
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT217252

 250

Modified Fully Homomorphic Encryption based on Parallel Processing in

Cloud Computing
Parth Tandel*, Abhinav Shubhrant, Mayank Sohani

Mukesh Patel School of Technology Management and Engineering, Shirpur, Maharashtra, India

Article Info

Volume 7, Issue 2

Page Number: 250-262

Publication Issue :

March-April-2021

Article History

Accepted : 05 April 2021

Published : 11 April 2021

ABSTRACT

Cloud Computing is widely regarded as the most radically altering trend in

information technology. However, great benefits come with great challenges,

especially in the area of data security and privacy protection. Since standard

cloud computing uses plaintext, certain encryption algorithms were

implemented in the cloud for security reasons, and ‘encrypted' data was then

stored in the cloud. Homomorphic Encryption (HE), a modern kind of

encryption strategy, is born as a result of this change. Primarily, the paper will

focus on implementing a successful Homomorphic Encryption (HE) scheme for

polynomials. Furthermore, the objective of the paper is to propose, produce and

implement a method to convert the already implemented sequentially

processing Homomorphic Encryption into parallel processing Homomorphic

Encryption (HE) using a Parallel Processing concept (Partitioning, Assigning,

Scheduling, etc) and thereby producing a better performing Homomorphic

Encryption (HE) called Fully Homomorphic Encryption (FHE). Fully

Homomorphic Encryption (FHE) is an encryption technique that can perform

specific analytical operations, functions and methods on normal or encrypted

data and can still perform traditional encryption results as performed on

plaintext. The three major reasons for implementing Fully Homomorphic

Encryption (FHE) are advantages like no involvement of third parties, trade-off

elimination between privacy and security and quantum safety.

Keywords : Cloud Computing, Encryption, Homomorphic Encryption, Fully

Homomorphic Encryption, Parallel Computing, Parallel Processing,

Partitioning.

I. INTRODUCTION

Cloud Computing is a technology which lets smooth,

voluntary (on-request) network access to shareable

and configurable computing resources and data that

can be provisioned, manipulated and delivered with

the least amount of administration or cloud service

provider’s involvement. Before getting into the

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT217252

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

251

security concerns, let us take a look at the three

major services and benefits of Cloud Computing [1].

Software as a Service (SaaS) - It is called SaaS that

distributes a software operated by third party

companies, thus allowing users to access the software

over the network. For instance, if a student needs

office software like MS PowerPoint for a specific

period, he / she does not have to purchase the whole

product, rather he / she only has to pay for the

software resources needed by the buyer. Example –

Dropbox and Google Workspace.

Platform as a Service (PaaS) – In traditional terms,

PaaS literally paves the way or offers software

developers a forum to create their goods or services

over the Internet or a network. For example, if a

developer now uses MacOS and needs to operate in a

Windows environment, then that platform is

provided by CSP. Example – Microsoft Azure, GAE

(Google App Engine) and AWS Elastic Beanstalk.

Infrastructure as a Service (IaaS) – This service

facilitates virtual storage for the users. The data is

actually stored in the Cloud Service Provider’s servers.

Since the corporate world is consuming a lot of data

today, IaaS’s use has increased extensively. Example –

GCP (Google Cloud Platform/Google Compute

Engine), Microsoft Azure and AWS (Amazon Web

Services) [1].

Fig. 1. Various advantages of using Cloud computing

other than SaaS, PaaS, IaaS

The major deal breaker when it comes to using a

technology like Cloud Computing is Security. That is,

the potential data breach by third-party vendors

while putting sensitive data on the cloud. The

repercussions of not having secured data: A chance of

attack on the data either by simple manipulations or

the whole chunk of data may be compromised [1].

Some other vital controls that harms Cloud Security

w.r.t. compliance standards are given below [2]:

● Encryption of data and key administration

● Security of the media

● Recognize, authenticate and approve

● Virtualization and Resource Abstraction

● Interoperability and portability

● Security programme

● Identifying and managing security threats

● Anonymity, e-discovery and ethics

● Planning of emergencies

● Operations and maintenance of the Data Center

● Answer incident

● Enforcement, Transparency and Audit

● Awareness and Training

To remedy these issues, an obvious solution of

cryptography was introduced to the cloud. Simply

stating, Cryptography is the art of hiding any kind of

information or data and keeping it secure and limited

to approved eyes only. To successfully pull

Cryptography, two techniques play a major role in it.

