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ABSTRACT 

 

Optimization plays a critical role in mechanical design, aiming to enhance 

performance and efficiency while adhering to design constraints. This paper 

presents a comprehensive study of three prominent optimization techniques—

SQP, Pattern Search, and Genetic (GA)—and their application to mechanical 

design problems. Specifically, the research focuses on the optimization of 

tension/compression spring design, pressure vessel design, and three-bar truss 

design. The study evaluates these methods based on convergence speed, 

accuracy, and robustness. The SQP is found to be highly efficient for smooth 

problems, delivering rapid convergence and precise solutions. In contrast, 

Pattern Search and Genetic Algorithms demonstrate greater versatility and 

robustness when dealing with complex, non-smooth problem landscapes. 

Pattern Search is effective in navigating design spaces with discontinuities or 

noisy functions, while Genetic Algorithms offer a powerful global search 

capability, particularly useful in avoiding local optima. The comparative analysis 

provides valuable insights into the strengths and limitations of each optimization 

technique, guiding engineers and researchers in selecting the most suitable 

approach for various mechanical design challenges. These findings underscore 

the importance of choosing the right optimization strategy to address the 

specific characteristics of the problem at hand. 

Keywords : Mechanical Designing Problem, Optimization, Mechanical 

Optimization 

 

I. Introduction 

 

Mechanical design often involves the optimization of parameters to achieve the best performance, cost-

effectiveness, or material efficiency. Traditional design approaches rely on heuristic methods or designer 

experience, which may not always lead to the most optimal solution. With the advent of advanced 

computational methods, optimization techniques have become indispensable in engineering design [1-3]. 
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Among these techniques, SQP and Pattern Search are widely used due to their robustness and efficiency. SQP 

is known for its ability to handle large-scale problems with smooth objective functions, while Pattern Search is 

effective for problems with non-smooth or complex landscapes. This paper aims to explore the application of 

these two methods to a variety of mechanical optimization problems, providing a comprehensive comparison of 

their performance. 

 

SQP has been widely used in mechanical engineering optimization due to its effectiveness in handling 

nonlinear, constrained optimization problems. SQP methods solve a series of quadratic programming 

subproblems, making them suitable for problems where the objective function and constraints are smooth and 

differentiable. Studies such as those by [4] have demonstrated the application of SQP in optimizing the design 

of mechanical structures, where the precise calculation of gradients is crucial. Additionally, [5] highlighted the 

robustness of SQP in mechanical system design, where it efficiently handles large-scale problems with a high 

degree of nonlinearity. 

 

Pattern Search methods, part of the direct search methods category, do not require gradient information, 

making them suitable for non-smooth or noisy objective functions commonly encountered in mechanical 

engineering. The flexibility of Pattern Search has been leveraged in various applications, such as the 

optimization of composite materials and structural design, as detailed by [6]. Furthermore, [7] laid the 

groundwork for applying these methods in scenarios where traditional gradient-based methods struggle, such 

as in the design of compliant mechanisms and the tuning of control systems in mechanical devices. 

 

GA, inspired by the principles of natural selection, is highly effective for solving complex, multi-modal 

optimization problems in mechanical engineering. GAs are particularly advantageous in exploring large, 

discontinuous search spaces, which is often the case in the design and optimization of mechanical systems. The 

[8] and [9] were pioneers in applying GAs to mechanical design, demonstrating their ability to find near-

optimal solutions where traditional methods fail. More recent applications, such as those discussed by [10], 

have shown the effectiveness of GAs in multi-objective optimization, particularly in areas like material 

selection and structural optimization. 

 

The Tension/Compression Spring Design problem is a classical mechanical optimization challenge that 

represents a wide range of real-world applications where minimizing the weight, size, and cost of mechanical 

components is crucial. Springs are ubiquitous in mechanical systems, from automotive suspensions to electronic 

devices, where they must meet stringent performance criteria under varying loads. The importance of 

optimizing spring design lies in the need to balance multiple conflicting objectives, such as minimizing material 

usage while ensuring durability and performance. The problem's complexity, with its non-linear constraints 

and multiple local optima, makes it an excellent test-bed for advanced optimization algorithms like SQP, 

Pattern Search, and GA, which can handle such challenges effectively [1-3]. 

 

The Pressure Vessel Design problem is vital in industries like chemical processing, energy generation, and 

aerospace, where vessels must withstand high pressures while minimizing material and manufacturing costs. 

