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ABSTRACT 

 

Sentiment Analysis studies people's attitudes, opinions, evaluations, emotions, sentiments toward some 

entities such as products, topics, individuals, services, issues and classify them whether the opinion or 

evaluations inclines to that entities or not. It is getting more research focus in recent years due to its benefits 

for scientific and commercial purposes. This research aims at developing a better approach for sentiment 

analysis at the sentence level by using a combination of lexicon resources and a machine learning method. 

Moreover, as reviews data on the internet is unstructured and has much noise, this research uses different 

preprocessing techniques to clean the data before processing in different algorithms discussed in subsequent 

sections. Additionally, the lexicon building processes, how the lexicon is handled and combined with the 

machine learning algorithm for predicting sentiment is also discussed. In sentiment analysis, sentence's 

sentiment can be classified into three classes: positive sentiment, negative sentiment, or neutral. However, in 

this research work, we have excluded neutral sentiment for avoiding ambiguity and unnecessary complexity. 

The experiment results show that the proposed algorithm outperforms compared to the baseline machine 

learning algorithms. We have used four distinct datasets and different performance measures to check and 

validate the proposed method's robustness. 

Keywords: Sentiment Analysis; Machine Learning; Support vector machine; Lexicon, Natural language 

processing. 

 

I. INTRODUCTION 

 

Sentiment analysis, also known as opinion mining, is 

often modeled as a classification problem. Thus, in 

this paper, we will use sentiment analysis or 

sentiment classification interchangeably. Generally, 

sentiment analysis extracts different features from 

structured or unstructured textual data and analyzes 

them to get opinion, emotions, feeling out of it. In 

this era of the internet, it is relatively easy to get 

customer or stakeholder voice via different channels, 

e.g. blog, social media, customer care service, online 

form and many more. However, an organization can 

adequately utilize this data when they can retrieve 

these feedback's emotion or feelings, and at this 

point, the necessity of the sentiment analysis 

emerges. Moreover, sentiment analysis relieves us 

from the manual labelling or annotating the massive 

amount of data available on the internet, which 

contains valuable information for business decision 

making. Interestingly, sentiment analysis has vast 

application areas, e.g. sales performance prediction, 

election result prediction, box office revenue 

prediction, stock market prediction, expert investor 
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identification, trading strategy formulation, 

characterizing social relations, etc. 

 

Usually, the sentiment classification can be dug 

down up to three different levels, (i) Document-level 

classification, (ii) Sentence-level classification, and 

the more sophisticated (iii) Aspect-level classification. 

In our experiment, we have conducted a sentence-

level sentiment classification. In many reviews, 

people express more than one opinion in a single 

product or service review, usually distributed in 

different sentences. For example, "This mobile phone 

looks excellent. But it is costly!!". There are two 

different opinions in this case. These cases strongly 

advocate the necessity of sentence-level sentiment 

analysis. 

 

Understanding human sentiment towards different 

products or services enables better service, a better 

recommendation system. It also provides crucial 

insights of market trends. As this data is massive, 

manually analyzing the data is almost impossible. In 

this scenario machine learning has come into place 

to solve this problem. Many researchers have been 

trying to find the most accurate way for sentiment 

analysis using different supervised, unsupervised or 

semi-supervised machine learning algorithms, tuning 

the different parameters or modifying existing 

algorithms. As the data related to human language 

has a complex and ambiguous structure, the machine 

learning approaches' performance is still insufficient 

to model this accurately, which reasonably creates a 

scientific research scope. Moreover, supervised ML 

approaches have a dependency on voluminous 

labelled data. 

 

Contrarily, lexicon-based approaches are also popular 

in sentiment analysis which considers semantic 

orientation of words in a text and calculates 

sentiment. A dictionary of positive and negative 

words is developed in this approach where each 

positive or negative word is assigned a sentiment 

value. These values are applied to the review text, 

converted into a bag of words and mapped with the 

dictionaries before [1]. Next, a combining function 

predicts the sentiment of that text. This approach is 

easy to understand. However, this is a slower process 

as it requires matching among massive data. Besides, 

the lexicon building process also plays a key role.   

      

In this context, we need to find a way to handle the 

complexity of the data and provide a faster result 

with better accuracy than the previous standalone 

machine learning or lexicon-based methods. This 

research work addresses three critical issues of 

sentiment analysis 

 

• Some words have a bipolar meaning in different 

contexts, e.g. cheap. 

• The complexity of articulating linguistic patterns 

using ML approaches 

• Performance optimization of lexicon-based 

approach 

 

II.  LITERATURE REVIEW 

 

Sentiment classification is related to natural language 

processing, and it is also a part of big data and data 

mining. There was insufficient research before the 

beginning of the 20th century in both natural 

language processing and in linguistics. The lack of 

opinion text available in digital form was one of the 

reasons. However, with the advancement of 

scientific research and the internet and the growing 

necessity for marketing, analyzing user feedback, and 

subsequent business decision making, this research 

area is getting more interest.  

 

Since sentiment classification is a binary 

classification task, any existing supervised or 

unsupervised machine learning method can be used, 

e.g., Naïve Bayes classification, support vector 

machine (SVM), Maximum Entropy, etc. In [2], we 

can find the first application of ML algorithms in 

sentiment analysis, where the researchers classified 

movie reviews as positive or negative. The author 
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used unigrams (bag of words) as features to feed into 

machine learning to train and classify the document. 