Encryption converts different formats of data into

unreadable format called ciphertext. Decryption is

the other side of the coin which converts that

ciphertext into original plain text [1].

II. ALGORITHM ELABORATION

2.1 Hybrid Homomorphic Encryption Scheme

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

252

Figure 2. General classification of Encryption

Algorithms

A. HOMOMORPHIC ENCRYPTION ALGORITHM

To tackle the problem of data security, various types

of encryption algorithms were brought to light. As

data can be stored in an encrypted cloud form, an

algorithm that could be performed on the encrypted

data was needed. This has contributed to a

Homomorphic Encryption technique.

Figure 3. General working of Homomorphic

Encryption

The big advantage of homomorphic encryption is the

computing on encrypted data without knowledge of

the private key, i.e. without decrypting it. Since the

given data for computation is encrypted, the outcome

of the calculations is encrypted as well. Also, the

product of any computation or operation on the

encrypted data mirrors the product of raw data

perfectly [3].

Mathematical Representation – The system is

Homomorphic encryption if Enc (a) and Enc (b) can

calculate Enc (f (a, b)), where f can be: ADD,

MULTIPLY, XOR

The Provider should have access to the secret key for

data decryption if any type of computation is to be

performed by the Client. However, sharing the key

also grants the cloud provider access privileges.

Homomorphic encryption is then used to overcome

this problem so that the data can be computed

without decrypting by cloud providers. In addition,

as the client is the sole holder of a secret key, every

other party cannot decode and access any data , the

data will be returned in encrypted form [3].

The general processes involved in a Homomorphic

Encryption system are described below:

1. Key Generation: The client generates the secret

key Ks and public key Kp.

(Ks, Kp) = keyGen(s)

2. Encryption: An encryption algorithm which

uses the public key to encrypt plain text (M) and

converts it to ciphertext (C).

C = Encpk(m)

3. Evaluation: Use of the public key to apply

function f to ciphertext c.

C∗ = Evalpk(f, c).

4. Decryption: Decryption algorithm that retrieves

plain text M with the ciphertext c and secret key.

M = Decsk(c)

Homomorphic Encryption categorization:

Homomorphic algorithm classification is performed

according to the processes described above[3]:

• Partial Homomorphic Encryption (PHE): Allows

an addition or multiplication of only one method

for the encrypted data.

• Somewhat Homomorphic Encryption (SWHE):

Allows multiplication and addition of more than

one process, but the number of processes is

limited.

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

253

• Fully Homomorphic Encryption (FHE): Enable

multiple operations-multiplication and addition

without restriction on the number of operations.

• Homomorphic encryption properties: The

following properties shall be satisfied by a

homomorphic encryption scheme:

• Additive homomorphism (AH): A homomorphic

encryption is additive if,

 Decsk(Encpk(M1) + Encpk(M2)) = M1 + M2 …..(i)

• Multiplicative homomorphism (MH): A

homomorphic encryption is multiplicative if

Deck(Ck(M1) ∗ Ck(M2)) = M1 ∗ M2 …..(ii)

Now, when a Homomorphic algorithm satisfies both

the above-mentioned properties simultaneously, it is

known as Fully Homomorphic Encryption Algorithm

[3].

B. FULLY HOMOMORPHIC ENCRYPTION

ALGORITHM

This paper will discuss the most efficient form of

homomorphic encryption, which is FHE. Initially,

this technique was speculated by Rivest, Adleman

and Dertouzous after the three of them put forward

Privacy Homomorphism. In this proposal, they

describe a way of facilitating h/w approach to achieve

FHE. Consequently, this approach gave rise to

performance problems. Later on, Craig Gentry used

the approach of bootstrapping and ideal lattices to get

the previously problematic full homomorphic

encryption to work [4]. With any homomorphic

encryption, FHE also enables operations on

encrypted cloud data to provide users' sensitive data

stored in cloud storage with data protection and

confidentiality.

Let us discuss the cons for using FHE. In contrast,

encryption takes more time and memory than

unencrypted data takes for computing[5]. Besides

time and memory, FHE also has some security issues

and drawbacks like large key size and low calculation

efficiency. Hence, the practical use of this encryption

technique is kept limited.

