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ABSTRACT 

 

Cloud Computing is widely regarded as the most radically altering trend in 

information technology. However, great benefits come with great challenges, 

especially in the area of data security and privacy protection. Since standard 

cloud computing uses plaintext, certain encryption algorithms were 

implemented in the cloud for security reasons, and ‘encrypted' data was then 

stored in the cloud. Homomorphic Encryption (HE), a modern kind of 

encryption strategy, is born as a result of this change. Primarily, the paper will 

focus on implementing a successful Homomorphic Encryption (HE) scheme for 

polynomials. Furthermore, the objective of the paper is to propose, produce and 

implement a method to convert the already implemented sequentially 

processing Homomorphic Encryption into parallel processing Homomorphic 

Encryption (HE) using a Parallel Processing concept (Partitioning, Assigning, 

Scheduling, etc) and thereby producing a better performing Homomorphic 

Encryption (HE) called Fully Homomorphic Encryption (FHE). Fully 

Homomorphic Encryption (FHE) is an encryption technique that can perform 

specific analytical operations, functions and methods on normal or encrypted 

data and can still perform traditional encryption results as performed on 

plaintext. The three major reasons for implementing Fully Homomorphic 

Encryption (FHE) are advantages like no involvement of third parties, trade-off 

elimination between privacy and security and quantum safety. 

Keywords : Cloud Computing, Encryption, Homomorphic Encryption, Fully 

Homomorphic Encryption, Parallel Computing, Parallel Processing, 

Partitioning. 

 

 

I. INTRODUCTION 

 

Cloud Computing is a technology which lets smooth, 

voluntary (on-request) network access to shareable 

and configurable computing resources and data that 

can be provisioned, manipulated and delivered with 

the least amount of administration or cloud service 

provider’s involvement. Before getting into the 
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security concerns, let us take a look at the three 

major services and benefits of Cloud Computing [1]. 

 

Software as a Service (SaaS) - It is called SaaS that 

distributes a software operated by third party 

companies, thus allowing users to access the software 

over the network. For instance, if a student needs 

office software like MS PowerPoint for a specific 

period, he / she does not have to purchase the whole 

product, rather he / she only has to pay for the 

software resources needed by the buyer. Example – 

Dropbox and Google Workspace. 

 

Platform as a Service (PaaS) – In traditional terms, 

PaaS literally paves the way or offers software 

developers a forum to create their goods or services 

over the Internet or a network. For example, if a 

developer now uses MacOS and needs to operate in a 

Windows environment, then that platform is 

provided by CSP. Example – Microsoft Azure, GAE 

(Google App Engine) and AWS Elastic Beanstalk. 

 

Infrastructure as a Service (IaaS) – This service 

facilitates virtual storage for the users. The data is 

actually stored in the Cloud Service Provider’s servers. 

Since the corporate world is consuming a lot of data 

today, IaaS’s use has increased extensively. Example – 

GCP (Google Cloud Platform/Google Compute 

Engine), Microsoft Azure and AWS (Amazon Web 

Services) [1].

 

Fig. 1. Various advantages of using Cloud computing 

other than SaaS, PaaS, IaaS 

The major deal breaker when it comes to using a 

technology like Cloud Computing is Security. That is, 

the potential data breach by third-party vendors 

while putting sensitive data on the cloud. The 

repercussions of not having secured data: A chance of 

attack on the data either by simple manipulations or 

the whole chunk of data may be compromised [1].  

Some other vital controls that harms Cloud Security 

w.r.t. compliance standards are given below [2]: 

 

● Encryption of data and key administration  

● Security of the media  

● Recognize, authenticate and approve  

● Virtualization and Resource Abstraction    

●  Interoperability and portability  

● Security programme  

● Identifying and managing security threats  

● Anonymity, e-discovery and ethics 

● Planning of emergencies  

● Operations and maintenance of the Data Center  

● Answer incident  

● Enforcement, Transparency and Audit  

● Awareness and Training 

 

To remedy these issues, an obvious solution of 

cryptography was introduced to the cloud. Simply 

stating, Cryptography is the art of hiding any kind of 

information or data and keeping it secure and limited 

to approved eyes only. To successfully pull 

Cryptography, two techniques play a major role in it. 

