
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT217350

 250

New Bit Level Positional Encryption Algorithm (NBPLEA - Ver 2)
Asoke Nath*1, Annie Chakraborty1, Soumyaraj Maitra1

1Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India

Article Info

Volume 7, Issue 3

Page Number: 245-257

Publication Issue :

May-June-2021

Article History

Accepted : 15 May 2021

Published : 22 May 2021

ABSTRACT

In the age of the digital world, cyber security and protecting the digital assets of

a person and organization are of the utmost importance. Various types of

attackers and foreign entities attempt to break in and steal or modify records

and valuable assets for their personal gain which is why designing efficient and

unbreakable cryptographic algorithms is a very crucial field of Computer

Science.[2] In this project, we develop a cryptographic algorithm that is able to

encrypt small texts like passwords or pins.

Keywords: Plain Text, Cipher Text, Encryption, Decryption, Key.

I. INTRODUCTION

Nowadays the danger of an intruder intercepting the

message sent by a sender to a receiver is very much

present. No communication channel is ever truly

secure. One of the chief ways of maintaining

confidentiality is to convert the message into some

seemingly gibberish text so that when the intruder

intercepts it, he/she won’t be able to make sense of it.

The receiver, when he/she receives the gibberish text,

will be able to convert it to get the original message.

The process of converting the message to gibberish

text is called encryption[2] and it uses a

cryptographic algorithm that takes in the message as

input and produces a ciphertext as output. The

gibberish text is called the ciphertext. It is used by

the sender. The process of converting the gibberish

text to a message is called decryption[2] and it uses a

cryptographic algorithm that takes in the ciphertext

as input and produces the original message as output.

It is used by the receiver.

Fig 1: A pictorial demonstration of the encryption

and decryption process.

In most cases nowadays, the cryptographic

algorithms used are public. Hence, to secure the

procedure even further, the algorithms use a secret

key in the encryption and decryption process. This

key is only shared between the sender and the

intended receivers. When only one key is involved in

both the encryption and the decryption process it is

called Symmetric Key Cryptography. However, there

is a different form of Cryptography called

Asymmetric Key Cryptography where the sender

encrypts the message using one key and the sender

decrypts the message using a different key [7].

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT217350

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

246

Traditional Ciphers worked by encrypting text

characters from text files. Some examples of

Traditional Ciphers are Substitution Ciphers which

substitutes every character with one of the other 26

English alphabets like Monoalphabetic Substitution

Cipher (eg. Caesar Cipher, Additive Cipher, Affine

Cipher, Multiplicative Cipher, etc.) and

Polyalphabetic Substitution Ciphers (eg. Autokey

Cipher, Playfair Cipher, Vigenere Cipher, etc.)[2] and

then there are Transposition Ciphers which instead

change the location of the symbols like Rail Fence

Cipher. [4]

Modern ciphers work by converting files to bits and

then performing the encipherment and decipherment

process. This allows the sender to encrypt not only

text files but image files, video files, audio files,

executable files etc. since information, with the

advent of the digital age, is not limited to text.

Additionally, when we convert data, say text, to bits

every character gets replaced by 8 (or 16) bits which

means the number of symbols increases 8 (or 16 times)

and this makes the work of an intruder tougher

thereby increasing security.

Some of the works already done in the field of Bit

Level Encryption have been discussed below.

1. Bit Level Symmetric Key Encryption Algorithm

(BLSKEA)[3]:

This method deals with bit-level encryption and

decryption methods. Nath et al(2014)[3] already

introduced a bit-level encryption method using

feedback. But in the present paper, the authors have

used some simple but very effective bit level

encryption method. The plain text is initially

converted to bits and after that bitwise complement

is done on some random prime positions. The entire

bitstream is reversed and again applied bit

complement operation in some random prime

position. The bit complement is followed by bitwise

XOR operation and then the modified bitstreams

placed in a 2-dimensional array and perform some bit

operations such as left-shift, up-shift, diagonal shift,

cycling, right-shift number of times to make the bit

patterns random. The bit operations are performed a

number of times and finally, bits were converted to

bytes and transferred to some output file. The results

show that the present method is very much effective

to encrypt passwords, SMS, or any other confidential

message. This algorithm has also been improvised.