This method performed better on both Naïve Bayes 

and SVM algorithm. The authors in [3] proposed a 

hybrid model combining KNN and SVM with 

different preprocessing and feature generation 

techniques and showed that their model performed 

better than the standalone ML algorithm. We can 

find another case of utilizing the KNN and Naïve 

Bayes algorithm on movie and hotel review datasets 

in [4]. However, their achieved accuracy level in 

most cases is below 70%. Another machine learning-

based approach using the NLTK library on Yelp 

dataset is proposed in [5]. Following their approach, 

they managed to achieve 79.12% accuracy using the 

Naïve Bayes algorithm.  

 

On the contrary, sometimes researchers in sentiment 

analysis also focus on reducing the dependency on 

the ML technique because of its limitations in 

capturing complex linguistic structure and nonlocal 

contextual cues. Being inspired by this issue, authors 

in [6] proposed a sentence-level, context-aware 

approach which is capable of modelling both local 

and global contextual information. Improving CRF 

models, this approach performs better than the state-

of-the-art supervised and unsupervised methods. 

 

A different semantic approach using a lexical 

resource like SentiWordNet is proposed by Cernian 

et al., where results predicted by the system are 

compared against the star ratings from the Amazon 

dataset [7]. A 61% average success rate is attained 

while validating against 300 product reviews, which 

is relatively low compared to our accuracy level.  

 

We can find another lexicon-based approach where 

the authors proposed a general-purpose WKWSCI 

Sentiment Lexicon [8]. This lexicon performs similar 

to other state-of-the-art lexicons in product review 

categorization. However, it performed the best in 

sentiment analysis of news headlines with 69% 

accuracy.   

As emoticon is a critical feature of review data while 

performing sentiment analysis, Wang et al. examined 

the connection between emoticon and opinion in 

Twitter data. In this experiment, he compared the 

performance with and without considering emoticon. 

This study concludes that promising results can be 

achieved in sentiment analysis by careful dealing 

with emoticons [9]. 

 

III.  METHODOLOGY 

 

A. Proposed Architecture Overview 

Our research proposed a hybrid method combining 

lexical resources and machine learning for sentence-

level sentiment classification on online reviews. Fig. 

1 shows the system architecture of our proposed 

method where it is divisible into two main sections, 

(1) lexicon resources, and (2) application of SVM 

(Support Vector Machine), a machine learning 

algorithm. 

 

Our experiment's lexical resources include sentiment, 

negation, intensifier, emoticon, adjective sense 

disambiguation, phrase and idiom, syntax pattern, 

and exception. These lexicon resources work 

together with the machine learning algorithm to 

calculate a given sentence's sentiment score. Like 

other classification tasks, our dataset is divided into 

two parts, training dataset, and testing dataset. 

However, before feeding the data into the classifier, 

we need to execute the following steps, 

 

• Data Preprocessing: tokenization, remove stop 

words and punctuation, cleansing symbols, and 

links. After preprocessing, the Bag of Word 

model is constructed. 

• Transformation: As the machine learning 

algorithms only accept numbers, we need to 

convert text into numbers. Here we have used 

the TF-IDF technique for this transformation. 

Now the input data has become Bag of Features. 

After this transformation, we fed the Bag of 

Features into the SVM classifier to train it.  
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• Before feeding the testing dataset, we again need 

to perform data preprocessing. In this step, we 

have performed uppercase to lowercase 

conversion and removed stop words and 

punctuation. 

• Next, we have checked the sentences with the 

phrase and idiom lexicon and replaced them 

with a score from the lexicon. 

• After that, emoticons in the sentences are 

replaced with a score from the lexicon. 

• In this step, we have tokenized the sentences 

into a Bag of Word. 

• Finally, we have calculated the sentiment score 

using lexicon resources and combined it with the 

machine learning score to predict the final result. 

 

 
Figure 1. System Architecture of Proposed Method 

 

B. Dataset 

Considering all the constraints, we will use the JSON 

format dataset on the Yelp website [10] in our 

experiment. The dataset contains many reviews from 

different domains encompassing restaurants, hotels, 

food, shopping, bar, beauty salon, dentists, etc. 

Firstly, we will collect 10,000 records of sentence-

level reviews from the Yelp dataset in the restaurant 

domain. As collecting datasets is challenging and 

time-consuming, we employed an algorithm to 

automatically pick up the sentiment sentences from 

the reviews and automatically annotate the label 

using star ratings in the dataset. Here, we picked the 

last sentence of the review as it is most likely to 

contain sentiment and label it according to the star 

rating given by reviews. We annotated the two-star 

and one-star reviews as negative sentiment sentences 

and set the sentiment score to 0. Four-star and five-

star reviews are marked as positive sentiment 

sentences. Hence, we set the sentiment score for 

these sentences to 1. We also considered that three-

star reviews bear no sentiment, thus omitted. 

Encompassing all these considerations, Algorithm-1 

filters the sentiment sentences to form a suitable 

dataset for lexicon preparation and testing. 