Encryption converts different formats of data into 

unreadable format called ciphertext. Decryption is 

the other side of the coin which converts that 

ciphertext into original plain text [1]. 

 

II. ALGORITHM ELABORATION  

 

2.1 Hybrid Homomorphic Encryption Scheme 
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Figure 2.  General classification of Encryption 

Algorithms 

A. HOMOMORPHIC ENCRYPTION ALGORITHM 

To tackle the problem of data security, various types 

of encryption algorithms were brought to light. As 

data can be stored in an encrypted cloud form, an 

algorithm that could be performed on the encrypted 

data was needed. This has contributed to a 

Homomorphic Encryption technique. 

Figure 3.  General working of Homomorphic 

Encryption 

The big advantage of homomorphic encryption is the 

computing on encrypted data without knowledge of 

the private key, i.e. without decrypting it. Since the 

given data for computation is encrypted, the outcome 

of the calculations is encrypted as well. Also, the 

product of any computation or operation on the 

encrypted data mirrors the product of raw data 

perfectly [3]. 

Mathematical Representation – The system is 

Homomorphic encryption if Enc (a) and Enc (b) can 

calculate Enc (f (a, b)), where f can be: ADD, 

MULTIPLY, XOR 

The Provider should have access to the secret key for 

data decryption if any type of computation is to be 

performed by the Client. However, sharing the key 

also grants the cloud provider access privileges. 

Homomorphic encryption is then used to overcome 

this problem so that the data can be computed 

without decrypting by cloud providers. In addition, 

as the client is the sole holder of a secret key, every 

other party cannot decode and access any data , the 

data will be returned in encrypted form [3]. 

The general processes involved in a Homomorphic 

Encryption system are described below: 

1.  Key Generation: The client generates the secret 

key Ks and public key Kp. 

(Ks, Kp) = keyGen(s) 

2.  Encryption: An encryption algorithm which 

uses the public key to encrypt plain text (M) and 

converts it to ciphertext (C). 

C = Encpk(m) 

3.  Evaluation: Use of the public key to apply 

function f to ciphertext c. 

C∗ = Evalpk(f, c). 

4.  Decryption: Decryption algorithm that retrieves 

plain text M with the ciphertext c and secret key. 

M = Decsk(c) 

Homomorphic Encryption categorization: 

Homomorphic algorithm classification is performed 

according to the processes described above[3]:  

• Partial Homomorphic Encryption (PHE): Allows 

an addition or multiplication of only one method 

for the encrypted data. 

• Somewhat Homomorphic Encryption (SWHE): 

Allows multiplication and addition of more than 

one process, but the number of processes is 

limited. 
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• Fully Homomorphic Encryption (FHE): Enable 

multiple operations-multiplication and addition 

without restriction on the number of operations. 

• Homomorphic encryption properties: The 

following properties shall be satisfied by a 

homomorphic encryption scheme: 

• Additive homomorphism (AH): A homomorphic 

encryption is additive if, 

 Decsk(Encpk(M1) + Encpk(M2)) = M1 + M2        …..(i) 

• Multiplicative homomorphism (MH): A 

homomorphic encryption is multiplicative if 

Deck(Ck(M1) ∗ Ck(M2)) = M1 ∗ M2        …..(ii) 

Now, when a Homomorphic algorithm satisfies both 

the above-mentioned properties simultaneously, it is 

known as Fully Homomorphic Encryption Algorithm 

[3]. 