2. Bit Level Encryption Standard (BLES): Version-

I[5] :

This method uses bit exchange and byte exchange

methods with complements and xor operations. The

key element is the bit exchange depending on the

randomized matrix which is generated every time

making certain that each one is unique. With

different levels of extractions such as 2 bytes, 8bytes,

32 bytes, and 128 bytes, in powers of 2, the data

finally gets shuffled to such an extent that without

knowing the process and key, it would be impossible

to decrypt. The authors have then implemented the

bit-wise exchange method in the following manner:

Firstly, they begin with initial transformation where

the data is broken down to its corresponding bits and

are then xored and complemented. These bits are

stored in a reverse manner into a new file and then

they work on this new file. Secondly, they calculate

the randomization number and encryption number.

Thirdly, the first 2 bytes of data are extracted till the

end of the file is read and is worked with, then they

extract 8 bytes, then 32 bytes, and then 128 bytes.

This process is executed till the encryption number is

reached. These multiple encryptions make their

system more secure. This method will be most

effective to encrypt short messages such as SMS in

mobile phones, password encryption, and any type of

confidential message. If the file size is large then the

present method will take more time to encrypt. So

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

247

therefore BLES may be used in defense systems,

Banking systems, Sensor networks, Mobile

computing, etc.

3. Bit Level Encryption Standard (BLES): Version-

II[6]:

In the method, the authors have introduced a new

version of the previous symmetric key cryptographic

method called Bit Level Encryption Standard(BLES)

Version-II which is based on bit exchanging or bit

reshuffling method from left to right as well as from

right to left of the entire bitstream. In addition to

that, the authors have used a bitwise XOR operation

to make the algorithm more powerful. In BLES

Version-I[5] the authors had used bit exchange

methods but with some fixed block sizes which were

multiples of two. Due to the even power of two

sometimes there were some repeat of characters in

the encrypted file if the input plain text also had

duplicate characters. To overcome this problem, in

the present work the authors have taken block size of

squares of off numbers starting from three onwards.

For scanning from right to left the authors used

squares of even numbers starting from four onwards.

After finishing the bit exchange the authors have

performed bitwise XOR to make the cryptosystem

almost unbreakable. The authors have also

introduced a special bit manipulation method so the

encryption algorithm will work even for all

characters with ASCII Code 0 or all characters with

ASCII Code 255. Most of the standard encryption

algorithm will fail to encrypt a file where all

characters are ASCII '0' or all characters with ASCII

'255' but the present method will be able to encrypt a

file where all characters are ASCII '0' or all characters

are ASCII '255'. The present method will be effective

for encrypting short messages, password, confidential

key etc. The spectral analysis in the result sections

shows that the BLES version-II method is free from

known-plaintext attack, differential attack or any

type brute force attack. [Quoted from the abstract of

the paper[6]].

II. METHODS AND MATERIAL

The encryption functions used in the algorithm are -

One’s complement operations, bitwise XOR

operations and shift operations namely left shift,

right shift, down shift, up shift and diagonal shift. A

brief description of these operations have been given

below.

A. One’s Complement Operation:

In the Binary Number Representation System, there

are only two possible values: 0(off) and 1(on). The 1’s

complement of a given binary number is obtained by

inverting every individual digit of the number, i.e the

1’s are converted to 0 and 0’s are converted to 1.

Example:

Consider the following binary number, 10100101.

When 1’s complement operation is performed on this

number, we convert all the 1’s to 0 and 0’s to 1 to

obtain the result as follows:

Before 1’s Complement: 10100101

After 1’s Complement: 01011010

B. Bitwise XOR Operation:

The Bitwise XOR Operation between two binary

numbers generates a binary number where the

resultant bit is 1 if the corresponding bits of the two

operands are opposite, otherwise the resultant bit is 0.

The following truth table describes this concept:

A B AXORB

0 0 0

0 1 1

1 0 1

1 1 0

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

248

Example:

Consider the following binary numbers, 1010 and

0101.

The Bitwise XOR Operation on these two binary

numbers generates the output 11110 as follows:

Operand 1: 10100

Operand 2: 01010

Result: 11110

C. Left Shift Operation:

The Bitwise Left Shift Operation on a binary number

is performed by shifting every individual bit by one

position to the left.

If the operation is performed on a matrix, all

elements in each row are shifted by one position to

the left.

