 7 | Issue 1 | January-February 2021 | www.ijsrcseit.com

Md Rashed Ibn Nawab et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2021; 7 (1) : 57-69

 68

2019 International Conference on Intelligent

Computing and Control Systems (ICCS), 2019,

pp. 700–704.

[6] . B. Yang and C. Cardie, "Context-aware

Learning for Sentence-level Sentiment

Analysis with Posterior Regularization," in

Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), Baltimore,

Maryland, 2014, pp. 325–335.

[7] . A. Cernian, V. Sgarciu, and B. Martin,

"Sentiment analysis from product reviews

using SentiWordNet as lexical resource," in

2015 7th International Conference on

Electronics, Computers and Artificial

Intelligence (ECAI), 2015, p. WE-15-WE-18.

[8] . C. S. Khoo and S. B. Johnkhan, "Lexicon-based

sentiment analysis: Comparative evaluation of

six sentiment lexicons," J. Inf. Sci., vol. 44, no.

4, pp. 491–511, Aug. 2018.

[9] . H. Wang and J. A. Castanon, "Sentiment

expression via emoticons on social media," in

2015 IEEE International Conference on Big

Data (Big Data), 2015, pp. 2404–2408.

[10] . https://www.yelp.com/dataset (accessed Aug.

03, 2020).

[11] . O. Täckström and R. McDonald, "Discovering

Fine-Grained Sentiment with Latent Variable

Structured Prediction Models," in Proceedings

of the 33rd European Conference on Advances

in Information Retrieval, Berlin, Heidelberg,

2011, pp. 368–374.

[12] . D. Kotzias, M. Denil, N. de Freitas, and P.

Smyth, "From Group to Individual Labels

Using Deep Features," in Proceedings of the

21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining,

New York, NY, USA, 2015, pp. 597–606.

[13] . B. Pang and L. Lee, "Seeing stars: exploiting

class relationships for sentiment categorization

with respect to rating scales," in Proceedings of

the 43rd Annual Meeting on Association for

Computational Linguistics - ACL '05, Ann

Arbor, Michigan, 2005, pp. 115–124.

Cite this Article

Titya Eng, Md Rashed Ibn Nawab, Kazi Md

Shahiduzzaman, "Improving Accuracy of The

Sentence-Level Lexicon-Based Sentiment Analysis

Using Machine Learning", International Journal of

Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 7 Issue 1, pp.

57-69, January-February 2021. Available at

doi : https://doi.org/10.32628/CSEIT21717

Journal URL : http://ijsrcseit.com/CSEIT21717

https://doi.org/10.32628/CSEIT21717
http://ijsrcseit.com/CSEIT21717