B. FULLY HOMOMORPHIC ENCRYPTION 

ALGORITHM 

This paper will discuss the most efficient form of 

homomorphic encryption, which is FHE. Initially, 

this technique was speculated by Rivest, Adleman 

and Dertouzous after the three of them put forward 

Privacy Homomorphism. In this proposal, they 

describe a way of facilitating h/w approach to achieve 

FHE. Consequently, this approach gave rise to 

performance problems. Later on, Craig Gentry used 

the approach of bootstrapping and ideal lattices to get 

the previously problematic full homomorphic 

encryption to work [4]. With any homomorphic 

encryption, FHE also enables operations on 

encrypted cloud data to provide users' sensitive data 

stored in cloud storage with data protection and 

confidentiality. 

  

Let us discuss the cons for using FHE. In contrast, 

encryption takes more time and memory than 

unencrypted data takes for computing[5]. Besides 

time and memory, FHE also has some security issues 

and drawbacks like large key size and low calculation 

efficiency. Hence, the practical use of this encryption 

technique is kept limited. 

 

III. RESEARCH AND IMPLEMENTATION 

A. IMPLEMENTATION OF FULLY 

HOMOMORPHIC ENCRYPTION SCHEME  

Cloud Environment 

 

The console (PythonAnywhere) support versions2.7, 

3.5, 3.6, 3.7 and 3.8 of Python, while the console also 

includes many useful libraries namely NumPy, SciPy, 

Mechanize, BeautifulSoup, Pycrypt, CherryPy, 

tweePy, GitPython,  and many more.  

 

The console supports all of Python's installs. The 

Console runs on servers hosted by Amazon EC2 so 

heavy duty processing is also possible. It also supports 

Simple Automation for running scheduled tasks on 

scripts periodically. 

 

We will implement our Fully Homomorphic 

Encryption scheme on a Cloud Console that can run 

python scripts with numpy library.  For that, we will 

create a random Cloud Console on the platform and 

create a python file for running in that console.  

 

Cloud Console Details:- 

Custom Console ID: 19645012 

CPU Usage: 4% used – 4.27s of 100s. 

File storage: 0% full – 108.0 KB of your 512.0 MB 

Script Info: /home/parthtandel99/fhe.py 

Batteries Included: NumPy 

Basic Notations 

 

Symbol  Description 

Zq Integers between (−q/2,q/2], 

q>1 ,q∈Z (mod q) 
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[.]m Specify that we are applying modulo 

m 

[.] Rounding to the nearest integer 

 

<a,b> 

Inner product of two elements 

a,b∈ℤnq and is defined as follows:  

⟨a,b⟩ =∑inai⋅bi(mod q) 

x x is a positive integer 

v v∈ℤnq would be simply a vector of n 

elements in ℤq 

 

Table  1.  Various notations used in the 

implementation [6],[7],[8],[9]. 

 

Additive and Multiplicative Properties 

● Additive homomorphism (AH): A homomorphic 

encryption is additive if, 

 

Decsk(Encpk(M1) + Encpk(M2)) = M1 + M2 …..from (i) 

 

[1] Multiplicative homomorphism (MH): A 

homomorphic encryption is multiplicative if, 

 

Deck(Ck(M1) ∗ Ck(M2)) = M1 ∗ M2  ….. from (ii) 

 

sk = Secret key   pk = Public key 

M = Plain text  C = Ciphertext 

 

Illustrations 

a(x)=7x3+4x2+9 and b(x)=x3+10x2+3x+5 

Therefore, 

a(x)+b(x)=(7+1mod11)x3+(4+10mod11)x2+(3mod11)x

+(9+5mod11) 

a(x)=5x2+3 and b(x)=3x3+4x2 

a(x)⋅b(x)=5x2⋅(3x3+4x2)+3⋅(3x3+4x2) 

a(x)⋅b(x)=(15mod11)x5+(20mod11)x4+(9mod11)x3+(1

2mod11)x2 

 

 

Implementation of helper functions 

 

Let's begin with importing the awesome library of 

Numpy, then define 2 helper functions to add and 

multiply polynomials around a ring. 

Rq=ℤq/⟨xn+1⟩. 