Example:

Consider a binary number, 00101.

The Bitwise Left Shift Operation on this number

generates the number 01010 as the Least Significant

Bit(1) changes to 0 however the Most Significant

Bit(MSB) remains the same.

D. Right Shift Operation:

The Bitwise Right Shift Operation on a binary

number is performed by shifting every individual bit

by one position to the right.

If the operation is performed on a matrix, all

elements in each row are shifted by one position to

the right.

Example:

Consider a binary number, 00101.

The Bitwise Right Shift Operation on this number

generates the number 10010 as the Least Significant

Bit(1) changes to 0 and the Most Significant Bit(MSB)

becomes 1.

E. Up Shift Operation:

The Up Shift Operation on a matrix is performed by

shifting all elements in each column by one position

in the upwards direction.

Example:

Original Matrix:

1 0 1

0 1 0

1 1 1

After Up-Shift Operation:

0 1 0

1 1 1

1 0 1

F. Down Shift Operation:

The Down Shift Operation on a matrix is performed

by shifting all elements in each column by one

position in the downwards direction.

Example:

Original Matrix:

1 0 1

0 1 0

1 1 1

After Down-Shift Operation:

1 1 1

1 0 1

0 1 0

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

249

G. Diagonal Shift:

The Diagonal Shift Operation on a matrix is

performed by shifting all elements in each diagonal

by one position in the diagonal direction.

Example:

Original Matrix:

1 1 0

1 0 1

1 0 0

After Diagonal-Shift Operation:

0 1 1

1 0 1

0 0 1

H. THE ENCRYPTION ALGORITHM

1. The name of the input plain text file and the

output cipher text file, where the encrypted text

is to be written, is taken as input from the user.

2. Every character from the plain text file is

extracted and converted into an 8 bit data.

3. The bitstream obtained from extracting all the

characters is traversed and the positions of 0s are

stored in an array. For example, if the bit stream

obtained from the previous step is 01011010 then

the positions of 0s are 1, 3, 6and 8.

4. Each of the positions obtained from the previous

step is converted into its equivalent 32 bit binary

format and then appended to a string.

5. After all the positions of 0s are converted into

their equivalent 32 bit format, the length of the

resultant bit string is calculated.

6. The user is prompted to enter a key that lies in

the range of 0 to the square root of the resultant

bit string length. This ensures that the matrix

capacity doesn’t exceed the bitstream length.

7. The bits in the non-prime positions are

complemented.

8. The bit stream obtained from the previous step is

reversed and then the bits in the prime positions

are complemented.

9. The bits in the odd positions are XORed with the

bits in the even positions and the result is then

stored in the even position, i.e., we XOR the bits

in positions 1 and 2 and place the result in

position 2, then we XOR the bits in positions 3

and 4 and place the result in position 4 and so on.

10. The bit stream obtained from the previous step is

reversed.

11. The bits in the first and last position are XORed

and the result is stored in the last position, i.e.,

first we XOR bits in position 1 and position n and

place the result in position n, then we XOR bits

in position 2 and position (n-2) and place the

result in position (n-2) and so on.

12. A matrix of dimension key X key is declared and

filled with the first key X key number of bits

(obtained from the previous step). The following

rotation operations are performed on the matrix-

• Left shift where all the elements ofevery column

are shifted to the left and the elements of the last

column shift to the first column.

• Diagonal shift where all the elementsof both

diagonals are shifted by one unit diagonally along

both diagonals.

• Down shift where the entire elements ofevery

column are shifted towards the bottom by one

unit and the elements of the bottom most row

move to the top.

• Right shift where all the elements of every

column are shifted to the right and the elements

of the first column shift to the last column.

• Up shift where all the elements of every column

are shifted upwards and the elements of the top

most row shift to the bottom.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

250

After performing these operations we store the

modified key X key bits in a new string.

13. Step 12 is executed with every successive batch of

key X key elements until the number of bits left

in the bitstream is less than the value of key X

key.

14. If after n number of iterations of step 12, k bits

remain where k < key X key then these k bits are

called residual bits. These residual bits are

appended to the new string.

15. The bits in the non prime positions of the new

modified bitstream which was obtained after the

series of rotations, are complemented.

16. The bitstream obtained from the previous step is

reversed. Then the bits in the prime positions are

complemented.