III. RESEARCH AND IMPLEMENTATION

A. IMPLEMENTATION OF FULLY

HOMOMORPHIC ENCRYPTION SCHEME

Cloud Environment

The console (PythonAnywhere) support versions2.7,

3.5, 3.6, 3.7 and 3.8 of Python, while the console also

includes many useful libraries namely NumPy, SciPy,

Mechanize, BeautifulSoup, Pycrypt, CherryPy,

tweePy, GitPython, and many more.

The console supports all of Python's installs. The

Console runs on servers hosted by Amazon EC2 so

heavy duty processing is also possible. It also supports

Simple Automation for running scheduled tasks on

scripts periodically.

We will implement our Fully Homomorphic

Encryption scheme on a Cloud Console that can run

python scripts with numpy library. For that, we will

create a random Cloud Console on the platform and

create a python file for running in that console.

Cloud Console Details:-

Custom Console ID: 19645012

CPU Usage: 4% used – 4.27s of 100s.

File storage: 0% full – 108.0 KB of your 512.0 MB

Script Info: /home/parthtandel99/fhe.py

Batteries Included: NumPy

Basic Notations

Symbol Description

Zq Integers between (−q/2,q/2],

q>1 ,q∈Z (mod q)

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

254

[.]m Specify that we are applying modulo

m

[.] Rounding to the nearest integer

<a,b>

Inner product of two elements

a,b∈ℤnq and is defined as follows:

⟨a,b⟩ =∑inai⋅bi(mod q)

x x is a positive integer

v v∈ℤnq would be simply a vector of n

elements in ℤq

Table 1. Various notations used in the

implementation [6],[7],[8],[9].

Additive and Multiplicative Properties

● Additive homomorphism (AH): A homomorphic

encryption is additive if,

Decsk(Encpk(M1) + Encpk(M2)) = M1 + M2 …..from (i)

[1] Multiplicative homomorphism (MH): A

homomorphic encryption is multiplicative if,

Deck(Ck(M1) ∗ Ck(M2)) = M1 ∗ M2 ….. from (ii)

sk = Secret key pk = Public key

M = Plain text C = Ciphertext

Illustrations

a(x)=7x3+4x2+9 and b(x)=x3+10x2+3x+5

Therefore,

a(x)+b(x)=(7+1mod11)x3+(4+10mod11)x2+(3mod11)x

+(9+5mod11)

a(x)=5x2+3 and b(x)=3x3+4x2

a(x)⋅b(x)=5x2⋅(3x3+4x2)+3⋅(3x3+4x2)

a(x)⋅b(x)=(15mod11)x5+(20mod11)x4+(9mod11)x3+(1

2mod11)x2

Implementation of helper functions

Let's begin with importing the awesome library of

Numpy, then define 2 helper functions to add and

multiply polynomials around a ring.

Rq=ℤq/⟨xn+1⟩.

Generation of Key

Initially, we will produce an arbitrary secret key

from a probability distribution, we will use a normal

uniform distribution over R2, that implies that sk is a

polynomial with coefficients of zero or one. We first

uniformly sample a polynomial over Rq for the public

key and a minor error of a discrete normal

distribution over Rq. Then we make the public key

the tuple

pk=([−(a⋅sk+e)]q,a) ….. (iii)

Now we will implement the production of

polynomials from different and arbitray probability

distributions [6],[7],[8],[9].

We can now use these functions to describe our main

generator, i.e. (b, a) and sk.

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

255

Encryption

We would allow polynomials to be encrypted in the

where t is the plaintext modulus. In our case, we

want to encrypt integers in Z, so we'll only encode a

plaintext integer as the constant m(x)=pt polynomial.

The encryption algorithm takes a public key

pk∈Rq×Rq and a plaintext polynomial m∈Rt and

produces a ciphertext ct∈Rq×Rq, which is a tuple of

two polynomials ct0 and ct1 [6],[7],[8],[9].

ct0=[pk0⋅u+e1+δ⋅m]q …..(iv)

ct1=[pk1⋅u+e2]q …..(v)

Where,

u is drawn from a uniform distribution over R2

(similar to the secret key),

e1 and e2 are drawn from a distinct normal

distribution over Rq (similar to the error word in key

generation) and

δ is used for rounding off to nearest integers with q

over t.