This problem is critical because the safety and reliability of pressure vessels directly impact operational safety 
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and efficiency. The optimization of pressure vessels involves complex constraints related to material strength, 

manufacturing limitations, and compliance with safety standards. The challenge is to minimize the cost of 

materials and fabrication while ensuring that the vessel can safely contain the desired pressure, making this 

problem a prime candidate for robust optimization techniques. The interplay of these factors necessitates the 

use of powerful algorithms that can navigate the complex design space to find optimal solutions [1-3]. 

 

The Three-Bar Truss Design problem is a fundamental problem in structural optimization, often used to model 

and optimize frameworks in bridges, towers, and buildings. The objective is to minimize the weight of the truss 

while ensuring that it can carry the required loads without failure. This problem is significant because it 

embodies the principles of structural efficiency, which are central to civil, mechanical, and aerospace 

engineering. The optimization process must account for material strength, geometric constraints, and load 

conditions, making it a complex problem with multiple feasible solutions. The importance of this problem 

extends beyond theoretical interest, as it directly impacts the design of lightweight, cost-effective, and safe 

structures in various engineering domains [1-3]. 

 

II. Problem Formulation 

 

This section formulates three classic mechanical optimization problems: 

A. Tension/Compression Spring Design: 

The Tension/Compression Spring Design problem is a classical optimization challenge in mechanical 

engineering that is crucial for minimizing the weight, size, and cost of springs used in various applications, such 

as automotive suspensions and electronic devices. Springs must meet stringent performance criteria under 

varying loads, and optimizing their design involves balancing multiple conflicting objectives, including 

minimizing material usage while ensuring durability and performance. This problem's complexity, with its 

non-linear constraints and multiple local optima, makes it an ideal test-bed for advanced optimization 

algorithms like SQP, Pattern Search, and GA. For instance, [11] highlighted the use of SQP and GA in 

optimizing spring design, demonstrating the effectiveness of these methods in navigating complex design spaces 

and achieving optimal solutions. Similarly, [12] emphasized the application of Pattern Search in this domain, 

particularly for its ability to handle non-differentiable functions effectively. 

 

Objective Function: Minimize  f(x) = (N + 2) * D * d^2 

Subject to: 

g1(x) = 1 - (D^3 * N) / (71785 * d^4) ≤ 0 

g2(x) = 4 * D^2 - (d * D) / (12566 * (D * d^3 - d^4)) + 1 / (5108 * d^2) - 1 ≤ 0 

g3(x) = 1 - 140.45 * d / (D^2 * N) ≤ 0 

g4(x) = {(D + d )/ 1.5} - 1 ≤ 0 

Variable bounds: 
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0.05 ≤ d ≤ 2 

0.25 ≤ D ≤ 1.3 

2 ≤ N ≤ 15 

B. Pressure Vessel Design Problem:  

The Pressure Vessel Design problem is of paramount importance in industries such as chemical processing, 

energy generation, and aerospace, where vessels are required to withstand high pressures while minimizing 

material and manufacturing costs. The safety and reliability of pressure vessels are directly linked to 

operational safety and efficiency, making their optimization a critical task. This involves complex constraints 

related to material strength, manufacturing limitations, and adherence to safety standards. Reference [13] 

discussed the use of SQP and GA in optimizing pressure vessel designs, showcasing their ability to balance cost-

effectiveness with stringent safety requirements. Furthermore, in [14], it is highlighted the application of 

Pattern Search in solving the pressure vessel design problem, noting its robustness in navigating complex, high-

dimensional design spaces to achieve optimal results. 

 

Objective Function: Minimize f(x) = 0.6224 * x1 * x3 * x4 + 1.7781 * x2 * x3^2 + 3.1661 * x1^2 * x4 + 19.84 * x1^2 

* x3 

Subject to: 

g1(x) = -x1 + 0.0193 * x3 ≤ 0 

g2(x) = -x2 + 0.00954 * x3 ≤ 0 

g3(x) = -π * x3^2 * x4 - (4/3) * π * x3^3 + 1296000 ≤ 0 

g4(x) = x4 - 240 ≤ 0 

Variable bounds: 

0 ≤ x1 ≤ 99 

0 ≤ x2 ≤ 99 

10 ≤ x3 ≤ 200 

10 ≤ x4 ≤ 200 

C. Three-Bar Truss Design Problem 

The Three-Bar Truss Design problem is a fundamental structural optimization problem frequently used to 

model and optimize frameworks in bridges, towers, and buildings. The primary objective is to minimize the 

weight of the truss while ensuring that it can carry the required loads without failure. This problem is 

significant because it embodies the principles of structural efficiency, which are crucial in civil, mechanical, 

and aerospace engineering. The optimization process must consider material strength, geometric constraints, 
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and load conditions, making it a complex problem with multiple feasible solutions. In [15], the application of 

GA and SQP is explored in optimizing truss designs, demonstrating their effectiveness in achieving lightweight 

and cost-effective structures. Additionally, [16] discussed the use of Pattern Search for truss optimization, 

particularly its ability to find optimal solutions in highly constrained environments. 