17. We then extract 8 bits from the final bitstream

obtained from the above steps and calculate its

decimal equivalent which will give the ASCII

value of the cipher text character to be written to

the output cipher file. This step is repeated for all

the successive 8 bits until the end of the

bitstream is reached.

I. THE DECRYPTION ALGORITHM

1. The name of the input cipher text file and the

output plain text file, where the decrypted text is

to be written, is taken as input from the user.

2. Every character from the cipher text file is

extracted and converted into an 8 bit data.

3. The user is prompted to enter a key that lies in

the range of 0 to the square root of the resultant

bit string length. This ensures that the matrix

capacity doesn’t exceed the bitstream length.

4. The bits in the prime positions of the bitstream

obtained from the previous step are

complemented.

5. The bitstream is then reversed and then the non

prime positions are complemented.

6. A matrix of dimension key X key is declared and

filled with the first key X key number of bits

from the bitstream obtained from step 4.

7. The following rotation operations are performed

on the matrix-

• Left shift where all the elements ofevery column

are shifted to the left and the elements of the last

column shift to the first column.

• Diagonal shift where all the elementsof both

diagonals are shifted by one unit diagonally along

both diagonals.

• Down shift where all the elements ofevery

column are shifted towards the bottom by one

unit and the elements of the bottom most row

move to the top.

• Right shift where all the elements ofevery

column are shifted to the right and the elements

of the first column shift to the last column.

• Up shift where all the elements ofevery column

are shifted upwards and the elements of the top

most row shift to the bottom.

After performing these operations the modified key X

key bits are appended to a new string.

8. Step 7 is executed with every successive batch of

key X key elements until the number of bits left

in the bitstream is less than key X key.

9. If after n number of iterations of step 7, k bits

remain where k < key X key then these k bits are

called residual bits. These residual bits are

appended to the new string.

10. XOR operation is performed on the bits in the

first and last positions of the bitstream, i.e., first

we XOR bits in position 1 and position n and

place the result in position n, then we XOR bits

in position 2 and position (n-2) and place the

result in position (n-2) and so on.

11. The bitstream is reversed and the bits in the even

and odd positions are XORed and the result is

placed in the even positions, i.e., we XOR the bits

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

251

in positions 1 and 2 and place the result in

position 2, then we XOR the bits in positions 3

and 4 and place the result in position 4 and so on.

12. The bits in the prime positions of the above

bitstream are complemented and then the

bitstream is reversed.

13. We complement the bits in the non prime

positions.

14. The bitstream obtained from the previous step

has the positions of 0s. We extract 32 bits at a

time and convert it to get their decimal

equivalent. The decimal equivalent gives the

position of the 0s.

15. The original bitstream is formed by substituting

0s in the positions mentioned in the above array

and 1s in the other positions.

16. Extract 8 bits at a time from the above bitstream

and convert it to its decimal equivalent. This

gives the ASCII value of the decrypted plaintext

character. The character is written to the output

file. This step is performed until all the bits have

been read.

III. RESULTS AND DISCUSSION

The testing of this algorithm was conducted with the

following five(5) sets of data, each with a purpose to

test a specific aspect of the implemented approach:

A. Set-1:

1) Inputs in this set: (i)AAAA, (ii)AAAAA

2) Key: 16 (for both the inputs).

3) The Aspect of the algorithm being tested:

Changes observed in the ASCII values of the

encrypted text due to a minor change in the

Input(presence of one extra A in case (ii))

4) Case-1:

INPUT - AAAA:

Fig (1). (i). (a): Input file containing the data AAAA

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (1).(i).(b): Command-Line Output showing the

ASCII values of the generated ciphertext

GENERATED CIPHERTEXT:

Fig (1).(i).(c): File containing the Generated

Ciphertext

5) Case-2:

INPUT - AAAAA:

Fig (1).(ii).(a): Input file containing the data AAAAA

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

252

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (1).(ii).(b): Command-Line Output showing the

ASCII values of the generated ciphertext

GENERATED CIPHERTEXT:

Fig (1).(ii).(c): File containing the Generated

Ciphertext

6) Spectral Analysis for Set-1:

7) Conclusion for Set-1:

The first four ASCII values of the generated

ciphertext for (i) and (ii) are {80,12,51,192}and

{72,48,192,15}. This proves that the ASCII values of

the generated ciphertexts are completely unique even

though the first four(4) alphabets of the input text are

identical.

