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ABSTRACT 

 

Moving Object Databases (MOD), although ubiquitous, still call for methods 

that will be able to understand, search, analyze, and browse their 

spatiotemporal content. In this paper, we propose a method for trajectory 

segmentation and sampling based on the representativeness of the (sub) 

trajectories in the MOD. In order to find the most representative sub 

trajectories, the following methodology is proposed. First, a novel global voting 

algorithm is performed, based on local density and trajectory similarity 

information. This method is applied for each segment of the trajectory, forming 

a local trajectory descriptor that represents line segment representativeness. 

The sequence of this descriptor over a trajectory gives the voting signal of the 

trajectory, where high values correspond to the most representative parts. 

Then, a novel segmentation algorithm is applied on this signal that 

automatically estimates the number of partitions and the partition borders, 

identifying homogenous partitions concerning their representativeness. Finally, 

a sampling method over the resulting segments yields the most representative 

sub trajectories in the MOD. Our experimental results in synthetic and real 

MOD verify the effectiveness of the proposed scheme, also in comparison with 

other sampling techniques. 

Keywords : Trajectory Segmentation, Sub Trajectory Sampling, Data Mining, 

Moving Object Databases. 

 

 

I. INTRODUCTION 

 

Nowadays, there is a tremendous increase of Moving 

Objects Databases (MOD) due to, on the one hand, 

location-acquisition technologies like GPS and GSM 

networks and, on the other hand, computer vision-

based tracking techniques. This explosion of 

information combines an increasing interest in the 

area of trajectory data mining and, more generally, 

knowledge discovery from movement-aware data. All 

these technological achievements require new 

services, software methods, and tools for 
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understanding, searching, retrieving, and browsing 

spatiotemporal trajectories content. In this paper, we 

tackle a problem combining three different aspects. 

First of all, we study the problem of alternative 

representations of trajectories of moving objects 

(other than the usual sequences of 3D line segments), 

according to contextual information that can be 

automatically derived by the total trajectory 

population. More specifically, we investigate for an 

effective way to represent each trajectory by a 

continuous function that implicitly describes the 

“representativeness” of each constituent part of it (i.e., 

a segment) w.r.t. the whole MOD. Given such an 

intuitive representation, a second interesting arising 

problem is that of its segmentation in a way that an 

analyst could gain insight into “representative” (i.e., 

interesting, dense, frequent) portions (i.e., 

subtrajectories), but also into “nonrepresentative” 

parts, which are also of interest in various application 

scenarios (for example, in detecting movement 

outliers). On top of the previous issues, and due to 

the complex nature of the trajectory data and the vast 

volumes of MOD, a third interesting problem arises; 

that of “trajectory sampling.” This is a very 

challenging problem where very limited work has 

been carried out so far. An insightful solution to the 

problem would be an analyst to be able to supervise 

the sampling procedure, not only regarding the 

volume of the sampled data set, but also the 

properties of the data set that reveal the underlying 

movement patterns of the MOD. In this paper, we 

argue that this problem can be effectively tackled if 

interconnected to the previous two discussed 

problems. In other words, we propose an automatic 

method for subtrajectory sampling based on the 

“representativeness” of the subtrajectories. In this 

approach, an analyst may request the top-k 

representative subtrajectories that best describe the 

MOD in an optimized way, where optimization is 

with respect to the “representativeness.”  an example 

of a MOD comprised by four trajectories ðfT1; . . . ; 

T4gÞ and the top-2 representative subtrajectories 

ðfS1; S2gÞ that best describe the MOD. 

 

CHARACTERISTICS 

 