 

Generation of Key 

Initially, we will produce an arbitrary secret key 

from a probability distribution, we will use a normal 

uniform distribution over R2, that implies that sk is a 

polynomial with coefficients of zero or one. We first 

uniformly sample a polynomial over Rq for the public 

key and a minor error of a discrete normal 

distribution over Rq. Then we make the public key 

the tuple 

pk=([−(a⋅sk+e)]q,a)             ….. (iii) 

Now we will  implement the production of 

polynomials from different and arbitray probability 

distributions [6],[7],[8],[9]. 

 

We can now use these functions to describe our main 

generator, i.e. (b, a) and sk. 
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Encryption 

We would allow polynomials to be encrypted in the 

where t is the plaintext modulus. In our case, we 

want to encrypt integers in Z, so we'll only encode a 

plaintext integer as the constant m(x)=pt polynomial. 

The encryption algorithm takes a public key 

pk∈Rq×Rq and a plaintext polynomial m∈Rt and 

produces a ciphertext ct∈Rq×Rq, which is a tuple of 

two polynomials ct0 and ct1 [6],[7],[8],[9]. 

ct0=[pk0⋅u+e1+δ⋅m]q        …..(iv) 

ct1=[pk1⋅u+e2]q                …..(v) 

Where, 

u is drawn from a uniform distribution over R2 

(similar to the secret key),  

e1 and e2 are drawn from a distinct normal 

distribution over Rq (similar to the error word in key 

generation) and 

δ is used for rounding off to nearest integers with q 

over t. 

.  

Decryption 

Our scheme will support decryption of a ciphertext 

with arguments:- 

        sk: secret-key 

        size: size of polynomials 

        q: ciphertext modulus 

        t: plaintext modulus 

        poly_mod: polynomial modulus 

        ct: ciphertext 

The decrypt function will return the integer 

representing the plaintext. 

 

The assumption behind decryption is that 

(pk1⋅sk≈−pk0) that is to say, they add up to a very 

small polynomial. Let's take a look at computing of 

[ct0+ct1⋅sk]q: 

[ct0+ct1⋅sk]q=[pk0⋅u+e1+δ⋅m+(pk1⋅u+e2)⋅sk]q 

....from (iv) & (v) 

[ct0+ct1⋅sk]q=[pk0⋅u+e1+δ⋅m+pk1⋅sk⋅u+e2⋅sk]q  

 

After expanding public key terms, 

[ct0+ct1⋅sk]q=[−(a⋅sk+e)⋅u+e1+δ⋅m+a⋅sk⋅u+e2⋅sk]q 

...from (iii) 

[ct0+ct1⋅sk]q=[−a⋅sk⋅u−e⋅u+e1+δ⋅m+a⋅sk⋅u+e2⋅sk]q 

[ct0+ct1⋅sk]q=[δ⋅m−e⋅u+e1+e2⋅sk]q            .....(vi) 

Only a scaled message and some error terms remain, 

multiplying by 1/δ, 

1/δ⋅[ct0+ct1⋅sk]q=[m+1/δ⋅errors]q 

 

Rounding to the nearest integer and going back to Rt, 

[⌊1/δ⋅[ct0+ct1⋅sk]q⌉]t=[⌊[m+1/δ⋅errors]q⌉]t 

 

If the rounding to the nearest integer is not affected 

by the error terms, we will decrypt to the right value 

m, which means that the error terms must be 

bounded by 1/2. 

1/δ⋅errors≤1/2⇔errors≤q/2t 

So all those error terms must be within q/2t for a 

correct, efficient and error-free decryption. 

 

After a basic encryption, one can conveniently select 

the parameters that ensure a proper decryption, but 
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the goal of HE isn't only to encrypt/decrypt data, but 

also to compute on encrypted data (add and multiply). 

As a result, you can select your criteria based on your 

scheme, the level of protection you want to obtain, 

and the computation you want to execute 

[6],[7],[8],[9]. 