B. Set-2:

1) Inputs in this set: (i)A, (ii)B

2) Key: 10 (for both the inputs).

3) The Aspect of the algorithm being tested:

Changes observed in the ciphertext for two

distinct single alphabets Inputs.

4) Case-1:

INPUT - A:

Fig (2).(i).(a): Input file containing the data A

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (2).(i).(b): Command-Line Output showing the

ASCII values of the generated ciphertext

GENERATED CIPHERTEXT:

Fig (2).(ii).(c): File containing the Generated

Ciphertext

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

253

5) Case-2:

INPUT - B:

Fig (2).(ii).(a): Input file containing the data B

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (2).(ii).(b): Command-Line Output showing the

ASCII values of the generated ciphertext

GENERATED CIPHERTEXT:

6) Spectral Analysis for Set-2:

7) Conclusion for Set-2:

Due to the complexity of the encryption algorithm,

the ciphertexts generated in case of two distinct

Inputs of 1 byte only, are still completely unique.

C. Set-3:

1) Inputs in this set:

(i) CMSA SEM-6,

(ii)ARTIFICIAL INTELLIGENCE

2) Key: 12 (for both the inputs).

3) The Aspect of the algorithm being tested:

Effectiveness of the algorithm for encrypting

alphanumeric data from real life.

4) Case-1:

INPUT - CMSA SEM-6:

Fig (3).(i).(a): Input file containing the data CMSA

SEM-6

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (3).(i).(b): Command-Line Output showing the

ASCII values of the generated ciphertext

GENERATED CIPHERTEXT:

Fig (3).(i).(c): File containing the Generated

Ciphertext

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

254

5) Case-2:

INPUT - ARTIFICIAL INTELLIGENCE:

Fig (3).(ii).(a): Input file containing the data

ARTIFICIAL INTELLIGENCE

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (3).(ii).(b): Command-Line Output showing the

ASCII values of the generated ciphertext

GENERATED CIPHERTEXT

Fig (3).(ii).(c): File containing the Generated

Ciphertext

6) Spectral Analysis for Set-3:

7) Conclusion for Set-3:

The algorithm successfully performs all the expected

functions on the Input files containing Alphanumeric

data from real life as inputs.

D. Set-4:

1) Inputs in this set: (i) ♦♦♦♦☻☻☺ (4 ASCII 4’s, 2

ASCII 2’s, 1 ASCII 1)

2) Key: 15 (for the first iteration), 5 (for the second

iteration).

3) The Aspect of the algorithm being tested:

Change in ASCII values of the Encrypted

Ciphertext due to change in Key during

different iterations of the algorithm encrypting

the same Input data.

TABLE- I. COMPARATIVE ANALYSIS OF INPUTS

BASED ON DIFFERENT KEYS

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

255

4) Conclusion for Set-4:

The algorithm generates completely unique

ciphertexts due to a change in the Key, and

successfully decrypts the ciphertext provided that the

Keys given as Input as identical during both the

Encryption and Decryption process.

E. Set-5:

1) Input(s) in this set: (i) ◘◘◘◘◘◘◘◘ (8 ASCII 8’s)

2) Key: 22 (for the first iteration), 17 (for the second

iteration).

3) The Aspect of the algorithm being tested:

Inability to Decrypt the Encrypted Ciphertext

unless the Receiver has the correct Key used

during the Encryption phase of the process.

INPUT - ◘◘◘◘◘◘◘◘ :

Fig (5).(a): Input file containing the data 8 ASCII 8’s

ASCII VALUES OF THE GENERATED

CIPHERTEXT:

Fig (5).(b): ASCII values of the Generated Ciphertext

GENERATED CIPHERTEXT:

Fig (5).(c): Encrypted file containing Generated

Ciphertext

DECRYPTED TEXT(FOR KEY 22):

Fig (5).(d): Command Line Output Of the Decryption

Algorithm (for Key 22)

DECRYPTED TEXT (FOR KEY 17):

Fig (5).(e): Command Line Output Of the Decryption

Algorithm (for Key 17)

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

256

4) Conclusion for Set-5:

The Algorithm effectively performs all phases of the

process and generates the Decrypted text successfully

if and only if the Key provided during both phases of

the process (Encryption and Decryption) are the

same. In any other case, the Algorithm does not

generate the expected Decrypted text thus preserving

the security aspect of the Encryption process where a

Ciphertext can only be decrypted using the unique

Key used in the Encryption phase of the algorithm.