 In this section, we review existing works in the 

domains related with the current work. In our setting, 

representative (sub)trajectories are a new type of 

mobility pattern; as such, our discussion includes 

trajectory pattern mining, segmentation, and 

sampling in MOD. A MOD consists of spatiotemporal 

trajectories of moving objects (e.g., humans, vehicles, 

animals, etc.). In the general case, trajectories are 

represented as 3D sequences where each recording 

encodes the 2D geographic location and the 1D 

temporal information of mobile objects. During the 

last decade, several approaches have been proposed in 

the literature so as to enable well-known mining 

algorithms to operate on trajectories. One such 

approach is the use of different types of distance 

functions as the mean to group trajectories into 

clusters. Some approaches are inspired by the time 

series analysis domain ,  while other exploit on a set 

of distance operators based on primitive (space and 

time) as well as derived parameters of trajectories 

(speed and direction) . An interesting approach also 

used in our approach is proposed in  for the efficient 

processing of most similar trajectory (MST) queries. A 

similar distance function is used in , where Nanni and 

Pedreschi adapt the well-known density-based 

OPTICS  clustering algorithm, tailored to work with 

point data, to a new algorithm for trajectory data, 

named T-OPTICS (and its variant TF-OPTICS, which 

focuses on the discovery of the temporal intervals 

that lead to best clustering results). The previously 

mentioned temporal intervals are given by the user, 

so TF-OPTICS essentially reexecutes T-OPTICS on 

segments of trajectories, obtained by properly 

clipping the original ones. In comparison with our 

approach, we automatically segment trajectories to 

portions based on global criteria (i.e., the 

representativeness of the trajectory in the MOD). 
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Furthermore, TF-OPTICS mainly clusters whole 

trajectories and is not tailored to identify patterns of 

subtrajectories in an unsupervised way. Recently, 

Pelekis et al.  proposed another approach, called 

CenTR-I-FCM, taking into advantage of local 

patterns in time dimension as the base to identify 

global clusters of whole approximate/symbolic 

trajectories. In comparison with the current work, 

this approach also utilizes a global but static and 

predefined temporal segmentation of trajectories. In 

addition, in this work trajectories are symbolically 

represented as intuitionistic fuzzy vectors and not as 

sequences of 3D line segments. This approach also 

aims at clustering trajectories as a whole with special 

care for handling uncertainty. 

 

SETTING THE SCENE 

In this section, we set the scene of the various aspects 

of the problem that this paper addresses, and 

concurrently we present the stepping stones where 

our subsequent developments base on. Let us assume 

an MOD D ¼ fT1; T2; . . . ; TNg of N trajectories, 

where Tk denotes the kth trajectory of the data set, k 

2 f1; 2; . . .; Ng. We assume that the objects are 

moving in the xy plane. Let  be the ith point, i 2 f1; 

2; . . . ; Lkg, of kth trajectory, where Lk denotes the 

number of points of kth trajectory.  denote the 2D 

location and the time coordinate of point pkðiÞ, 

respectively. Similar to the work of [25], we consider 

linear interpolation between successive sampled 

points pk þ 1Þ, so that each trajectory consists of a 

sequence of 3D line segments ek ¼ pkÞpki þ 1Þ, 

where each line segment represents the continuous 

moving of the object during sampled points. The goal 

of this work include . the automatic segmentation of 

the given trajectories Tk, into “homogenous” 

subtrajectories according to their “representativeness” 

in MOD and . sampling of the most representative 

subtrajectories of the MOD. a scheme of the proposed 

system architecture. The following three sections 

formalize the issues of trajectory representativeness, 

trajectory segmentation, and subtrajectory sampling, 

respectively.  summarizes the symbols’ definitions 

used in this work. In this research, the 

“representativeness” in MOD is defined by extending 

the definition of density biased sampling in point sets  

for trajectory segments. According to DBS, the local 

density for each point of the set is approximated by 

the number of points in a region, divided by the 

volume of the region. In our case, the 

“representativeness” of a trajectory segment is 

defined by the number of the objects that follow this 

segment along with time, space, and direction. 

Technically, “representativeness” is calculated by a 

voting process that is applied for each segment ekðiÞ 

of the given trajectory Tk, improving a preliminary 

version of the proposed method, presented in [24]. 

Thus, ek will be voted by the trajectories of MOD, 

according to the distance of ekÞ to each trajectory. 

The sum of these votes is related to the number of 

trajectories that are close and similar to ek, having 

the number of trajectories in MOD as upper limit. 

We avoid to give each segment the ability of voting, 

because, in such a case, long trajectories moving 

around the same area could vote many times. 

Moreover, under this definition, voting has the 

physical meaning of how many objects comove (i.e., 

colocation and coexistence) for a period of time. Thus, 

the voting results will be used to detect the 

representative paths and subtrajectories. 

