
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT217263

 304

Workload Optimization by Horizontal Aggregation in SQL for
Data Mining Analysis

Prasanna M. Rathod1, Prof. Dr. Anjali B. Raut2
1M.E. (CSE), H.V.P.M. COET, SGB Amravati University, Maharashtra, India

2Professor and Head of Department, H.V.P.M. COET, SGB Amravati University, Maharashtra, India

Article Info

Volume 7, Issue 2

Page Number: 304-309

Publication Issue :

March-April-2021

Article History

Accepted : 12 April 2021

Published : 17 April 2021

ABSTRACT

Preparing a data set for analysis is generally the most time consuming task in a

data mining project, requiring many complex SQL queries, joining tables, and

aggregating columns. Existing SQL aggregations have limitations to prepare data

sets because they return one column per aggregated group. In general, a

significant manual effort is required to build data sets, where a horizontal layout

is required. We propose simple, yet powerful, methods to generate SQL code to

return aggregated columns in a horizontal tabular layout, returning a set of

numbers instead of one number per row. This new class of functions is called

horizontal aggregations. Horizontal aggregations build data sets with a

horizontal denormalized layout (e.g., point-dimension, observation variable,

instance-feature), which is the standard layout required by most data mining

algorithms. We propose three fundamental methods to evaluate horizontal

aggregations:

➢ CASE: Exploiting the programming CASE construct;

➢ SPJ: Based on standard relational algebra operators (SPJ queries);

➢ PIVOT: Using the PIVOT operator, which is offered by some DBMSs.

Experiments with large tables compare the proposed query evaluation methods.

Our CASE method has similar speed to the PIVOT operator and it is much faster

than the SPJ method. In general, the CASE and PIVOT methods exhibit linear

scalability, whereas the SPJ method does not. For query optimization the

distance computation and nearest cluster in the k-means are based on SQL.

Workload balancing is the assignment of work to processors in a way that

maximizes application performance. The process of load balancing can be

generalized into four basic steps:

1. Monitoring processor load and state;

2. Exchanging workload and state information between processors;

3. Decision making;

4. Data migration.

The decision phase is triggered when the load imbalance is detected to calculate

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT217263

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Prasanna M. Rathod et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 304-309

305

optimal data redistribution. In the fourth and last phase, data migrates from

overloaded processors to under-loaded ones.

Keywords : SQL, CASE, SPJ, PIVOT, Horizontal Aggregation

I. INTRODUCTION

In a relational database, especially with normalized

tables, a significant effort is required to prepare a

summary data set that can be used as input for a data

mining or statistical algorithm. Most algorithms

require as input a data set with a horizontal layout,

with several records and one variable or dimension

per column. That is the case with models like

clustering, classification, regression and PCA consult.

Each research discipline uses different terminology to

describe the data set. In data mining the common

terms are point-dimension. Statistics literature

generally uses observation-variable. Machine

learning research uses instance-feature. We introduce

a new class of aggregate functions that can be used to

build data sets in a horizontal layout (denormalized

with aggregations), automating SQL query writing

and extending SQL capabilities. We show evaluating

horizontal aggregations is a challenging and

interesting problem and introduce alternative

methods and optimizations for their efficient

evaluation.

Workload balancing schemes classify into three

major classes:

1. Static versus dynamic load balancing;

2. Centralized versus distributed load balancing;

3. Application-level versus system-level load

balancing.

Static load balancing can be used in applications with

constant workloads, as a pre-processor to the

computation. Other applications require dynamic

load balancers that adjust the decomposition as the

computation proceeds. This is due to their nature

which is characterized by workloads that are

unpredictable and change during execution. Data

mining uses one of these applications.

II. METHODS AND MATERIAL

A. Introduction to Data Mining

We are in an age often referred to as the information

age. In this information age, because we believe that

information leads to power and success, and thanks to

sophisticated technologies such as computers,

satellites, etc., we have been collecting tremendous

amounts of information. Initially, with the advent of

computers and means for mass digital storage, we

started collecting and storing all sorts of data,

counting on the power of computers to help sort

through this amalgam of information. Unfortunately,

these massive collections of data stored on disparate

structures very rapidly became overwhelming. This

initial chaos has led to the creation of structured

databases and database management systems (DBMS).