 

 

Figure 4. Framework of keys and 

encryption/decryption 

We'll compute on the encrypted data now that we 

know how to produce keys, encrypt, and decrypt. 

With a ciphertext in hand, we may mix it with other 

ciphertexts or plaintexts to construct a new 

ciphertext. We'll introduce plain operations, which 

means we'll grant our scheme the power to add or 

multiply ciphertexts with integers (plaintexts) 

[6],[7],[8],[9]. 

 

Evaluation - Addition 

Let us assume ct is a ciphertext encrypting a plaintext 

message m1, 

ct=([pk0⋅u+e1+δ⋅m1]q,[pk1⋅u+e2]q) 

....from (iv) & (v) 

Adding m2 leaves us with a, 

ct0=[pk0⋅u+e1+δ⋅(m1+m2)]q 

....from (iv) 

Now, we require to scale new plaintext m2 by δ and 

add it to ct0. 

add_plain(ct,m2)=([ct0+δ⋅m2]q,ct1) 

 

This is how decryption will look like after the 

addition 

[⌊1/δ⋅[ct0+ct1⋅sk]q⌉]t=[⌊[m1+m2+1/δ⋅(−e⋅u+e1+e2⋅sk)]

q⌉]t 

....from (iii), (iv), (v) & (vi) 

As you might have noted, this procedure creates no 

additional noise, so we can execute as many basic 

additions as we like without incurring any sanction 

for noise. 

 

 

Evaluation - Multiplication 

Let us assume ct is a ciphertext encrypting a plaintext 

message m1 and after multiplying it with m2 we get, 

ct,=[pk0⋅u+e1+δ⋅m,⋅m2]q 

....from (iv) & (v) 

Multiplying ct, with m2, 

ct0⋅m2=[pk0⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2]q 

....from (iv) 

Expanding the public-key terms in [ct0+ct1⋅sk]q 

shows that the decryption will be incorrect. 

[ct0+ct1⋅sk]q=[pk0⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+pk1⋅sk⋅u+e

2⋅sk]q 

....from (vi) 

[ct0+ct1⋅sk]q=[−(a⋅sk+e)⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+a⋅sk⋅

u+e2⋅sk]q 

[ct0+ct1⋅sk]q=[−a⋅sk⋅u⋅m2−e⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+a

⋅sk⋅u+e2⋅sk]q 

Issue:  −a⋅sk⋅u⋅m2 and a⋅sk⋅u won't cancel each other 

any more, and that's a major polynomial we've 

applied to our message. Decryption of m1*m2 would 
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obviously fail. We'll just need to multiply ct1 by m2 

for a proper decryption. 

mul_plain(ct,m2)=([ct0⋅m2]q,[ct1⋅m2]q) 

Results, 

[ct0+ct1⋅sk]q=[−a⋅sk⋅u⋅m2−e⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+a

⋅sk⋅u⋅m2+e2⋅sk⋅m2]q 

....from (iii), (iv), (v) & (vi) 

[ct0+ct1⋅sk]q=[δ⋅m1⋅m2−e⋅u⋅m2+e1⋅m2+e2⋅sk⋅m2]q 

Decryption circuit will result in, 

[⌊1/δ⋅[ct0+ct1⋅sk]q⌉]t=[⌊[m1⋅m2+1/δ⋅(−e⋅u⋅m2+e1⋅m2

+e2⋅sk⋅m2)]q⌉]t 

Note: As compared to the plaintext addition, you can 

see that our error terms have been scaled up by our 

message m2, meaning that multiplying by large 

numbers can cause decryption to cause rounding 

errors. 

 

Now that all of the functionalities have been 

incorporated, let's put them all together. 

 

Thus, the Homomorphic Encryption is successfully 

implemented here [6],[7],[8],[9]. 

 

B. RESULTS AND ANALYSIS 

Following snapshots are the results of the above 

implemented Fully Homomorphic Encryption 

Scheme. 