 
 

II.  METHODS AND MATERIAL 

 

In this section, the proposed methodology is 

presented, consisting of the trajectory voting, the  
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rajectory segmentation,and the subtrajectory 

sampling methods 

 

Global Voting Method 

This section describes the Global Voting Algorithm 

(GVA). The input of the algorithm is a MOD D ¼ fT1; 

T2; . . . ; TNg indexed by a R-tree-like structure such 

as the TB-tree or the 3D-R-tree, as described in, a 

trajectory Tk 2 D and an intrinsic parameter _ > 0 of 

the method. The output of the method is the vector 

Vk of Lk _ 1 components that can be considered as a 

trajectory descriptor along the line segments ekiÞ; i 2 

f1; 2; . . . ; Lk _ 1g of trajectory Tk (recall from 

Section 3, that Lk denotes the number of points of Tk 

trajectory). As such, each component of the vector 

VkiÞ corresponds to the number of votes 

(representativeness) for each ekiÞ of Tk. According to 

the problem formulation presented in Section 3, for 

each line segment ekiÞ of Tk, the proposed GVA 

algorithm incrementally identifies the NN segments 

of other trajectories Tj 2 D; j 6¼ k. For each set of NN 

segments represented by the list of segments/triplets 

in LoTkNN, the distances dðekðiÞ; ejÞ from the 

corresponding segments are computed. These 

distances are used to define the voting function V 

ðekðiÞ; LoTkNNÞ, which quantifies the 

representativeness of the line segment to a LoTkNN. 

In the literature, a lot of voting functions have been 

proposed, like step functions or continuous functions . 

In this work, we have selected to use the continuous 

function of a Gaussian kernel, which is widely used 

in a variety of applications of pattern recognition [29]. 

Formally, Note that for data collected from GPS 

devices where the segments are very small (due to the 

high sampling rate), in practice the previous function 

degenerates to the computation of a single Gaussian 

kernel, as the HCNN of a segment results in a 

LoTkNN containing only one NN. This is actually 

verified in our experiments where we used real GPS 

data sets. However, in cases where the data sets are 

highly compressed (in applications where storage cost 

is important), e.g., by an approach like the one 

proposed in [30], this may have an influence in the 

smoothness of the VkðiÞ descriptor. We leave such a 

study as future work. The control parameter _ > 0 

shows how fast the function (“voting influence”) 

decreases with distance. Given the previous 

assumption, and according to (4), it holds that 0 _ V 

ðekðiÞ; LoTkNNÞ _ 1. If dðekðiÞ; ejÞ is close to zero, 

the voting function gets its maximum value, i.e., 1. 

This means, that there exists a line segment of Tj that 

is being (in time, space, and direction) very close to 

ekðiÞ. Otherwise, if dekiÞ; ej is high, e.g., greater 

than 5 _ _, the voting function results in almost 0, 

meaning that Tj is very far away from ekðiÞ. The use 

of a continuous voting function, like the Gaussian 

kernel, gives smooth results for small changes on 

parameters (_ in our case), and the possibility to get 

decimal values as results of voting process increasing 

the robustness of the method. However, _ depends on 

space units the object movements of MOD and it is 

difficult to tune it. We have solved this problem by 

estimating _ as the percentage (e.g., 0.1 percent) of 

data set diameter (maximum space distance). This 

percentage can be kept almost constant for every data 

set. Finally, VkðiÞ is computed by getting the sum of 

votes for all of the nearest neighbor segments of 

trajectories Tj 2 D; j 6¼ k, according to GVA 

 

Trajectory Segmentation Method 

Having presented the voting procedure in the 

previous section, the next step is to provide a solution 

to the trajectory segmentation problem defined in 

Section 1.2. For this purpose, we propose the 

Trajectory Segmentation Algorithm (TSA) The input 

of the algorithm is the normalized trajectory voting 

signal Vk, and two intrinsic parameters w, _ of the 

method. The normalization is done by dividing Vk by 

the maximum over all Vk, thus bounding Vk _ 1. The 

output of the method is the segmentation Pk of Tk 

into LPk partitions, where LPk is automatically 

estimated by the proposed scheme. The method uses 

two sequential sliding signal windows W1 and W2 of 
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w samples estimating the sample when the 

“difference” between the two windows is maximized. 

This methodology has been successfully applied on 

sound signal segmentation and P Phase Picking of 

seismic signals .To facilitate the discussion, two 

sequential sliding windowsW1 (light gray horizontal 

lines) and W2 (heavy gray vertical lines) locating at 

sample n on the given voting signal Vk. First, as the 

two windows slide, the two means m1, m2 and two 

variances _21 ,_22 of two sequential signal windows 

and W1, W2 locating at sample n are estimated, 

respectively, The next equations define m1 and _21 ; 

m2 and _22 are similarly defined in window W2 

The first statement ensures that the difference of two 

windows W1, W2 will be high enough while the 

second selects the sample n, where dðnÞ is locally 

maximized, meaning that the difference of two 

windowsW1,W2 is locally the highest. Both 

statements are related with the number of partitions 

LPk, while the second ensures that the minimum 

partition size is w samples (w 3D line segments) [32]. 