The efficient database management systems have

been very important assets for management of a large

corpus of data and especially for effective and

efficient retrieval of particular information from a

large collection whenever needed. The proliferation

of database management systems has also contributed

to recent massive gathering of all sorts of information.

Today, we have far more information than we can

handle: from business transactions and scientific data,

to satellite pictures, text reports and military

intelligence. Information retrieval is simply not

enough anymore for decision-making. Confronted

with huge collections of data, we have now created

new needs to help us make better managerial choices.

These needs are automatic summarization of data,

extraction of the “essence” of information stored, and

the discovery of patterns in raw data.

B. SPJ method

The SPJ method is interesting from a theoretical

point of view because it is based on relational

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Prasanna M. Rathod et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 304-309

306

operators only. The basic idea is to create one table

with a vertical aggregation for each result column,

and then join all those tables to produce FH. We

aggregate from F into d projected tables with d

Select- Project-Join-Aggregation queries (selection,

projection, join, aggregation). Each table FI

corresponds to one subgrouping combination and has

{L1, . . ., Lj} as primary key and an aggregation on A

as the only non-key column. It is necessary to

introduce an additional table F0, that will be outer

joined with projected tables to get a complete result

set. We propose two basic sub-strategies to compute

FH. The first one directly aggregates from F. The

second one computes the equivalent vertical

aggregation in a temporary table FV grouping by

L1, . . ., Lj, R1, . . .,Rk. Then horizontal aggregations

can be instead computed from FV, which is a

compressed version of F, since standard aggregations

are distributive

C. CASE method

For this method we use the”case” programming

construct available in SQL. The case statement

returns a value selected from a set of values based on

boolean expressions. From a relational database

theory point of view this is equivalent to doing a

simple projection/aggregation query where each

monkey value is given by a function that returns a

number based on some conjunction of conditions.

We propose two basic sub-strategies to compute FH.

In a similar manner to SPJ, the first one directly

aggregates from F and the second one computes the

vertical aggregation in a temporary table FV and then

horizontal aggregations are indirectly computed from

FV.

D. PIVOT method

We consider the PIVOT operator which is a built-in

operator in a commercial DBMS. Since this operator

can perform transposition it can help evaluating

horizontal aggregations. The PIVOT method

internally needs to determine how many columns are

needed to store the transposed table and it can be

combined with the GROUP BY clause.

E. Horizontal Aggregations

We introduce a new class of aggregations that have

similar behavior to SQL standard aggregations, but

which produce tables with a horizontal layout. In

contrast, we call standard SQL aggregations vertical

aggregations since they produce tables with a vertical

layout. Horizontal aggregations just require a small

syntax extension to aggregate functions called in a

SELECT statement. Alternatively, horizontal

aggregations can be used to generate SQL code from a

data mining tool to build data sets for data mining

analysis.

F. The Workload Balancing Algorithms

The two main advantages of the workload balancing

strategy are:

1. The priority is given to local workload balancing

(i.e. intra-cluster). The objective of that is to

privilege local communications (LAN network) in

order to reduce the overhead caused by the

transfer of work or data.

2. The strategy is totally distributed but the decision

is taken locally.

Following is the dynamic load balancing algorithms:

A. Module node:

Loop:

➢ Receives a group of candidates from the

coordinator of the cluster.

➢ Calculates their supports.

➢ Sends local supports to cluster’s coordinator

which performs the global supports reduction.

➢ Every n steps :

• Updates NSV (Node State Vector)

• Sends NSV to the Cluster

B. Module cluster coordinator

1. Init_Execution: Receive Partition of the DB.

2. Normal Execution:

Loop:

➢ Distributes candidate itemsets between nodes

according to their capacities. Candidates are

distributed by their (k-1) common prefix.