.

Decryption

Our scheme will support decryption of a ciphertext

with arguments:-

 sk: secret-key

 size: size of polynomials

 q: ciphertext modulus

 t: plaintext modulus

 poly_mod: polynomial modulus

 ct: ciphertext

The decrypt function will return the integer

representing the plaintext.

The assumption behind decryption is that

(pk1⋅sk≈−pk0) that is to say, they add up to a very

small polynomial. Let's take a look at computing of

[ct0+ct1⋅sk]q:

[ct0+ct1⋅sk]q=[pk0⋅u+e1+δ⋅m+(pk1⋅u+e2)⋅sk]q

....from (iv) & (v)

[ct0+ct1⋅sk]q=[pk0⋅u+e1+δ⋅m+pk1⋅sk⋅u+e2⋅sk]q

After expanding public key terms,

[ct0+ct1⋅sk]q=[−(a⋅sk+e)⋅u+e1+δ⋅m+a⋅sk⋅u+e2⋅sk]q

...from (iii)

[ct0+ct1⋅sk]q=[−a⋅sk⋅u−e⋅u+e1+δ⋅m+a⋅sk⋅u+e2⋅sk]q

[ct0+ct1⋅sk]q=[δ⋅m−e⋅u+e1+e2⋅sk]q (vi)

Only a scaled message and some error terms remain,

multiplying by 1/δ,

1/δ⋅[ct0+ct1⋅sk]q=[m+1/δ⋅errors]q

Rounding to the nearest integer and going back to Rt,

[⌊1/δ⋅[ct0+ct1⋅sk]q⌉]t=[⌊[m+1/δ⋅errors]q⌉]t

If the rounding to the nearest integer is not affected

by the error terms, we will decrypt to the right value

m, which means that the error terms must be

bounded by 1/2.

1/δ⋅errors≤1/2⇔errors≤q/2t

So all those error terms must be within q/2t for a

correct, efficient and error-free decryption.

After a basic encryption, one can conveniently select

the parameters that ensure a proper decryption, but

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

256

the goal of HE isn't only to encrypt/decrypt data, but

also to compute on encrypted data (add and multiply).

As a result, you can select your criteria based on your

scheme, the level of protection you want to obtain,

and the computation you want to execute

[6],[7],[8],[9].

Figure 4. Framework of keys and

encryption/decryption

We'll compute on the encrypted data now that we

know how to produce keys, encrypt, and decrypt.

With a ciphertext in hand, we may mix it with other

ciphertexts or plaintexts to construct a new

ciphertext. We'll introduce plain operations, which

means we'll grant our scheme the power to add or

multiply ciphertexts with integers (plaintexts)

[6],[7],[8],[9].

Evaluation - Addition

Let us assume ct is a ciphertext encrypting a plaintext

message m1,

ct=([pk0⋅u+e1+δ⋅m1]q,[pk1⋅u+e2]q)

....from (iv) & (v)

Adding m2 leaves us with a,

ct0=[pk0⋅u+e1+δ⋅(m1+m2)]q

....from (iv)

Now, we require to scale new plaintext m2 by δ and

add it to ct0.

add_plain(ct,m2)=([ct0+δ⋅m2]q,ct1)

This is how decryption will look like after the

addition

[⌊1/δ⋅[ct0+ct1⋅sk]q⌉]t=[⌊[m1+m2+1/δ⋅(−e⋅u+e1+e2⋅sk)]

q⌉]t

....from (iii), (iv), (v) & (vi)

As you might have noted, this procedure creates no

additional noise, so we can execute as many basic

additions as we like without incurring any sanction

for noise.

Evaluation - Multiplication

Let us assume ct is a ciphertext encrypting a plaintext

message m1 and after multiplying it with m2 we get,

ct,=[pk0⋅u+e1+δ⋅m,⋅m2]q

....from (iv) & (v)

Multiplying ct, with m2,

ct0⋅m2=[pk0⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2]q

....from (iv)

Expanding the public-key terms in [ct0+ct1⋅sk]q

shows that the decryption will be incorrect.