 

Algorithm-1: Filter Review Sentence from Dataset 

 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Input: 𝑁 ←  𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 [ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 , 𝑙𝑎𝑏𝑒𝑙 ] 
𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈  𝑁 𝒅𝒐 

 𝑅 ← 𝑖𝑡𝑒𝑚 [ ′  𝑡𝑒𝑥𝑡 ′  ] 
 ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 

 ST ←  𝑠𝑒𝑛𝑡_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒  𝑅   [−1] 
 𝑆𝑅𝑆 ←  1 

 𝒊𝒇 𝑖𝑡𝑒𝑚 [ ′  𝑠𝑡𝑎𝑟𝑠 ′  ]  ==  3  𝐭𝐡𝐞𝐧 

  𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆 

 𝒊𝒇 𝑖𝑡𝑒𝑚 [ ′  𝑠𝑡𝑎𝑟𝑠 ′  ]  <  3 𝒕𝒉𝒆𝒏 

  𝑆𝑅𝑆 ←  0 

 𝑇 ←    𝑅 , 𝑆𝑅𝑆   
𝒆𝒏𝒅 𝒇𝒐𝒓 

𝑊𝑟𝑖𝑡𝑒 𝑙𝑖𝑠𝑡 𝑇 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 𝐹  

 
 

 

TABLE I. SUMMARY OF THE DATASETS 

Dataset 
Positive 

Sentence 

Negative 

Sentence 
Total 

Dataset 1 

[10] 
7,408 2,592 10,000 

Dataset 2 

[11] 
923 1,320 2,243 

Dataset 3 

[12] 
1,500 1,500 3,000 

Dataset 4 

[13] 
5,331 5,331 10,662 
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To validate the performance and to check the 

robustness of our proposed method against the 

baseline sentiment classification algorithms (naïve 

Bayes, support vector machine, random forest, k-

nearest neighbor, maximum entropy, Vader 

Sentiment, and TextBlob), along with the Yelp 

dataset, we are going to use three other datasets as 

described in Table I. 

C. Lexicon Generation Algorithms and Scoring 

(i) Sentiment Lexicon 

Sentiment words are an essential part of the lexicon-

based analysis. Though we use many sentiment 

words in our daily life, reviewers use many different, 

new, and strange sentiment words on the internet. 

Hence, to achieve better accuracy, we should not just 

consider commonly used words. In this experiment, 

we have used the available resources from [13] and 

the Yelp dataset to build a sentiment lexicon. As the 

dataset is huge and searching sentiment words 

manually is a tedious job, we have exploited 

Algorithm-2 to automate the process. 

 
Algorithm-2: Finding Sentiment Word 

 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Input: 𝑁 ←  𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 
Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑆 = (𝑅 , 𝑆𝑆𝑊 , 𝑆𝑅𝑆 ) 
𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈  𝑁 𝒅𝒐 
 𝑅 ←  𝑖𝑡𝑒𝑚[ ′  𝑡𝑒𝑥𝑡 ′  ] 
 𝒊𝒇 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑤𝑜𝑟𝑑 𝑓𝑟𝑜𝑚 𝑁𝐺: 
  𝑆𝑅𝑆 ←  1 
  𝒊𝒇 𝑖𝑡𝑒𝑚[ ′  𝑠𝑡𝑎𝑟𝑠 ′  ] == 3 then 
   𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆 
  𝒊𝒇 𝑖𝑡𝑒𝑚[ ′  𝑠𝑡𝑎𝑟𝑠 ′  ]  <  3 𝒕𝒉𝒆𝒏 
   𝑆𝑅𝑆 ←  0 
  𝑇 ←  [ 𝑅 , 𝑆𝑅𝑆 ] 
𝒆𝒏𝒅 𝒇𝒐𝒓 
𝐿 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑟 ,   𝑠𝑟𝑠 ∈ 𝑇 𝒅𝒐 
 𝑇 ←  𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 ( 𝑟 ) 
 𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠 ( 𝑇 ) 
 𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑠 ( 𝑇 ) 
 𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ( 𝑇 ) 
 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑑𝑒𝑥 , 𝑤 ∈  𝑇 𝒅𝒐 
  𝒊𝒇 𝑠𝑟𝑠 > 0 𝒕𝒉𝒆𝒏 
   𝑆𝑊𝑆 ←  𝑆𝑒𝑛𝑡𝑖𝑊𝑜𝑟𝑑𝑛𝑒𝑡_𝑆𝑐𝑜𝑟𝑒( 𝑤 ) 
   𝒊𝒇 𝑆𝑊𝑆. 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒 >  0.4 𝒕𝒉𝒆𝒏 
    𝐿 ←  [ 𝑤 , 1 , # ] 
   𝒊𝒇 𝑆𝑊𝑆. 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒 >  0.4 𝒕𝒉𝒆𝒏 
    𝐿 ←  [ 𝑤 , 𝑆𝑊𝑆. 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒 , 1 ] 
  𝒆𝒍𝒔𝒆 𝒊𝒇 𝑠𝑟𝑠 == 0 𝒕𝒉𝒆𝒏 
   𝑆𝑊𝑆 ←  𝑆𝑒𝑛𝑡𝑖𝑊𝑜𝑟𝑑𝑛𝑒𝑡_𝑆𝑐𝑜𝑟𝑒( 𝑤 ) 
   𝒊𝒇 𝑆𝑊𝑆. 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒 >  0.4 𝒕𝒉𝒆𝒏 
    𝐿 ← [ 𝑤 , 𝑆𝑊𝑆. 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒 , −1 ] 
   𝒊𝒇 𝑆𝑊𝑆. 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒 >  0.4 𝒕𝒉𝒆𝒏 
    𝐿 ←  [ 𝑤 , 0 , # ] 
 𝒆𝒏𝒅 𝒇𝒐𝒓 
𝒆𝒏𝒅 𝒇𝒐𝒓 
𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑖𝑡𝑒𝑚 𝑓𝑟𝑜𝑚 𝐿 
𝑊𝑟𝑖𝑡𝑒 𝑙𝑖𝑠𝑡 𝐿 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 𝐹 