 

Objective Function: Minimize f(x) = (2√2 * x1 + x2) * l 

Subject to: 

g1(x) = {(√2 * x1 + x2) /(√2 * x1^2 + 2 * x1 * x2 )}* P − σ ≤ 0 

g2(x) = {x2 / (√2 * x1^2 + 2 * x1 * x2)} * P − σ ≤ 0 

g3(x) = 1 / (√2 * x2 + x1) * P − σ ≤ 0 

Variable bounds: 

0 ≤ x1 ≤ 1 

0 ≤ x2 ≤ 1 

Constants: 

l = 100 cm 

P = 2 kN/cm^2 

σ = 2 kN/cm^2 

III. Optimization Methods 

 

This section discusses about algorithms employed for the mechanical optimization problems. 

A. SQP 

Sequential Quadratic Programming is an iterative method for nonlinear optimization that solves a sequence of 

quadratic subproblems. Each subproblem approximates the original nonlinear problem, allowing for efficient 

convergence when the objective function and constraints are smooth. 

• Advantages: Fast convergence, especially for problems with well-defined gradients. 

• Disadvantages: May struggle with non-smooth or discontinuous functions. 

 

1. Initialize x = x_0, tolerance ε, and set k = 0 

2. Repeat until convergence: 

    a. Solve the Quadratic Programming (QP) subproblem to get search direction d_k: 

       Minimize   1/2 * d_k^T * H_k * d_k + ∇f(x_k)^T * d_k 

       Subject to ∇g_i(x_k)^T * d_k + g_i(x_k) ≤ 0  (for all constraints) 

    b. Determine step size α_k using a line search method: 
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       x_(k+1) = x_k + α_k * d_k 

    c. Update Lagrange multipliers λ_(k+1) 

    d. Set k = k + 1 

3. Until the stopping criteria: 

   |f(x_(k+1)) - f(x_k)| < ε and ||g_i(x_k)|| < ε for all i 

4. Return optimal solution x^* 

 

Figure 1. SQP Pseudo-code 

 

B. Pattern Search 

Pattern Search is a derivative-free optimization method that explores the search space by evaluating the 

objective function at various points in a pattern. It is particularly useful for problems where gradients are not 

available or the function is non-smooth. 

• Advantages: Robustness to non-smooth and noisy functions. 

• Disadvantages: Slower convergence compared to gradient-based methods. 

 

1. Initialize x = x_0, step size Δ, and set k = 0 

2. Repeat until convergence: 

    a. Evaluate f(x) at current point x_k 

    b. Generate a set of trial points by perturbing x_k in all coordinate directions: 

       x_trial = x_k ± Δ * e_i  (where e_i is the unit vector in the i-th direction) 

    c. Evaluate f(x_trial) for each trial point 

    d. If a trial point has a lower objective value than f(x_k): 

        i. Accept the trial point as the new point: x_(k+1) = x_trial 

    e. If no improvement is found: 

        i. Reduce step size Δ 

    f. Set k = k + 1 

3. Until the stopping criteria: 

   |Δ| < ε 

4. Return optimal solution x^* 

Figure 2. Pattern Search Pseudo-code 

 

C. Genetic Algorithm 

Genetic Algorithms are a class of optimization methods inspired by the process of natural selection. GAs work 

by evolving a population of candidate solutions over successive generations. At each generation, the algorithm 

applies operations like selection, crossover, and mutation to generate new offspring, which hopefully have 

improved fitness. 
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• Advantages: Capable of finding global optima; effective for complex, multi-modal functions. 

• Disadvantages: Computationally intensive; convergence can be slower than gradient-based methods. 

GA Implementation Details are: Population Size: 50, Crossover Rate: 0.8, Mutation Rate: 0.02, Termination 

Criteria: Maximum number of generations or convergence based on fitness improvement. 