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Prasanna M. Rathod et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 304-309

307

➢ Performs the global reduction of supports to

obtain global frequencies.

➢ Constructs frequent itemsets (Lk step).

➢ Constructs candidates itemsets of the following

iteration (Ck+1 step).

➢ Every n steps :

• Saves the local state;

• Updates if necessary Ck+1 step.

3. Monitoring :

❖ Every n steps:

➢ Receives NSV (Node State Vector)

➢ Checks if any overload in nodes

➢ Updates CSV (Cluster State Vector)

➢ Sends CSV

➢ Checks if an Overload is detected in some nodes

a. Load Balancing :

❖ If an Overload is detected:

➢ Checks (CSV)

➢ Searches_Candidate, in nodes, to balance the load

➢ If Find then Start_load balance (intra-cluster)

➢ Else asks Site to Start_load Balance (intra-Site)

C. Module site coordinator

Loop :

Where,

All load balancing algorithms are executed in parallel

without inducing an overhead in execution time.

Computing nodes continue working even during

work or data migration.

III. RESULTS AND DISCUSSION

As mentioned, building a suitable data set for data

mining purposes is a time-consuming task. This task

generally requires writing long SQL statements or

customizing SQL code if it is automatically generated

by some tool. There are two main ingredients in such

SQL code: joins and aggregations; we focus on the

second one. The most widely-known aggregation is

the sum of a column over groups of rows. Some other

aggregations return the average, maximum,

minimum or row count over groups of rows. There

exist many aggregation functions and operators in

SQL. Unfortunately, all these aggregations have

limitations to build data sets for data mining purposes.

The main reason is that, in general, data sets that are

stored in a relational database (or a data warehouse)

come from On-Line Transaction Processing (OLTP)

systems where database schemas are highly

normalized. But data mining, statistical or machine

learning algorithms generally require aggregated data

in summarized form. An existing to preparing a data

set for analysis is generally the most time consuming

task in a data mining project, requiring many

complex SQL queries, joining tables and aggregating

columns. Existing SQL aggregations have limitations

to prepare data sets because they return one column

per aggregated group.

Disadvantage:

1) Existing SQL aggregations have limitations to

prepare data sets.

2) To return one column per aggregated group.

Proposed Work and Objectives

Our proposed horizontal aggregations provide several

unique features and advantages. First, they represent

a template to generate SQL code from a data mining

tool. Such SQL code automates writing SQL queries,

optimizing them and testing them for correctness.

Advantage:

1) The SQL code reduces manual work in the data

preparation phase in a data mining project.

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Prasanna M. Rathod et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 304-309

308

2) The SQL code is automatically generated it is

likely to be more efficient than SQL code

written by an end user.

3) The data sets can be created in less time.

4) The data set can be created entirely inside the

DBMS.

Module Description:

1. Admin Module

2. User Module

3. View Module

4. Download Module

Module 1: Admin Module

Admin will upload new connection form based on

regulations in various states. Admin will be able

upload various details regarding user bills like a new

connection to a new user, amount paid or payable by

user. In case of payment various details regarding

payment will be entered and separate username and

password will be provided to users in large.

Module 2: User Module

User will be able to view his bill details on any date

may be after a month or after months or years and

also he can to view the our bill details in a various

ways for instance, The year wise bills, Month wise

bills, totally paid to bill in EB. This will reduce the

cost of transaction. If user thinks that his password is

insecure, he has option to change it. He also can view

the registration details and allowed to change or edit

and save it.

Module 3: View Module

Admin has three ways to view the user bill details,

the 3 ways are

i) SPJ

ii) PIVOT

iii) CASE

i) SPJ: While using SPJ the viewing and processing

time of user bills is reduced.

ii) PIVOT: This is used to draw the user details in a

customized table. This table will elaborate us on

the various bill details regarding the user on

monthly basis.

iii) CASE: using CASE query we can customize the

present table and column based on the conditions.

This will help us to reduce enormous amount of

space used by various user bill details. It can be

viewed in two difference ways namely

Horizontal and Vertical.