IV. CONCLUSION

The text cannot be decrypted without the knowledge

of the key used in encryption. The key domain is

variable and depends on the size of the input

plaintext file. The spectral analysis shows that our

present method is free from standard cryptography

attacks namely brute force attack, known plaintext

attack and differential attack.

This cryptographic algorithm can be used to encrypt

small texts like OTPs, PINs and Passwords.

V. ACKNOWLEDGEMENT

The authors are indebted to the Dept. of Computer

Science, St. Xavier’s College, Kolkata, for providing

them an opportunity to work on cryptographic

algorithms and the guidance and mental support in

these tough and uncertain scenarios.

VI. REFERENCES

[1]. Asoke Nath, Sankar Das, Oishi Mazumder,

Adrija Saha, Monimoy Ghosh, “ A New Bit

Level PositionalEncryption

Algorithm(NBLPEA ver-1)”, International

Journal of Computer Sciences and Engineering,

Vol. 8, Issue.4, pp.167-172, Apr 2020

[2]. Behrouz A. Forouzan, “Cryptography and

Network Security”, Special Indian edition 2007,

Tata Mc-Graw Hill Publishing LTD.

[3]. Nath, Asoke & Santra, Madhumita & Maji,

Supriya & Fatema, Kanij & Associate, Aleya &

Student, M.(2015). Bit Level Symmetric Key

Encryption Algorithm (BLSKEA-1) Version-1.

International Journal of Innovative Research in

Computer and Communication Engineering

(IJIRCCE ISSN 2320-9801). 3297.10767-10773.

[4]. Dan Boneh, Victor Shoup, “A Graduate Course

in Applied Cryptography.” from Stanford

University.

[5]. Bit Level Encryption Standard(BLES) : Version-

I, Neeraj Khanna, Dripto Chatterjee, Joyshree

Nath and Asoke Nath, International Journal of

Computer Applications(IJCA)(0975- 8887) USA

Volume 52-No.2.,Aug, Page.41-46(2012).

[6]. Bhadra, Gaurav & Baia, Tanya & Banik, Samik

& Nath, Asoke & Nath, Joyshree. (2012). Bit

Level Encryption Standard (BLES): Version-II.

121-127. 10.1109/WICT.2012.6409061.

[7]. Symmetric Key Cryptography by Security

Encyclopedia

AUTHOR’S PROFILE

1. Dr. Asoke Nath is

workingas Associate

Professor in the

Department of

Computer Science,

St. Xavier’s College

(Autonomous),

Kolkata. He is

engaged in research work in the field of

Cryptography and Network Security,

Steganography, Green Computing, Big data

analytics, Li-Fi Technology, Mathematical

modelling of Social Area Networks, MOOCs etc.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June - 2021, 7 (3) : 250-262

257

He has published 253 research articles in

different Journals and conference proceedings.

2. Miss Annie Chakrabortyiscurrently a third year

undergraduate

student in the

Department of

Computer Science,

St.Xavier's College

(Autonomous),

Kolkata. Her

interests lie in Web

Development,

Cryptography, Data Science and real world

project implementations of these fields.

3. Mr. Soumyaraj

Maitra is a student

of the Department

of Computer

Science, St. Xavier's

College, Kolkata.

He is interested in

the fields of

Cryptography, Database Management System

(DBMS), Automata Theory and is inclined to be

a part of the integration of the various aspects of

these technologies in our day-to-day lives.

Cite this Article

Asoke Nath, Annie Chakraborty, Soumyaraj Maitra,

"New Bit Level Positional Encryption Algorithm

(NBPLEA - Ver 2)", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 7 Issue 3, pp. 245-257, May-June 2021.

Available at

doi : https://doi.org/10.32628/CSEIT217350

Journal URL : https://ijsrcseit.com/CSEIT217350

https://doi.org/10.32628/CSEIT217350
https://search.crossref.org/?q=10.32628/CSEIT217350&from_ui=yes
https://ijsrcseit.com/CSEIT217350

