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ABSTRACT 

 

Air pollution has become a major issue in large cities because increasing traffic, 

industrialization and it becomes more difficult to manage due to its hazardous 

effects on the human health and many air pollution-triggering factors. This 

paper puts forth a machine learning approach to evaluate the accuracy and 

potential of such mobile generated information for prediction of air pollution. 

Temperature, wind, humidity play a vital role in influencing the pollution 

dispersion and accumulation, majorly influencing the prediction of pollution 

levels. Thus, this paper includes the atmospheric condition information 

registered throughout the study period in order to understand the influence of 

these factors on air pollution monitoring. Data driven modelling is an efficient 

way of extracting valuable information from generated data sets, however it is 

less efficient when the data is incomplete or contains inaccuracies. This 

modelling approach has true potential for real time operations because it can 

detect non-linear spatial relationships between sensing units and could aggregate 

results for regional investigation. Neural networks comparatively showed good 

capability in air quality prediction than support vector regression. 

Keywords : Air Pollution, AQI value, Neural Networks, Support Vector 

Regression, R2 value 

 

I. INTRODUCTION 

 

Addressing air pollution problems in growing urban 

cities has become a serious downside due to ever-

increasing traffic in densely inhabited urban areas, 

extended industrialization, high-energy consumption, 

skimpy resources for monitoring and various issues in 

shaping custom-made policies. The challenge of 

managing air pollution becomes tougher because of 

its dangerous effects on public health and the 

multitude of air pollution triggering factors. 

Therefore, numerous studies in recent years are 

concentrating on evaluating the impact of bad air 

quality on citizens. This is done by moving away 

from traditional monitoring stations which are 

normally placed in high altitude locations across 
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cities, towards outdoor and easy deployable air 

quality monitoring units, such as mobile sensors 

installed on cars, bikes or even carried by hand 

during daily travelling. This new form of collective 

approach for monitoring air quality brings numerous 

advantages in terms of real-time pollution 

measurement and hot-spot identification, however 

conjointly comes with various challenges due to the 

amount of information generated and its accuracy. 

Therefore, there is a true challenge of not only 

shifting towards a mobile air pollution-monitoring 

paradigm (and selecting the best-adapted sensing 

units) but also in modelling efficiently the data 

generated by all these mobile sensing units.  

 

II.  RELATED WORK 

 

The traditional methods for air quality evaluation use 

mathematical and statistical techniques. In these 

techniques, initially a physical model design is 

created and data is coded with mathematical 

equations. But such methods suffer from 

discrepancies like: limited  accuracy  due to inability 

in  predicting the  extreme points i.e. the pollution 

maximum  and minimum, cut-offs cannot be 

achieved, they use inefficient approach for more 

acceptable output prediction, the presence of 

complex mathematical calculations and equal 

treatment to the old data and new data.  

However, with the advancement in technology and 

research, alternatives to traditional ways are 

projected which use big-data and machine learning 

approaches. In recent times, several researchers have 

developed or used big data analytics models and 

machine learning based models to conduct air quality 

analysis to realise better accuracy in evaluation and 

prediction.  

Machine learning algorithms are best suited for air 

quality prediction since it is the branch of computer 

science, which makes computers capable of 

performing a task without any explicit programming. 

Earlier studies focus on classification of air quality 

evaluation using various machine-learning 

algorithms. Most of these use different scientific 

methods, approaches and ML models to predict air 

quality.  

The main objective of this paper is to fit a regression 

model on the training set and evaluate the model 

performance using the Root Mean Squared Error 

(RMSE) and Coefficient of Determination (R2). Two 

regression models such as support vector regression 

and multi-layer perception (Artificial Neural 

Networks) are evaluated based on the performance 

metrics mentioned to find the optimum algorithm, 

which efficiently deals with non-linear spatial 

relationships among information. The goal is to build 

collective data-driven predictions for insuring 

continuous real-time situation awareness. 

 

III.   IMPLEMENTATION 

 

A. AIR QUALITY EVALUATION PARAMETER 

There is one important parameter known as air 

quality index (AQI) that quantifies air quality as 

shown in Table 1. It is a number used by government 

agencies to communicate to the public how impure 

the air is presently or how polluted it is forecasted to 

become. As the AQI value increases, proportionally 

large percentage of the population is likely to be 

exposed, and people might experience increasingly 

severe health issues. Different countries have their 

specific air quality indices, corresponding to different 

national air quality standards.  

TABLE I. AQI CLASSIFICATION 

AQI Air Pollution Level 

0-50 Excellent  

51-100   Good 

101-150   Lightly Polluted 

151-200   Moderately Polluted 

201-300   Heavily Polluted 

300+   Severely Polluted 
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B. DATA PREPARATION 

The first stage of module implementation is dataset 

collection. The dataset consists of about 

approximately 44,000 entries collected over a region 

for a particular period of time in .csv format. The 

entries constitutes of the pollution measured, denoted 

by AQI (Air Quality Index) and a wide range of 

environmental factors such as dew, temperature, 

pressure, wind speed, wind direction, snow and rain. 