 

 
Figure 5.  Actual Outcome of Integration Testing 

 
Figure 6.  Actual Outcome of Integration Testing 

(with time and memory analysis) 

Test Case : Encryption and Decryption of 73 and 20. 

Expected Result: 80 (+7 because the addition property 

is evaluated as well) and 100 (*5 because the 

multiplication property is evaluated as well). 

Actual Outcome - 80 and 100. 

 

Since the multiplication property is satisfied as well, 

we can say that our Homomorphic scheme is a Fully 

Homomorphic Scheme. 

 

Let us compare our execution time with the 

execution time of four widely used encryption 

algorithms called Data Encryption Standard (DES), 

Triple Encryption Data Standard (3DES), Rivest 
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Cipher (RC2/ARC2) and Advanced Encryption 

Standard or Rijndael.  

Data Size = 4 bytes 

Algorithm  Execution Time 

(seconds) 

DES 0.17 

3DES 0.19 

RC2 0.2 

AES/Rijndael 0.16 

FHE 0.14 

Table  2.  Tabular Representation of Execution Time 

of encryption algorithms with FHE[10] 

 

 

Figure  7.  Execution Time of encryption algorithms 

with FHE 

Please note that the difference is minimal because the 

data size is small as well. During practical 

implementation this minimal change will grow 

exponentially because of the bigger data size and 

therefore we can conclude with the result that FHE is 

better than most algorithms with reference to 

execution time. 

C. PARALLEL PROCESSING AND PARTITIONING 

This paper will specifically try to tackle the time and 

memory drawback of FHE. The main explanation is 

that FHE carries out cloud data (Fully homomorphic 

encryption) on one or more nodes and hence 

acquiring comparatively more time memory to 

compute than the one operation performed in simple 

text (unencrypted data). One of the obvious 

approaches to solve this issue would be Parallel 

Processing. It reduces processing time in cloud 

computing by imposing parallelism on encrypted data. 

As the name implies, parallel processing allows 

several nodes to work concurrently, so that the 

desired operation takes comparatively less time than 

the sequential process. Hence this approach will 

increase the performance of the traditional FHE [5].  

 

Let 's speak about some parallel processing 

approaches. Conversion of a sequential algorithm to a 

parallel algorithm is one approach. If the problem 

already has a sequential algorithm, the inherent 

parallelism in the algorithm can be identified. It is a 

kind of parallelism which naturally occurs within an 

algorithm without special effort or algorithm shift. 

However, it is not fruitful or effective to use inherent 

parallelism in a sequential algorithm. A Parallel 

Algorithm to solve a similar but distinct problem is a 

safer and more successful solution for some problems. 

Another solution is the conception and substitution 

of a brand new parallel algorithm with the current 

algorithm. 

 

Table  3.  Tabular Representation of Parallel 

Programming Concepts 

Also, the approach of Parallel processing can be used 

for Data partitioning method which tackles the 
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security drawback of FHE. Client data can be 

separated into several sections of similarly sized 

chunks and stored on various servers. A public key is 

created on the client side to store and retrieve 

originally cloud-divided data. This can be 

accomplished by a parallel processing principle 

known as partitioning. The processing time is 

computed according to the time taken (on multiple 

nodes) to perform the operations applied 

simultaneously and to transmit the data. [5]. 

There are two methods of partitioning the task for 

parallel processing. They are : static partition and 

dynamic partition. 

• Static Partitioning - The static partitioning 

technique separates tasks before execution and 

avoids conflict between processes. Input data 

then takes decisions including the exercise time 

and amount of data provided to systems, such as 

the amount of parallel calculation actually 

occurs. Therefore, during execution, certain 

processes cannot be kept working. 

• Dynamic Partitioning - The dynamic partition 

approach divides up the tasks while running. As 

a consequence, systems are more busy and the 

input data isn’t affected. The disadvantage is the 

amount of communication and coordination 

between processes that is required for 

implementation. 

• Another classification of partitioning is done on 

the basis of processes. 