 
 

After getting the Yelp dataset as input, Algorithm-2 

filters out reviews that have negative words. Then it 

labels the review texts according to the star rating. If 

the review item has a four or five stars rating, then 

the algorithm labels it as positive. For one or two 

stars, the review item is labeled as negative. The 

review item that has a three-star rating is omitted as 

it might contain no sentiment. Next, the result is 

saved with structure S = (R, SRS) to list T. For every 

item in list T, the algorithm tokenizes the sentences 

using the natural language processing toolkit 

(NLPTK), and then it filters out unnecessary words 

such as negative words, stop words, numbers, and 

symbols. After that, for every word in the tokenized 

sentence, if the label of that sentence is positive, 

check the score S of the word using the 

SentiWordnet lexicon resource. If the positive score 

of S is bigger than 0.4, append S=(W, 1, #) to list L or 

if the negative score of S is bigger than 0.4, append 

S=(W, SSW-, 1) to list L. Contrarily, in case of the 

tokenized sentence labeled as negative, if the positive 

score of S is bigger than 0.4 then append S=(W, 

SSW+, -1) to list L or if the negative score of S is 

bigger than 0.4 then append S=(W, 0, #) to list L. 

Finally, all duplicate words are removed from list L, 

and an output file is generated. The sentiment word 

lexicon is also stored in an SQLite3 database with 

structure (id, word, value, comment) for further and 

faster retrieval in our experiment. Next, for score 

calculation of any review sentence, we need to 

utilize SQL command and check word by word in 

the sentiment lexicon. If found, the algorithm 

retrieves the associated score. The algorithm 

proceeds searching otherwise. 

 

(ii) Intensifier Lexicon 

Intensifier words are adverbs that can influence the 

strength of the sentiment word. It can lower or 

higher the strength of the sentiment words or even 

reverse the value to negative or positive, e.g., very, so, 

amazingly, tremendously, extremely, totally, 

amazingly, etc., are intensifiers that strengthen the 

value of sentiment. The intensifiers such as slightly, 
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almost, could, might, hardly, rarely, seldom, fairly, 

nearly, etc., lower the strength of the sentiment 

words. There are also some words that can reverse 

the sentiment, e.g., less, few, etc. We have used 

Algorithm-3 and Yelp dataset to build an intensifier 

lexicon in our experiment.  

 
Algorithm-3: Find Intensifier Words in Dataset 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Input: 𝑁 ←  𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 
Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 

𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐 

 𝑅 ←  𝑖𝑡𝑒𝑚[ ′  𝑡𝑒𝑥𝑡 ′  ] 
 TK ←  𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 ( 𝑅 ) 

 P ←  𝑝𝑜𝑠_𝑡𝑎𝑔 ( 𝑇𝐾 ) 

 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑤𝑜𝑟𝑑 , 𝑝𝑜𝑠 ∈ 𝑃 𝒅𝒐 

  𝒊𝒇 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 𝑘 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑤𝑜𝑟𝑑 && 𝑖𝑡 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝒕𝒉𝒆𝒏 

   𝒊𝒇 𝑘 >  1 && 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥  𝑘 − 1   𝑖𝑠 𝑎𝑛 𝑎𝑑𝑣𝑒𝑟𝑏 𝒕𝒉𝒆𝒏 

    𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥  𝑘 − 1   𝑖𝑠 𝑙𝑖𝑘𝑒𝑙𝑦 𝑡𝑜 𝑏𝑒 𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑜𝑟𝑑 

    𝑇 ← 𝑤𝑜𝑟𝑑 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 [ 𝑘 − 1 ] 
 𝒆𝒏𝒅 𝒇𝒐𝒓 

𝒆𝒏𝒅 𝒇𝒐𝒓 

𝑇 ← 𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑖𝑡𝑒𝑚 𝑓𝑟𝑜𝑚 𝑇 

𝑊𝑟𝑖𝑡𝑒 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 𝐹 

  

In Algorithm-3, after tokenizing the review text item, 

if any tokenized word is an adjective and resembles a 

sentiment word, the word before it is likely to be an 

intensifier. Besides, if there exists a word before 

sentiment word and that word is an adverb, the word 

also needs to enlist. Finally, after removing all 

duplicate words from the list, an output file 

containing the list of intensifier words is generated. 

The final list is checked manually to remove the 

wrong words if there is any, and a score is assigned to 

each intensifier according to its meaning. The score 

lies between [-0.1, 2]. 