Then the data set is divided into training and testing 

sets. In this implementation, training data is about 

35,000 approximately and the remaining is used for 

testing. 

 

C. MACHINE LEARNING PREDICTION MODELS 

The data collected by mobile sensing unit can be used 

learn patterns of air pollution evolution, particularly 

when being used in specific urban locations. When 

passing through a polluted area, if the pattern 

analysis detects anomalies and historical high 

pollution levels, the mobile unit can release alarms to 

the user to avoid the particular area. In order for this 

to happen, the information collected by the mobile 

unit needs to be accurate enough and has to contain 

enough information that could be used for predicting 

air pollution depending on location environmental 

conditions. 

1. SUPPORT VECTOR REGRESSION 

SVMs are a collection of inter-linked supervised 

learning methods used for classification and 

regression, and they are known for being universal 

approximators of any multivariate function to any 

desired degree of accuracy. The SVM was originally 

formed for classification, and was later generalized to 

solve regression problems. This method is known as 

support vector regression (SVR). This SVR fit 

captures the main idea of statistical learning theory to 

get a good forecasting of the dependence between the 

main determinants of pollution. 

In SVR implementation, the training is done for data 

collected for about 35000 hours approximately and 

the remaining is considered to be testing data. The 

variables in the dataset file are split into separate 

fields and the support vector regression algorithm is 

applied to train and to predict the remaining values.  

 

TRUE VS PREDICTED VALUE FOR SVR 

 
 

2. ARTIFICIAL NEURAL NETWORK (MLP 

REGRESSION) 

MLP stands for a multilayer perception, which is a 

well-known class of Artificial Neural Network (ANN). 

Moreover, MLP consists of multiple layers of 

perceptrons or at least three layers of nodes 

specifically input layer, hidden layer, and output 

layer. Artificial neural Network model tries to 

simulate the structures and networks inside the 

human brain. The architecture of neural networks 

comprises of nodes that generate a signal or remain 

silent as per a sigmoid activation function in many 

cases. ANNs are trained with a training set of inputs 

and determined output data. For training, the edge 

weights are manipulated to minimise the training 

error.  

In ANN implementation, a feed forward multi-

perceptron network is used consisting of 10 input 

nodes, one hidden layers of 5 nodes respectively, and 

one output node. Similar to SVR implementation, the 

training is done for approximately 35000 datas and 

the testing is done for the remaining entries. 

The implementation of both the regression 

algorithms shows that Neural networks are 
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comparatively showing good capability in prediction 

air pollution than support vector regression. 

 

TRUE VS PREDICTED VALUE FOR ANN 

 
 

D. PERFORMANCE CRITERIA 

Some of the statistical evaluations are used to 

evaluate the model performance such as Root Mean 

Square Error (RMSE) and coefficient of 

determination (R2). The criteria formulas are shown 

below:  

 
where, m is the number of observations, xi is the 

actual value and xi^  is the predicted value. 

 
 

Where, M is the number of observations, σx is the 

standard deviation of the observation X, σy is the 

standard deviation of Y, Xj is the observed values, X ̅ 

is the mean of the observed values, Yj is the 

calculated values, and Ȳ is the mean of the calculated 

values. 

 

 

 

 

 

 

E. PERFORMANCE INTERPRETATION 

 

COMPARISON BETWEEN PERFORMANCE OF 

SVR AND ANN 

 

ML Algorithms Evaluation 

Metric 

Score 

Support Vector Regression R2 Score 0.80 

Multi-Layer Regression 

(Artificial Neural Networks) 

R2 Score 0.93 

 

 

IV. CONCLUSION AND FUTURE 

ENHANCEMENTS 

 

In this paper, support vector regression and artificial 

neural network machine learning algorithms are 

implemented to predict the air pollution with the 

various environmental factors under consideration. 

The coefficient of determination evaluation for these 

two algorithms showed that the prediction accuracy 

for neural networks is increased by about 13% than 

that of support vector regression. The increase in 

performance is due to the capability of neural 

networks to deal with non-linear spatial relationships 

in data. 

There is a lack of solutions proposing both real-life 

air quality monitoring at human level and data-

driven prediction approaches for situation awareness 

and real-time alert generation. The accuracy that can 

be achieved through the proposed algorithm can be 

extended to feed an application like Google Maps. 

Instead of detecting the traffic and suggesting a 

different route, this can warn the pedestrians and 

cycle-riders to take a different route due to more 

pollution in a particular area. 
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