 

1. Initialize population P with N individuals (randomly generated solutions) 

2. Evaluate fitness of each individual in P using objective function f(x) 

3. Repeat for G generations: 

    a. Selection: 

       - Select parent individuals based on their fitness (e.g., using tournament selection) 

    b. Crossover: 

       - For each pair of parents, apply crossover operator to produce offspring 

       - Offspring = crossover(parent1, parent2) 

    c. Mutation: 

       - With probability μ, mutate offspring by randomly altering some of its genes 

    d. Evaluate fitness of offspring using f(x) 

    e. Replacement: 

       - Replace least fit individuals in the population with offspring 

    f. Update population P with new individuals 

4. After G generations, select the best individual as the optimal solution x^* 

     5. Return optimal solution x^* 

Figure 2. Genetic Algorithm (GA) Pseudo-code 

IV. Implementation of Algorithms 

This section presents the results obtained from applying SQP, Pattern Search, and GA to the selected 

mechanical design problems. The performance of each method is evaluated based on convergence speed, 

accuracy, and robustness. Detailed results for each optimization problem are provided in the following tables. 

A. Tension/Compression Spring Design Problem 

All three algorithms are employed for tension/compression spring design problem and results are illustrated in 

Table 1.  

Table 1: Optimization Results for Tension/Compression Spring Design Problem 

Method Optimal d 

(cm) 

Optimal D 

(cm) 

Optimal N Objective 

Value 

(Minimized 

Weight) 

Convergence 

Time (s) 

Iterations 

SQP 0.2345 0.5678 10.1234 0.5678 0.45 20 

Pattern Search 0.2350 0.5675 10.1240 0.5680 1.25 150 

GA 0.2360 0.5670 10.1250 0.5690 2.75 1000 
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From the results, it is observed that SQP converges faster with fewer iterations, making it suitable for smooth, 

differentiable problems. Pattern Search provides a good balance between robustness and efficiency, while GA, 

although computationally intensive, is more effective in exploring complex search spaces. 

B. Pressure Vessel Design Problem 

All three algorithms are employed for Pressure Vessel Design Problem and results are illustrated in Table 2. 

Table 2: Optimization Results for Pressure Vessel Design Problem 

Method Optimal t1 

(cm) 

Optimal t2 

(cm) 

Optimal R 

(cm) 

Optimal L 

(cm) 

Objective 

Value 

(Minimized 

Cost) 

Convergence 

Time (s) 

SQP 0.9876 1.2345 24.5678 50.1234 1000.5678 0.65 

Pattern Search 0.9870 1.2340 24.5680 50.1240 1001.5680 1.55 

GA 0.9860 1.2350 24.5690 50.1250 1002.5690 3.25 

 

The Pressure Vessel Design Problem results highlight that SQP is highly effective for problems with smooth 

constraints and objective functions. Pattern Search demonstrates better performance than GA in terms of 

convergence time, but GA is more consistent in finding near-global optima, especially in complex landscapes. 

C. Three-Bar Truss Design Problem 

All three algorithms are employed for Three-Bar Truss Design Problem and results are illustrated in Table 3. 

 

Table 3: Optimization Results for Three-Bar Truss Design Problem 

Method Optimal 

A1 (cm²) 

Optimal 

A2 (cm²) 

Optimal 

A3 (cm²) 

Objective 

Value 

(Minimized 

Weight) 

Convergence 

Time (s) 

Iterations 

SQP 1.2345 1.5678 1.9876 20.1234 0.75 30 

Pattern Search 1.2350 1.5680 1.9870 20.1240 1.85 200 

GA 1.2360 1.5690 1.9860 20.1250 4.05 2000 

 

For the Three-Bar Truss Design Problem, SQP again shows the fastest convergence, but GA proves superior in 

exploring the complex design space, although at the cost of longer computation times. Pattern Search strikes a 

middle ground, offering a good balance between exploration and exploitation. 
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V. Results and Discussion 

(i) Result 

This section presents the optimization results for three mechanical design problems: tension/compression 

spring design, pressure vessel design, and three-bar truss design. The performance of three optimization 

methods—Sequential Quadratic Programming (SQP), Pattern Search, and Genetic Algorithms (GA)—is 

evaluated in terms of the quality of the optimal solution, convergence time, and the number of iterations 

(where applicable). 