[ct0+ct1⋅sk]q=[pk0⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+pk1⋅sk⋅u+e

2⋅sk]q

....from (vi)

[ct0+ct1⋅sk]q=[−(a⋅sk+e)⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+a⋅sk⋅

u+e2⋅sk]q

[ct0+ct1⋅sk]q=[−a⋅sk⋅u⋅m2−e⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+a

⋅sk⋅u+e2⋅sk]q

Issue: −a⋅sk⋅u⋅m2 and a⋅sk⋅u won't cancel each other

any more, and that's a major polynomial we've

applied to our message. Decryption of m1*m2 would

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

257

obviously fail. We'll just need to multiply ct1 by m2

for a proper decryption.

mul_plain(ct,m2)=([ct0⋅m2]q,[ct1⋅m2]q)

Results,

[ct0+ct1⋅sk]q=[−a⋅sk⋅u⋅m2−e⋅u⋅m2+e1⋅m2+δ⋅m1⋅m2+a

⋅sk⋅u⋅m2+e2⋅sk⋅m2]q

....from (iii), (iv), (v) & (vi)

[ct0+ct1⋅sk]q=[δ⋅m1⋅m2−e⋅u⋅m2+e1⋅m2+e2⋅sk⋅m2]q

Decryption circuit will result in,

[⌊1/δ⋅[ct0+ct1⋅sk]q⌉]t=[⌊[m1⋅m2+1/δ⋅(−e⋅u⋅m2+e1⋅m2

+e2⋅sk⋅m2)]q⌉]t

Note: As compared to the plaintext addition, you can

see that our error terms have been scaled up by our

message m2, meaning that multiplying by large

numbers can cause decryption to cause rounding

errors.

Now that all of the functionalities have been

incorporated, let's put them all together.

Thus, the Homomorphic Encryption is successfully

implemented here [6],[7],[8],[9].

B. RESULTS AND ANALYSIS

Following snapshots are the results of the above

implemented Fully Homomorphic Encryption

Scheme.

Figure 5. Actual Outcome of Integration Testing

Figure 6. Actual Outcome of Integration Testing

(with time and memory analysis)

Test Case : Encryption and Decryption of 73 and 20.

Expected Result: 80 (+7 because the addition property

is evaluated as well) and 100 (*5 because the

multiplication property is evaluated as well).

Actual Outcome - 80 and 100.

Since the multiplication property is satisfied as well,

we can say that our Homomorphic scheme is a Fully

Homomorphic Scheme.

Let us compare our execution time with the

execution time of four widely used encryption

algorithms called Data Encryption Standard (DES),

Triple Encryption Data Standard (3DES), Rivest

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

258

Cipher (RC2/ARC2) and Advanced Encryption

Standard or Rijndael.

Data Size = 4 bytes

Algorithm Execution Time

(seconds)

DES 0.17

3DES 0.19

RC2 0.2

AES/Rijndael 0.16

FHE 0.14

Table 2. Tabular Representation of Execution Time

of encryption algorithms with FHE[10]

Figure 7. Execution Time of encryption algorithms

with FHE

Please note that the difference is minimal because the

data size is small as well. During practical

implementation this minimal change will grow

exponentially because of the bigger data size and

therefore we can conclude with the result that FHE is

better than most algorithms with reference to

execution time.

C. PARALLEL PROCESSING AND PARTITIONING

This paper will specifically try to tackle the time and

memory drawback of FHE. The main explanation is

that FHE carries out cloud data (Fully homomorphic

encryption) on one or more nodes and hence

acquiring comparatively more time memory to

compute than the one operation performed in simple

text (unencrypted data). One of the obvious

approaches to solve this issue would be Parallel

Processing. It reduces processing time in cloud

computing by imposing parallelism on encrypted data.

As the name implies, parallel processing allows

several nodes to work concurrently, so that the

desired operation takes comparatively less time than

the sequential process. Hence this approach will

increase the performance of the traditional FHE [5].

Let 's speak about some parallel processing

approaches. Conversion of a sequential algorithm to a

parallel algorithm is one approach. If the problem

already has a sequential algorithm, the inherent

parallelism in the algorithm can be identified. It is a

kind of parallelism which naturally occurs within an

algorithm without special effort or algorithm shift.