Parameter w sets the minimum size of a partition, so 

w depends on the given data set and the user 

preferences. In other words, w expresses the 

minimum number of line segments that can define a 

subtrajectory. In addition, w is analogous to sampling 

rate of the trajectories (e.g., if a MOD has double 

sampling rate, then w should be multiplied by 2). 

TSA needs to estimate mean and variance measures; 

thus, we need at least two samples ðw _ 2Þ. Low 

values on w can affect the robustness of mean and 

variance estimation yielding false alarms 

(oversegmentation). High values on w gives more 

robust results, and it will affect the results of the 

method, only if there is a subtrajectory with length 

less than w that will not be detected. According to 

our experiments, when w 2 ½5; 15_ most of 

subtrajectories were robustly detected without 

important false alarms. Regarding _, it should be a 

positive number close to zero, in order to be sure that 

TSA will detect all the subtrajectories. According to 

our experiments, when _ 2 ½0:001; 0:1_ most of 

subtrajectories were detected without important false 

alarms, since this parameter is related with the 

segmentation sensitivity of our method. As _ 

increases, the number of subtrajectories reduces. It 

holds that _ can be set as a positive number close to 

zero (e.g., 0.01), due to the fact that in the first step, 

we perform normalization by dividing Vk by the 

maximum over all Vk, thus bounding Vk _ 1. 

 

Subtrajectory Sampling 

In the previous sections, we have presented our 

methodology for segmenting the trajectories of a 

MOD into subtrajectories using the votes gathered for 

the MOD. In this section, we exploit on this 

knowledge in order to select the top representative 

subtrajectories to be the result of a sampling process. 

In particular, we propose the Subtrajectory Sampling 

Algorithm (SSA). The input of the algorithm is the set 

of subtrajectories of the MOD Pk as estimated by TSA, 

the voting VPkðiÞ and the normalized lifespan 

NlkðiÞ vectors of the trajectory segments. The output 

of the method is the subtrajectory sampling set S 

consisting of M samples. M can be given as input to 

the method or (more interestingly) it can be 

automatically estimated by the proposed scheme The 

goal of SSA is the maximization of the number of 

subtrajectories SRðSÞ of the original MOD that are 

represented in the sampling set (see (3)). The 

complexity of an exhaustive algorithm that would 

search for all the possible solutions in order to 

maximize (3) is O N M _ _ . On the other hand, our 

proposed algorithm suboptimally solves the problem 

in ON _MÞ iterations by applying  iterative 

optimization. SSA starts with an empty sampling set 

(SkðiÞ ¼ 0), where SkðiÞ is defined in Section 3.3. In 

each iteration step, SSA adds in sampling set an 

unselected subtrajectory of MOD that maximizes (3). 

This is equivalent with the maximization of SRSÞ 

gain SRgaink; iÞ (see (2)). Recall that SRgainðk; iÞ 

expresses the gain of SRðSÞ if we add in sampling set 

the ith subtrajectory of kth trajectory of the MOD. 

According to the proposed algorithm, it holds that 
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SRðSÞ gain is a monotonically decreasing function as 

sampling size increases. Since c VPkðiÞðjÞ _ 0,and 

recalling (2), it holds that 

 

Computational Complexity Issues 

 Concerning the complexity of GVA, and given the 

use of the R-tree-like structures, the computational 

cost for each line segment ekðiÞ, of Tk is Oðlogð _ L 

_ NÞÞ, where _ L denotes the mean number of 

trajectory points. Executing GVA for each trajectory 

of the database, the total computation cost is Oð _ L _ 

N _ logð _ L _ NÞÞ. Concerning the complexity of 

TSA, the computational cost for the segmentation of a 

trajectory Tk is OðLkÞ, since the mean and the 

variance of a sliding window can be estimated 

recursively in Oð1Þ by the mean and the variance of 

the sliding window of the previous step. For example, 

let m1 be the mean of the window W1 ¼ Vkðn _W : 