• Data Partitioning (Data Parallelism) – The 

processes can be generated in such a way that 

every process carries out the same operation on 

several sections of the data. This partitioning is 

also called homogeneous multitasking because it 

creates multiple mirror processes. This approach 

derives parallelism from problem data 

organisation. Every part will be processed 

simultaneously with the data structure divided 

into pieces of information. An individual data 

item or the set of items may be a bit of 

information. In solving mathematical problems 

that handle large arrays and vectors, data 

partitioning is especially helpful. It is also useful 

for non-numerical topics, such as combinatorial 

search and sorting algorithms. Data Partitioning 

is especially suitable for creating multicomputer 

algorithms since a processor primarily calculates 

using its own local data and rarely with different 

processors. 

• Function Partitioning (Control/Function 

Parallelism) - Processes may be generated to 

perform a different data operation, which is 

called Function Partitioning. This partitioning is 

known as heterogeneous multi-tasking, just as 

data partitioning is known as multitasking in a 

homogeneous manner, as many separate 

processes carry out various data tasks. 

• Illustration of both the above discussed 

partitioning - Consider four vectors P, Q, S and T 

for the following computation. 

Y[n] = (P[n] / Q[n]) - (S[n] / T[n]), for n=1 to 5 

•  Data Partitioning - Five identical processes are 

generated such that n is run by each process. 

Thus, the computation of each of the Y[n] using 

several similar processes simultaneously was 

carried out in parallel. 

• Function Partitioning – A and B are two 

processes which are derived and then we 

compute h = P[n] / Q[n] and sends the value of h 

to B. B then calculates f = S[n] / T[n] and inherits 

h from A for performing the calculation Y[n] = h 

+ f. This is done for each index n. In this way, 

the functions of division are performed in 

parallel processing at the same time. This 

method typically organises the programme in 

such a way that the processes uses parallel 

processing while coding and not in the data. 
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Advantages of data partitioning over function 

partitioning: 

1. More amount of parallel processing 

2. Processes are given balanced/equal load 

3. Subtle implementation 

 

On the basis of Task 

Execution 

On the basis of Process 

Creation 

Static Partitioning Data Partitioning 

Dynamic Partitioning Function Partitioning 

Table  4.  Classification of Partitioning 

D. IMPLEMENTATION OF PARALLELISM 

● The most common way to parallelize any 

operation is to take a feature that needs to be run 

several times and run it in parallel through 

several processors. 

● To do so, build a Pool of n processors and call 

one of Pool's parallelization methods with the 

feature you want to parallelize. 

● To execute all functions simultaneously, 

multiprocessing.Pool() includes the apply(), 

map(), and starmap() methods. 

● The function to be parallelized is the key 

argument in both apply and map. However, 

apply() takes an args argument that includes the 

parameters transferred to the ‘function-to-be-

parallelized,' while map can only take as an 

argument, one iterable. 

 

IV. CONCLUSION 

 

In cloud computing, the power of computation and 

resources are much greater than just one computer 

where data calculations are carried out by computer 

clusters. The use of cloud storage to process large 

volumes of data is popular. For cloud computing, 

however, businesses are worried about data privacy. 

The privacy related problems in cloud related 

computing was described in this paper. Fully 

Homomorphic Encryption can be a resolution for 

solving data privacy in the cloud that processes 

information which is encrypted and returns the 

encrypted results. Beside so, generally Fully 

Homomorphic Encryption is slower and the faster 

schemes of Fully Homomorphic Encryption are 

needed to extend this way of processing things easily. 

We could practically implement partitioning 

methods with Fully homomorphic encryption as 

proposed in the third section. Also, we could 

implement other parallel programming concepts as 

described in Table 1. Lastly, we could also implement 

a whole new algorithm merged with FHE to achieve 

parallel processing. We could also implement 

algorithms with FHE with the sole purpose of 

tackling security issues and not the ‘time and 

memory’ drawback. 
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