However, it is not fruitful or effective to use inherent

parallelism in a sequential algorithm. A Parallel

Algorithm to solve a similar but distinct problem is a

safer and more successful solution for some problems.

Another solution is the conception and substitution

of a brand new parallel algorithm with the current

algorithm.

Table 3. Tabular Representation of Parallel

Programming Concepts

Also, the approach of Parallel processing can be used

for Data partitioning method which tackles the

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

259

security drawback of FHE. Client data can be

separated into several sections of similarly sized

chunks and stored on various servers. A public key is

created on the client side to store and retrieve

originally cloud-divided data. This can be

accomplished by a parallel processing principle

known as partitioning. The processing time is

computed according to the time taken (on multiple

nodes) to perform the operations applied

simultaneously and to transmit the data. [5].

There are two methods of partitioning the task for

parallel processing. They are : static partition and

dynamic partition.

• Static Partitioning - The static partitioning

technique separates tasks before execution and

avoids conflict between processes. Input data

then takes decisions including the exercise time

and amount of data provided to systems, such as

the amount of parallel calculation actually

occurs. Therefore, during execution, certain

processes cannot be kept working.

• Dynamic Partitioning - The dynamic partition

approach divides up the tasks while running. As

a consequence, systems are more busy and the

input data isn’t affected. The disadvantage is the

amount of communication and coordination

between processes that is required for

implementation.

• Another classification of partitioning is done on

the basis of processes.

• Data Partitioning (Data Parallelism) – The

processes can be generated in such a way that

every process carries out the same operation on

several sections of the data. This partitioning is

also called homogeneous multitasking because it

creates multiple mirror processes. This approach

derives parallelism from problem data

organisation. Every part will be processed

simultaneously with the data structure divided

into pieces of information. An individual data

item or the set of items may be a bit of

information. In solving mathematical problems

that handle large arrays and vectors, data

partitioning is especially helpful. It is also useful

for non-numerical topics, such as combinatorial

search and sorting algorithms. Data Partitioning

is especially suitable for creating multicomputer

algorithms since a processor primarily calculates

using its own local data and rarely with different

processors.

• Function Partitioning (Control/Function

Parallelism) - Processes may be generated to

perform a different data operation, which is

called Function Partitioning. This partitioning is

known as heterogeneous multi-tasking, just as

data partitioning is known as multitasking in a

homogeneous manner, as many separate

processes carry out various data tasks.

• Illustration of both the above discussed

partitioning - Consider four vectors P, Q, S and T

for the following computation.

Y[n] = (P[n] / Q[n]) - (S[n] / T[n]), for n=1 to 5

• Data Partitioning - Five identical processes are

generated such that n is run by each process.

Thus, the computation of each of the Y[n] using

several similar processes simultaneously was

carried out in parallel.

• Function Partitioning – A and B are two

processes which are derived and then we

compute h = P[n] / Q[n] and sends the value of h

to B. B then calculates f = S[n] / T[n] and inherits

h from A for performing the calculation Y[n] = h

+ f. This is done for each index n. In this way,

the functions of division are performed in

parallel processing at the same time. This

method typically organises the programme in

such a way that the processes uses parallel

processing while coding and not in the data.

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

260

Advantages of data partitioning over function

partitioning:

1. More amount of parallel processing

2. Processes are given balanced/equal load

3. Subtle implementation

On the basis of Task

Execution

On the basis of Process

Creation

Static Partitioning Data Partitioning

Dynamic Partitioning Function Partitioning

Table 4. Classification of Partitioning

D. IMPLEMENTATION OF PARALLELISM

● The most common way to parallelize any

operation is to take a feature that needs to be run

several times and run it in parallel through

several processors.

● To do so, build a Pool of n processors and call

one of Pool's parallelization methods with the

feature you want to parallelize.

● To execute all functions simultaneously,

multiprocessing.Pool() includes the apply(),

map(), and starmap() methods.

● The function to be parallelized is the key

argument in both apply and map. However,

apply() takes an args argument that includes the

parameters transferred to the ‘function-to-be-

parallelized,' while map can only take as an

argument, one iterable.

IV. CONCLUSION

In cloud computing, the power of computation and

resources are much greater than just one computer

where data calculations are carried out by computer

clusters. The use of cloud storage to process large

volumes of data is popular. For cloud computing,

however, businesses are worried about data privacy.