In case of vertical the number of rows will be

reduced to such an extent it is needed and column

will remain the same on other hand the Horizontal

will reduce rows as same as vertical and will also

increase the columnar format

Module 4: Download Module

User will be able to download the various details

regarding bills. If he/she is a new user, he/she can

download the new connection form, subscription

details etc. then he/she can download his /her

previous bill details in hands so as to ensure it.

IV. CONCLUSION

Above table analyzes our first workload optimization,

applied to three methods. Our goal is to assess the

acceleration obtained by pre-computing a cube and

storing it on FV. We can see this optimization

uniformly accelerates all methods. This optimization

provides a different gain, depending on the method:

Volume 7, Issue 2, March-April-2021 | http://ijsrcseit.com

Prasanna M. Rathod et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April-2021, 7 (2) : 304-309

309

for SPJ the optimization is best for small n, for

PIVOT for large n and for CASE there is rather a less

dramatic improvement all across n. It is noteworthy

PIVOT is accelerated by our optimization, despite the

fact it is handled by the query optimizer. Since this

optimization produces significant acceleration for the

three methods (at least 2X faster) we will use it by

default. Notice that pre-computing FV takes the same

time within each method. Therefore, comparisons are

fair. We now evaluate optimization specific to the

PIVOT operator. This PIVOT optimization is well-

known, as we learned from SQL Server DBMS users

groups. Following table shows the impact of

removing (trimming) columns not needed by PIVOT.

That is, removing columns that will not appear in FH.

We can see the impact is significant, accelerating

evaluation time from three to five times. All our

experiments incorporate this optimization by default.

We have try to introduce a new class of extended

aggregate functions, called horizontal aggregations

which help preparing data sets for data mining and

OLAP cube exploration.

➢ Specifically horizontal aggregations are useful to

create data sets with a horizontal layout, as

commonly required by data mining algorithms

and OLAP cross-tabulation. Basically, a

horizontal aggregation returns a set of numbers

instead of a single number for each group,

resembling a multi-dimensional vector.

➢ We proposed an abstract, but minimal, extension

to SQL standard aggregate functions to compute

horizontal aggregations which just requires

specifying subgrouping columns inside the

aggregation function call. From a query

optimization perspective,

➢ We proposed three query evaluation methods.

The first one (SPJ) relies on standard relational

operators. The second one (CASE) relies on the

SQL CASE construct. The third (PIVOT) uses a

built-in operator in a commercial DBMS that is

not widely available.

Using load balancing algorithms and techniques we

try to improve the workload optimization

V. REFERENCES

[1]. J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M.

Henaire, and C. Kleinerman. .NET database

programmability and extensibility in Microsoft

SQL Server. In Proc. ACM SIGMOD Conference,

pages 1087–1098, 2008.

[2]. C. Cunningham, G. Graefe, and C.A. Galindo-

Legaria. PIVOT and UNPIVOT: Optimization

and execution strategies in an RDBMS. In Proc.

VLDB Conference, pages 998–1009, 2004.

[3]. H. Garcia-Molina, J.D. Ullman, and J. Widom.

Database Systems: The Complete Book. Prentice

Hall, 1st edition, 2001.

[4]. G. Graefe, U. Fayyad, and S. Chaudhuri. On the

efficient gathering of sufficient statistics for

classification from large SQL databases. In Proc.

ACM KDD Conference, pages 204–208, 1998.

[5]. J. Han and M. Kamber. Data Mining: Concepts

and Techniques. Morgan Kaufmann, San

Francisco, 1st edition, 2001.

Cite this article as :

Prasanna M. Rathod, Prof. Dr. Anjali B. Raut,

"Workload Optimization by Horizontal Aggregation

in SQL for Data Mining Analysis", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 7 Issue 2, pp.

304-309, March-April 2021. Available at

doi : https://doi.org/10.32628/CSEIT217263

Journal URL : https://ijsrcseit.com/CSEIT217263

https://doi.org/10.32628/CSEIT217263
https://ijsrcseit.com/CSEIT217263