n _ 1Þ and _ m1 be the mean of the next window 

_W1 ¼ Vkðn _W þ 1 : nÞ. Then, it holds that 

Conclusively, the most computationally intensive 

part of the proposed method is the GVA with Oð _ L 

_ N _ logð _ L _ NÞÞ complexity. In turn, the most 

time consuming step in GVA is the search of the 

nearest neighbors of a trajectory in a given time 

period. In order to make the application of our 

approach feasible to large data sets, we have adopted 

efficient Continuous Nearest Neighbor query 

processing techniques [26], where trajectories are 

indexed by R-treelike structures. Scalability 

experiments under various cases for such queries 

have been presented in, where it has been shown 

their applicability in large data sets, with an almost 

linear behavior with the size of data set. Actually, this 

conclusion is in accordance with the above 

theoretical analysis of the computational complexity 

of the proposed method. 

 

On the Effect of the MOD Extension 

As already mentioned, the proposed method is 

deterministic, which implies that different 

invocations for a given MOD will have the same 

result. This is a crucial and distinct characteristic of 

our approach w.r.t. other sampling approaches. In 

this section, we discuss the behavior of the proposed 

methods when the MOD is extended either in space 

or time dimensions. More specifically, we study the 

following scenario: In a given data set S, we add 

trajectories which come from a different spatial or 

temporal space (extension of the MOD). The question 

is whether the GVA,TSA, and SSA are affected by 

such an extension? According to this scenario, the 

results of the voting procedure (GVA) will not 

change concerning the given data set S. The new 

trajectories do not affect the trajectory descriptors of 

the trajectories of S, since they exist in different 

spatial or temporal space (see (4)). Therefore, the 

results of TSA will be exactly the same concerning 

the given data set S. Similarly, the new sampling set 

will contain the same subtrajectories as the sampling 

set of S (when the algorithm terminates if SRgain is 

lower than a given threshold), with some additional 

samples selected from the new trajectories, since the 

input of the SSA algorithm concerning S remains the 

same. In other words, the sampling set of the union of 

two distinct (in space and/or in time dimension) 

MOD, is the same with the union of the sampling sets, 

when the sampling process is performed to each 

MOD independently. Therefore, the effectiveness of 

the proposed method is not affected by the extension 

of the MOD. 

 

III. CONCLUSION 

 

In this paper, we have discussed the problem of 

finding representative subtrajectories in a MOD. 

Especially, we addressed this issue by segmentation 

and subtrajectory sampling based on global 

spatiotemporal similarity of trajectories. In particular, 

we have proposed three algorithms: GVA, TSA, and 

SSA for trajectory voting, segmentation, and 

subtrajectory sampling, respectively. GVA extends 

the density biased sampling from point sets  to 
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trajectory segments providing a local trajectory 

descriptor per line segment that is related to line 

segment representativeness. 

 

Next, TSA automatically and effectively estimates the 

number of subtrajectories and their borders, 

separating each trajectory of MOD into homogenous 

partitions concerning their representativeness. 

Finally, SSA is applied over the resulting partitions 

providing the most representative subtrajectories of 

the MOD, also taking into account that high density 

regions of theMODshould not be oversampled. SSA 

can be automatically terminated by thresholding the 

number of moving objects of the original MOD that 

are represented in sampling set SRðSÞ. Moreover, the 

indexbased voting algorithm, which is the 

computationally most expensive step in our 

framework, and the polynomial computational cost of 

the proposed algorithms makes the scheme applicable 

to large databases. In our approach, contrary to 

related work, the temporal dimension of the MOD is 

taken into consideration, while there is not any 

inherent constraint on subtrajectory complexity and 

shape, yielding trajectory segmentation and 

subtrajectory sampling that are related only to 

representativeness. We have evaluated the proposed 

method under real and synthetic databases, and the 

experimental results show the effectiveness and 

robustness of the proposed scheme. As future work, 

we plan to investigate the applicability of the 

proposed method for (sub)trajectory clustering. The 

idea is that MOD clustering can be provided 

concurrently with MOD sampling. It holds that each 

subtrajectory of the sampling set has been voted by 

different subtrajectories of the MOD (cluster), under 

the minimization of the objective function proposed 

in the current work. Therefore, each subtrajectory of 

the sampling set can be considered as a cluster 

representative (i.e., a seed around which a cluster is 

formatted). This is a different tactic as the one 

followed in . In the same context, outliers  can be 

discriminated from low values in voting subtrajectory 

descriptor (Vk). 
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