 

To calculate the intensifier score, firstly, we look for 

sentiment words in the sentence. If found, need to 

search for the intensifier to the left for the window 

size of five. After finding an intensifier, we need to 

multiply the sentiment word score with the 

intensifier word score. The searching continues 

otherwise. The score calculation process is as follows, 

 
S = S(I)*S(SW) 

good => very good = (2) * (1) = 2 => positive sentiment 

bad => so bad = (2) * (-1) = -2 => negative sentiment 

amazing => absolutely amazing = (2) * (1) = 2 => positive sentiment 

good => totally good = (2) * (1) = 2 => positive sentiment  
 

(iii) Negation Lexicon 

Negation lexicon resource is a list of negative 

indicating words. Handling negation is a crucial step 

in our research work, as it can reverse the polarity or 

reduce the strength of the sentiment word. Improper 

management of the negation lexicon may also lead to 

lower sentiment prediction accuracy. In our 

experiment, we divided the negation lexicon into 

three categories, (1) Negative words which change 

the polarity of the sentiment, e.g. "not good", "lack of 

good point", "nothing is good", "need to improve", 

"none of this work", "hasn't any good", "missing good 

part", "won't work", etc. (2) Negative words which 

lower the strength of the sentiment when occurred 

before some sentiment words. It is a list of words 

that does not invert the meaning of the sentiment, 

but it changes the intensifier of the opinion words; 

for example, "not the best" means it's okay, "not 

perfect" means it is okay, "not excellent" also means 

it's okay. (3) Negative words with no effect on the 

sentiment when used before some specific words, e.g. 

"not only", "no wonder", "no end of", "not to 

mention", "no matter what", etc. 

 

Negation score is calculated after intensifier scoring. 

Next, the algorithm searches for a negative word that 

precedes the sentiment word for a window of five. If 

found, the sentiment word score is multiplied with 

the intensifier score. Besides, if the intensifier meets 

with superlative in sentiment word, then it will not 

change the polarity of the sentiment word; it only 

changes the strength to lower value. Score 

calculation for negation, intensifier, and sentiment 

word is as follows, 

 

(iv) Emoticon Lexicon 

In recent times, we can see the huge popularity and 

use of different emoticons on social networks, online 

stores, and review websites like Amazon, Yelp, eBay, 

etc. Emoticons are also a vital feature in sentiment 

analysis. Here, we have utilized the compiled list of 

positive and negative emoticons used in [9]. We also 

took the effort to manually add more emoticons to 

S = S(N) * S(I) * S(SW) 

very good => not very good = (-1) (2) * (1) = -2 => negative sentiment 

 bad => not bad = (-1) *(-1) = 1 => positive sentiment 

 the best => not the best => (1/2) * (2) = 1 => still positive sentiment 

 the worst => not the worst => (1/2) * (-1) = 1 => still negative sentiment 
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the list. After that, each emoticon is labelled with a 

score depending on the polarity of the sentiment. A 

positive emoticon has a +2 score, and a negative 

emoticon has -2 score. If an emoticon is found in a 

sentence, it is replaced by # and assign its score to the 

algorithm for further calculation. Importantly, the 

score for the emoticon needs to calculate before the 

symbol preprocessing step. The algorithm first gets 

each of the pair of (emoticon, value) in the lexicon 

and search for emoticon in the review sentence. If 

found, then it removes that emoticon and assigns the 

score to the review sentence. 

(v) Phrase and Idiom Lexicon 

Phrase and idiom is another critical lexicon to deal 

with in our research. Here we have considered the 

phrases and idioms which trigger sentiment, e.g., 

phrases like "stay away", "hardworking", "mess up", 

"over price", "can't stand", "let down", "make fun of" 

etc. and idioms like "chew someone out", "cost 

someone an arm and a leg", "shooting fish in a barrel", 

"a piece of cake", and many more. As phrases and 

idioms are formed by more than one word, so it must 

be handled after text preprocessing and before 

tokenization. For dealing with this issue, if any 

phrase and idiom are found in a sentence, our 

proposed method would replace those words with a 

word, "good" or "bad", depending on the meaning of 

the phrase and idiom. So it can be further processed 

by our negation and intensifier algorithm for score 

calculation. For example, 

 

There are also some group of words which contain 

negation word, but it does not change the meaning 

of that phrase at all. We have addressed these phrases 

as the exception lexicon. This lexicon is stored 

together with the phrases and idioms lexicon file 

because we will process them at the same time with a 

very similar algorithm before the tokenization step 

and obviously after text preprocessing. The only 

difference is it will not add any score to the total 

score of the sentence. To do so, we need to check 

each item in the exception lexicon, and if found, we 

need to simply remove the phrase from the sentence, 

e.g. 

(vi) Adjective Sense Disambiguation 

Adjective sense disambiguation is a technique used to 

differentiate the meaning of an adjective in a 

different context. For example, cheap ticket, cheap 

flight, reveals positive sentiment. Contrarily, cheap 

seller, cheap quality, cheap material triggers negative 

sentiment towards the seller. In our proposed 

method, we explored the adjective sense 

disambiguation using a nearby noun.  

Algorithm-4 and Yelp dataset is used to query nearby 

nouns of sentiment words and label the sentiment of 

that co-occurrence. In this task, we have only 

considered the most commonly used and bipolar 

adjective only, e.g., great, hot, cheap, crazy, small, 

big, high, low, heavy, light, huge, thick, deep, and 

few, etc. 