The privacy related problems in cloud related

computing was described in this paper. Fully

Homomorphic Encryption can be a resolution for

solving data privacy in the cloud that processes

information which is encrypted and returns the

encrypted results. Beside so, generally Fully

Homomorphic Encryption is slower and the faster

schemes of Fully Homomorphic Encryption are

needed to extend this way of processing things easily.

We could practically implement partitioning

methods with Fully homomorphic encryption as

proposed in the third section. Also, we could

implement other parallel programming concepts as

described in Table 1. Lastly, we could also implement

a whole new algorithm merged with FHE to achieve

parallel processing. We could also implement

algorithms with FHE with the sole purpose of

tackling security issues and not the ‘time and

memory’ drawback.

V. REFERENCES

[1]. G. S. Vennela, N. V. Varun, N. Neelima, L. S.

Priya and J. Yeswanth, "Performance Analysis

of Cryptographic Algorithms for Cloud

Security," 2018 Second International

Conference on Inventive Communication and

Computational Technologies (ICICCT),

Coimbatore, 2018, pp. 273-279, doi:

10.1109/ICICCT.2018.8473148.

[2]. A. Hendre and K. P. Joshi, "A Semantic

Approach to Cloud Security and Compliance,"

2015 IEEE 8thInternational Conference on

Cloud Computing, New York, NY, 2015, pp.

1081-1084, doi:10.1109/CLOUD.2015.157.

[3]. Z. H. Mahmood and M. K. Ibrahem, "New

Fully Homomorphic Encryption Scheme Based

on Multistage Partial Homomorphic

Encryption Applied in Cloud Computing,"

2018 1st Annual International 8 Conference on

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

261

Information and Sciences (AiCIS), Fallujah,

Iraq, 2018, pp. 182-186, doi:

10.1109/AiCIS.2018.00043.

[4]. P. Sha and Z. Zhu, "The modification of RSA

algorithm to adapt fully homomorphic

encryption algorithm in cloud computing,"

2016 4th International Conference on Cloud

Computing and Intelligence Systems (CCIS),

Beijing, 2016, pp. 388-392, doi:

10.1109/CCIS.2016.7790289.

[5]. R. S. Patil and P. Biradar, "Secure Parallel

Processing on Encrypted Cloud Data Using

Fully Homomorphic Encryption," 2018 4th

International Conference on Applied and

Theoretical Computing and Communication

Technology (iCATccT), Mangalore, India,

2018, pp. 242-247, doi:

10.1109/iCATccT44854.2018.9001284.

[6]. Chen, GL., Sun, GZ., Zhang, YQ. et al. Study

on Parallel Computing. J Comput Sci Technol

21, 665–673 (2006).

https://doi.org/10.1007/s11390-006-0665-9.

[7]. Hsu, Ching-Hsien & Salapura, Valentina.

(2014). Network and Parallel Computing.

International Journal of Parallel Programming.

44. 10.1007/s10766-014-0345-2.

[8]. Navarro, Cristobal & Hitschfeld, Nancy &

Mateu, Luis. (2013). A Survey on Parallel

Computing and its Applications in Data-

Parallel Problems Using GPU Architectures.

Communications in Computational Physics. 15.

285-329. 10.4208/cicp.110113.010813a.

[9]. Yang Liu, Wanneng Shu and Chrish Zhang.

(2016). A Parallel Task Scheduling

Optimization Algorithm Based on Clonal

Operator in Green Cloud Computing. Journal

of Communications Vol. 11, 2016. ISSN: 2315-

4462.

[10]. Abdel-Karim Al Tamimi, “Performance

Analysis of Data Encryption Algorithms”

https://www.cse.wustl.edu/~jain/cse567-

06/ftp/encryption_perf

[11]. D. R. Bharadwaj, A. Bhattacharya and M.

Chakkaravarthy, "Cloud Threat Defense – A

Threat Protectionand Security Compliance

Solution," 2018 IEEE International Conference

on Cloud Computing in Emerging Markets

(CCEM), Bangalore, India, 2018, pp. 95-99, doi:

10.1109/CCEM.2018.00024.