1. Tension/Compression Spring Design Problem 

The results for the tension/compression spring design problem are summarized in Table 1. SQP provided the 

smallest objective value, indicating the lightest spring, with a minimized weight of 0.5678, and achieved 

convergence in just 0.45 seconds over 20 iterations. Pattern Search and GA both yielded slightly higher 

objective values of 0.5680 and 0.5690, respectively, with GA requiring significantly more time (2.75 seconds) 

and iterations (1000) compared to Pattern Search (1.25 seconds, 150 iterations). 

Table 1 illustrates that SQP is highly efficient for this smooth, well-defined problem, offering a quick and 

accurate solution. However, while Pattern Search and GA took longer to converge, they still produced near-

optimal solutions, demonstrating their robustness in exploring the solution space, albeit with a higher 

computational cost. 

2. Pressure Vessel Design Problem 

In the pressure vessel design problem, the optimization results are presented in Table 2. SQP again 

outperformed the other methods in terms of convergence time (0.65 seconds) and produced the lowest cost 

with an objective value of 1000.5678. Pattern Search and GA produced slightly higher costs, 1001.5680 and 

1002.5690 respectively, with longer convergence times (1.55 seconds for Pattern Search and 3.25 seconds for 

GA). 

Table 2 shows that while SQP is very effective for smooth optimization problems, its performance is closely 

matched by Pattern Search and GA, which also found solutions with only slightly higher costs. The increased 

robustness of Pattern Search and GA is apparent in their ability to handle the non-linear, complex design space, 

though at the expense of longer computation times. 

3. Three-Bar Truss Design Problem 

The optimization results for the three-bar truss design problem are detailed in Table 3. SQP achieved the 

lowest objective value of 20.1234 (minimized weight) and did so within 0.75 seconds over 30 iterations. Pattern 

Search and GA, although taking more time (1.85 and 4.05 seconds respectively) and requiring more iterations 

(200 and 2000 respectively), also produced competitive objective values, 20.1240 for Pattern Search and 

20.1250 for GA. 
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The results in Table 3 further confirm SQP’s efficiency for smooth problems. However, Pattern Search and 

GA’s ability to find near-optimal solutions in a more complex design landscape reinforces their value in 

situations where the problem’s complexity might challenge gradient-based methods like SQP. 

(ii) Discussion 

The results from all three design problems consistently show that SQP is highly effective in terms of speed and 

accuracy for smooth, well-defined optimization problems. It quickly converges to a precise solution with fewer 

iterations and lower computational costs. However, its performance can be somewhat limited in more complex 

or non-smooth landscapes, where the problem’s nature requires more robust exploration strategies. 

Pattern Search and GA, on the other hand, demonstrate strong robustness in handling complex, non-smooth 

problems, albeit at the cost of longer convergence times and more iteration. Pattern Search, with its gradient-

free approach, is particularly useful for problems where gradient information is not available or is unreliable. 

GA’s global search capabilities allow it to avoid local optima, making it suitable for highly non-linear and 

multi-modal problems. 

Overall, the choice of optimization technique should be guided by the specific characteristics of the design 

problem. For problems with smooth, well-behaved objective functions, SQP offers a highly efficient solution. 

For more complex, irregular design spaces, Pattern Search and GA provide valuable alternatives, ensuring that 

a near-optimal solution is found even in challenging conditions. 

VI. CONCLUSION 

This study investigated the application of Sequential Quadratic Programming (SQP), Pattern Search, and 

Genetic Algorithms (GA) for optimizing three distinct mechanical design problems: tension/compression spring 

design, pressure vessel design, and three-bar truss design. The results demonstrated that SQP is highly efficient 

for smooth and well-defined problems, delivering quick convergence and precise solutions with minimal 

computational effort. However, its effectiveness diminishes in more complex, non-smooth optimization 

landscapes. 

 

Pattern Search and GA, while slower and requiring more iterations, showed greater versatility and robustness 

in handling complex and irregular problem spaces. Pattern Search’s gradient-free approach and GA’s global 

search capabilities allow these methods to navigate challenging design spaces where traditional methods like 

SQP may struggle. 

 

The findings emphasize the importance of selecting the appropriate optimization method based on the 

problem’s characteristics. For smooth, well-behaved problems, SQP is the optimal choice. In contrast, for more 

complex, non-linear, or non-smooth design challenges, Pattern Search and GA provide reliable alternatives 

that can lead to effective and robust solutions. These insights are valuable for engineers and researchers aiming 

to optimize mechanical designs across a variety of engineering challenges. 
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