Algorithm-4: Adjective Sense Disambiguation 

 
 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Input: 𝑁 ←  𝑌𝑒𝑙𝑝 𝐽𝑆𝑂𝑁 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ,      𝐴𝑊 ←  𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 
  𝑁𝐺 ←  𝑙𝑖𝑠𝑡 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠 
Output: 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑆 =  ( 𝑁𝑁 , 𝑆𝑊 , 𝑆𝑉 , 𝐶𝑆 ) 
𝑇 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑡𝑒𝑚 ∈ 𝑁 𝒅𝒐 
 𝑅 ←  𝑖𝑡𝑒𝑚[ ′  𝑡𝑒𝑥𝑡 ′  ] 
 𝒊𝒇 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑤𝑜𝑟𝑑 𝑓𝑟𝑜𝑚 𝑁𝐺: 
  𝑆𝑅𝑆 ←  1  
  𝒊𝒇 𝑖𝑡𝑒𝑚[ ′  𝑠𝑡𝑎𝑟𝑠 ′  ] == 3 then 
   𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆 
  𝒊𝒇 𝑖𝑡𝑒𝑚[ ′  𝑠𝑡𝑎𝑟𝑠  ′  ]  <  3 𝒕𝒉𝒆𝒏 
   𝑆𝑅𝑆 ←  0  
  𝑇 ←  [ 𝑅 , 𝑆𝑅𝑆 ] 
𝒆𝒏𝒅 𝒇𝒐𝒓 
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑤𝑜𝑟𝑑 ∈ 𝐴𝑊 𝒅𝒐 
 LW 𝑎𝑛 𝑒𝑚𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 
 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑟 , 𝑠𝑟𝑠 ∈  𝑇 𝒅𝒐 
  𝑇 ←  𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑟) 
  𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠 (𝑇) 
  𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑠 (𝑇) 
  𝑇 ←  𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 (𝑇) 
  P  ←   𝑝𝑜𝑠_𝑡𝑎𝑔(𝑇) 
  𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑑𝑒𝑥 , 𝑤 , 𝑝𝑜𝑠 ∈ 𝑃 𝒅𝒐 
   𝒊𝒇 𝑤 == 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 
    𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 ( 𝑖𝑛𝑑𝑒𝑥 + 1 , 𝑖𝑛𝑑𝑒𝑥 + 3 ) 𝒅𝒐 
     ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[ 𝑤 ][ 𝑖 ] 𝑖𝑠 𝑎𝑛 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑤𝑜𝑟𝑑 
     ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[ 𝑝𝑜𝑠 ][ 𝑖 ] 𝑖𝑠 𝑎 𝑛𝑜𝑢𝑛 
     ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃  𝑤   𝑖   𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐿𝑊 
     𝐿𝑊 ← [ 𝑆𝑅𝑆 , 𝑤 , 𝑃  𝑤   𝑖  , 𝑟] 
    𝒆𝒏𝒅 𝒇𝒐𝒓 
    𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒( 𝑖𝑛𝑑𝑒𝑥 −  1 , 𝑖𝑛𝑑𝑒𝑥 −  5 , −1 ) 𝒅𝒐 
     ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃  𝑤   𝑖  𝑖𝑠 𝑣𝑒𝑟𝑏 𝑡𝑜𝑏𝑒 
     𝒇𝒐𝒓 𝒋 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 ( 𝑖 −  1 , 𝑖 −   3 , −1 ) 𝒅𝒐 
      ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[ 𝑤 ][ 𝑖 ] 𝑖𝑠 𝑎𝑛 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑤𝑜𝑟𝑑 
      ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃[ 𝑝𝑜𝑠 ][ 𝑖 ] 𝑖𝑠 𝑎 𝑛𝑜𝑢𝑛 
      ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑃  𝑤   𝑖   𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐿𝑊 
      𝐿𝑊 ← [ 𝑆𝑅𝑆 , 𝑤 , 𝑃  𝑤   𝑖   , 𝑟] 
    𝒆𝒏𝒅 𝒇𝒐𝒓 
   𝒆𝒏𝒅 𝒊𝒇 
  𝒆𝒏𝒅 𝒇𝒐𝒓 
 𝒆𝒏𝒅 𝒇𝒐𝒓 
 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑓𝑖𝑙𝑒 𝐹 𝑛𝑎𝑚𝑒 ′𝑤𝑜𝑟𝑑. 𝑐𝑠𝑣′ 
 𝐹 ←  𝐿𝑊 
𝒆𝒏𝒅 𝒇𝒐𝒓 

 

not only => remove from sentence  

no wonder => remove from sentence 

not to mention => remove from sentence 

not just => remove from sentence     

over price => bad => negative sentiment,  

not over price => not bad => positive sentiment 

can’t stand => bad => negative sentiment 

thumb up => good => positive sentiment 

break a leg (means good luck) => good => positive sentiment 
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After manual inspection to remove wrong words, 

this file is saved into the SQLite3 database with the 

following structure S = (Id, Word, Value, 

IsAmbiguous, Pos_Nouns, Neg_Nouns). Here, Word 

is the sentiment word. Value is the value of a 

sentiment word, and it can be [-1, -2, 1, 2]. 

IsAmbiguous indicates if that sentiment word is 

ambiguous. Pos_Nouns contains a list of nouns that 

change the polarity of sentiment words to positive. 

Neg_Nouns contains a list of nouns that change the 

polarity of sentiment words to negative. 

 

(vii) Syntax Pattern 

Besides all the different types of lexicons, there exists 

some syntax that looks like a negative sentence, but 

it is actually a positive sentence, e.g., I can't 

recommend it enough, I couldn't agree more, I can't 

recommend this any higher, etc. So, if we follow the 

steps we just discussed, it may result in an incorrect 

prediction. For example, "Can't" in "I can't 

recommend it enough" is an intensifier word that is 

equal to -1, recommend is a sentiment word that is 

equal to 1. Hence, "can't recommend" = (-1) * (1) = -1, 

which is definitely not the real meaning of the 

sentence. Actually, this is a positive sentiment 

sentence that means it is so good that the opinion 

holder cannot describe it enough. These sentences 

can be handled by looking for sentences that contain 

sentiment words in the pattern: "couldn't…more" or 

"can't…more", "…can't recommend…higher", etc., 

then score them according to the intrinsic meaning. 