[12]. V. K. Soman and V. Natarajan, "An enhanced

hybrid data security algorithm for cloud," 2017

International Conference on Networks &

Advances in Computational Technologies

(NetACT), Thiruvanthapuram, 2017, pp. 416-

419, doi: 10.1109/NETACT.2017.8076807.

[13]. Nasarul Islam.K.V, Mohamed Riyas.K.V,

“Analysis of Various Encryption Algorithms in

Cloud Computing,” International Journal of

Computer Science and Mobile Computing,

Vol.6 Issue.7, July- 2017, pg. 90-97

[14]. Kartit, Zaid & Azougaghe, Ali & Idrissi, H. & El

marraki, Mohamed & Mustapha, Hedabou &

Belkasmi, Mostafa & Ali, Kartit. (2016).

Applying Encryption Algorithm for Data

Security in Cloud Storage. 10.1007/978-981-

287-990-5_12.

[15]. Alrubaee, Saif. (2019). Security Algorithms in

Cloud Computing- Review Paper.

10.13140/RG.2.2.27320.19200.

[16]. R. Nivedhaa and J. J. Justus, "A Secure Erasure

Cloud Storage System Using Advanced

Encryption Standard Algorithm and Proxy Re-

Encryption," 2018 International Conference on

Communication and Signal Processing (ICCSP),

Chennai, 2018, pp. 0755-0759, doi:

10.1109/ICCSP.2018.8524257.

[17]. K. K. Chennam, L. Muddana and R. K. Aluvalu,

"Performance analysis of various encryption

algorithms for usage in multistage encryption

for securing data in cloud," 2017 2nd IEEE

International Conference on Recent Trends in

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Parth Tandel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 250-262

262

Electronics, Information & Communication

Technology (RTEICT), Bangalore, 2017, pp.

2030-2033, doi:

10.1109/RTEICT.2017.8256955.

[18]. V. S. Mahalle and A. K. Shahade, "Enhancing

the data security in Cloud by implementing

hybrid (Rsa & Aes) encryption algorithm,"

2014 International Conference on Power,

Automation and Communication (INPAC),

Amravati, 2014, pp. 146-149, doi:

10.1109/INPAC.2014.6981152.

[19]. P. Rewagad and Y. Pawar, "Use of Digital

Signature with Diffie Hellman Key Exchange

and AES Encryption Algorithm to Enhance

Data Security in Cloud Computing," 2013

International Conference on Communication

Systems and Network Technologies, Gwalior,

2013, pp. 437-439, doi: 10.1109/CSNT.2013.97.

[20]. X. Song and Y. Wang, "Homomorphic cloud

computing scheme based on hybrid

homomorphic encryption," 2017 3rd IEEE

International Conference on Computer and

Communications (ICCC), Chengdu, 2017, pp.

2450-2453, doi:

10.1109/CompComm.2017.8322975.

[21]. M. B. Yassein, S. Aljawarneh, E. Qawasmeh,

W. Mardini and Y. Khamayseh,

"Comprehensive study of symmetric key and

asymmetric key encryption algorithms," 2017

International Conference on Engineering and

Technology (ICET), Antalya, 2017, pp. 1-7, doi:

10.1109/ICEngTechnol.2017.8308215.

[22]. P. Varalakshmi and H. Deventhiran, "Integrity

checking for cloud environment using

encryption algorithm," 2012 International

Conference on Recent Trends in Information

Technology, Chennai, Tamil Nadu, 2012, pp.

228-232, doi: 10.1109/ICRTIT.2012.6206833.

[23]. A. Azougaghe, Z. Kartit, M. Hedabou, M.

Belkasmi and M. El Marraki, "An efficient

algorithm for data security in Cloud storage,"

2015 15th International Conference on

Intelligent Systems Design and Applications

(ISDA), Marrakech, 2015, pp. 421-427, doi:

10.1109/ISDA.2015.7489267.

Cite this article as :

Parth Tandel, Abhinav Shubhrant, Mayank Sohani,

"Modified Fully Homomorphic Encryption based on

Parallel Processing in Cloud

Computing", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 7, Issue 2, pp.250-262, March-April-

2021. Available at

doi : https://doi.org/10.32628/CSEIT217252

Journal URL : https://ijsrcseit.com/CSEIT217252

https://doi.org/10.32628/CSEIT217252
https://ijsrcseit.com/CSEIT217252