 

(viii) Score Calculation Algorithm 

Finally, Algorithm-5 is used to accumulate and 

combine all the calculated scores using the lexicon 

Algorithm-5: Score Calculation Algorithm 

 
 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

Input: 𝑁 ←  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝  
 𝑆 ←  𝑠𝑐𝑜𝑟𝑒 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑚𝑜𝑡𝑖𝑐𝑜𝑛 𝑙𝑒𝑥𝑖𝑐𝑜𝑛  
Output: 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 
𝑇 ←  𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 ( 𝑁 ) 
Total ← 𝑆 
𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑑𝑒𝑥 , 𝑖𝑡𝑒𝑚 ∈  𝑁 𝒅𝒐 
 𝑠 ← 0 
 𝒊𝒇 𝑁[ 𝑖𝑛𝑑𝑒𝑥 ] 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑤𝑜𝑟𝑑: 
  r𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ # 
  𝒊𝒇 𝑁  𝑖𝑛𝑑𝑒𝑥   𝑖𝑠 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝒕𝒉𝒆𝒏.  # 𝑐ℎ𝑒𝑐𝑘 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑙𝑒𝑥𝑖𝑐𝑜𝑛 
   𝑛𝑙𝑖𝑠𝑡 ←   𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑛𝑜𝑢𝑛 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑤𝑜𝑟𝑑 𝑁[ 𝑖𝑛𝑑𝑒𝑥 ] 
   𝒊𝒇 𝑁 𝑖𝑛𝑑𝑒𝑥 + 1  𝑜𝑟 𝑁  𝑖𝑛𝑑𝑒𝑥 +  2   𝑖𝑛 𝑛𝑙𝑖𝑠𝑡 𝒕𝒉𝒆𝒏  
    𝑠 ←   −1  ∗  𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒( 𝑁  𝑖𝑛𝑑𝑒𝑥   ) 
   𝒆𝒍𝒔𝒆 
    𝑠 ←  𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒(𝑁  𝑖𝑛𝑑𝑒𝑥  ) 
   𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ # 
  𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒( 𝑖𝑛𝑑𝑒𝑥 − 1 , 𝑖𝑛𝑑𝑒𝑥 − 5 , −1) 𝒅𝒐 
   𝒊𝒇 𝑁  𝑖   𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 
    𝑠 ← 𝑠 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟𝑆𝑐𝑜𝑟𝑒(𝑁  𝑖  ) # 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑙𝑒𝑥𝑖𝑐𝑜𝑛 
    𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ # 
    ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁  𝑖   𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 → 𝒈𝒐 𝒕𝒐 33 
    𝒇𝒐𝒓 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒  𝑖 − 1 , 𝑖 − 5 , −1   𝒅𝒐 
     ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁  𝑖   𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 
     𝒊𝒇 𝑁  𝑖   𝑖𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 # 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑥𝑖𝑐𝑜𝑛 
      𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ # 
      𝑠 ←  𝑠 ∗  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑐𝑜𝑟𝑒 𝑁  𝑖    → 𝒈𝒐 𝒕𝒐  33 
    𝒆𝒏𝒅 𝒇𝒐𝒓 
   𝒊𝒇 𝑁  𝑖   𝑖𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 
    𝑠 ←  𝑠 ∗  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑐𝑜𝑟𝑒  𝑁  𝑖     # 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑥𝑖𝑐𝑜𝑛  
    𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ # 
    ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁  𝑖   𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 → 𝒈𝒐 𝒕𝒐 33 
    𝒇𝒐𝒓 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒  𝑖 − 1 , 𝑖 − 5 , −1   𝒅𝒐 
     ⋗ 𝑞𝑢𝑖𝑐𝑘 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑁  𝑖   𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 
     𝒊𝒇 𝑁  𝑖   𝑖𝑠 𝑎 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑜𝑟𝑑 𝒕𝒉𝒆𝒏 #𝑐ℎ𝑒𝑐𝑘 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 𝑙𝑒𝑥𝑖𝑐𝑜𝑛 
      𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑜𝑟𝑑 𝑤𝑖𝑡ℎ # 
      𝑠 ←  𝑠 ∗  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟𝑆𝑐𝑜𝑟𝑒  𝑁  𝑖     → 𝒈𝒐 𝒕𝒐  33 
    𝒆𝒏𝒅 𝒇𝒐𝒓 
  𝒆𝒏𝒅 𝒇𝒐𝒓 
 𝑇 ←  𝑇 +  𝑠 
 𝑠 ←  0 
𝒆𝒏𝒅 𝒇𝒐𝒓 
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resources discussed above to get the sentiment 

prediction score. 

 

D. Machine Learning Model Training Phase 

As per our proposed methodology (Fig. 1), we also 

involved the machine learning algorithm (SVM) 

with our score calculation algorithm to predict the 

final result. Fig. 2 depicts the processes before 

feeding training data into the machine learning 

algorithm. 

 

 
Figure 2. ML Model Training 

 

Here, we have used natural language processing 

techniques for data preprocessing, including 

removing hyperlinks, removing all punctuations, 

removing all stop words, lowercase all words in the 

sentence, cleaning all symbols, and tokenizing to 

split the input sentence into a list of words. In the 

transformation step, the TF-IDF technique is used to 

transform the tokenized words into a vector. Finally, 

the processed data with the sentiment label of each 

sentence is fed into the machine learning classifier. 

 

E. Machine Learning Model Testing Phase 

In this section, we will discuss how we get the final 

score on the testing data. The overall testing phase is 

portrayed in Fig. 3. The preprocessing in the testing 

phase is slightly different from the training phase as 

it requires removing hyperlinks and making 

lowercase only before the lexicon-based scoring. 

Next, the data is cross-checked with Phrase and 

Idiom, Exception, and Emoticon lexicon and 

processed as discussed in the previous section. After 

removing symbols and tokenization, the data is fed to 

the score calculation algorithm, which utilizes 

different techniques discussed above to handle 

intensifier, negation, sentiment, adjective sends 

disambiguation to calculate the total score of the 

sentences. According to our proposed method, the 

final sentiment prediction score is calculated using 

the following expression, 

 

𝑆 𝑠𝑒𝑛𝑡 =   
𝑆 𝑠𝑒𝑛𝑡𝐿       ,         𝑓𝑜𝑟 𝑆 𝑠𝑒𝑛𝑡𝐿 ≠ 0

𝑆 𝑠𝑒𝑛𝑡𝑆𝑉𝑀 ,            𝑓𝑜𝑟 𝑆 𝑠𝑒𝑛𝑡𝐿 = 0
 

 
Where:   -  S(sentL): total score of the sentence using lexicons. 

- S(sent): final score of the proposed system. 

- S(sentSVM): score by Support Vector Machine.  
 

 
Figure 3. ML Model Testing 

 

F. Performance Optimization 

As our proposed method involves a lexicon-based 

approach with huge text preprocessing job, the 

system is prone to longer execution time. Nowadays, 

even personal computer is getting more powerful 

with multiple cores and hyper-threading technology. 

As each record of testing data is independent, we can 

take the advantage to split it into n partitions and 

share every partition with each core of the CPU. 

Here, each partition performs the classification task 

independently using the proposed method. As 

depicted in Fig. 4, all predictions are combined to get 

the final score, which brings sufficient improvement 
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in execution time than the single-core utilizing 

approach. 

 

Figure 4. Performance Optimization 

 

G. System Evaluation Methods 

To validate the results by our proposed method, we 

have used different performance measures, e.g., 

Accuracy, Confusion Matrix, ROC (Receiver 

Operating Characteristics) Curve, and MCC 

(Matthews Correlation Coefficient) Score, and 

Algorithm Efficiency. 

 

IV.   RESULT ANALYSIS 

 

Fig. 5 demonstrates that our proposed method performs 

better than any standalone machine learning classifier 

like NB, SVM, KNN, etc., or lexicon-based sentiment 

classifiers like Vader or TextBlob. Although Naïve 

Bayes and SVM's accuracy performance is closer to our 

proposed method and relatively stable in all four cases, 

other algorithms fluctuated on different datasets. Our 

accuracy claim is further strengthened by the ROC 

Curve (Fig. 6), Confusion Matrix (Fig. 7), and MCC 

Score (Table II). An efficiency comparison is also 

portrayed in Table III, where efficiency is a 

performance measure that expresses the average 

execution time an algorithm takes to complete a specific 

task. Here, because of using lexical resources, our 

proposed method takes a bit longer training and testing 

time; utilizing SQLite3 and the parallel computing 

techniques discussed above, the training time of 6.73s 

and testing time of 7.20s is attained. 

 
Figure 5. Accuracy Comparison 

 

Figure 6. ROC Curve 
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Figure 7. Confusion Matrix 

 

TABLE II. MCC SCORE COMPARISON 

Classifier MCC 

Score 

on 

Dataset1 

MCC 

Score 

on 

Dataset2 

MCC 

Score 

on 

Dataset3 

MCC 

Score 

on 

Dataset4 

NB 0.47  0.42  0.66 0.54 

SVM 0.55  0.48  0.63  0.55  

MaxEnt 0.11  0.21  0.56  0.53  

KNN 0.23  0.28  0.49  0.47  

Random 

Forest 

0.39 0.37 0.56 0.50 

Vader 0.33  0.30  0.62  0.28  

TextBlob 0.26  0.35  0.55  0.27  

Proposed 0.60  0.54  0.73  0.58  

 

TABLE III. EFFICIENCY COMPARISON 

 

Classifier Training Time Testing Time 

NB 0.12 0.05 

SVM 6.73 2.48 

MaxEnt 5.06 1.37 

KNN 1.19 1.17 

Random 

Forest 

10.89 4.46 

Vader N/A 1.40 

TextBlob N/A 0.77 

Proposed 6.73 7.20 

 

V. CONCLUSION 

 

Sentiment analysis has become one of the vital 

techniques in making business decisions as it directly 

involves the consumer group. Despite the current 

progress in this research area, there are still many 

challenges as the human opinion and write up in the 

form of review is complex and ambiguous. In our 

research work, we made an effort to combine the 

lexical resources and machine learning model like 

SVM to classify sentiment at the sentence-level, and 

we have got promising results (>85%) compared to 

popular lexicon-based or standalone machine 

learning classification algorithms. 
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