
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT217352

 267

Data Hiding and Retrieval Method Using LSB Substitution Algorithm
Asoke Nath*1, Soham Mondal1, Raj Deb1, Akash Das1

1Department of Computer Science, St.Xavier’s College, Kolkata, West Bengal, India

Article Info

Volume 7, Issue 3

Page Number: 267-279

Publication Issue :

May-June-2021

Article History

Accepted : 15May2021

Published : 22May2021

ABSTRACT

Steganography is the art of hiding the fact that communication is taking place,

by hiding information in other information. Many different carrier file formats

can be used, but digital images are the most popular because of their frequency

on the Internet. For hiding secret information in images, there exists a large

variety of steganography techniques some are more complex than others and all

of them have respective strong and weak points. Different applications have

different requirements of the steganography technique used. For example, some

applications may require absolute invisibility of the secret information, while

others require a larger secret message to be hidden. This project hides the

message within the image. This project uses LSB Substitution method to hide the

secret message inside the image. Sender select the cover image with the secret

message file (which can be of any format) and hide it into the image, it help to

generate the secure stego image. The stego image is sent to the destination with

the help of private or public communication network. On the other side the

receiver downloads the stego image and using the software retrieve the secret

text hidden in the stego image.

Keywords: Steganography, Digital images.

I. INTRODUCTION

The word Steganography is a Greek word means

“covered, or hidden writing”.

Steganography is a special method of writing hidden

messages in such a way that no-part from the sender

and the receiver can even realize that there is a

hidden message. Today, the term Steganography

includes the embedding of digital information within

computer files. For example, the sender may embed a

big text file in an image in such a way that there

should not be any significant change in the image.

We can embed even some voice or image or text in

any host file which may be an image file or may be

another sound file etc.

The reality is that secret communication is used for a

variety of reasons and by a variety of people. For

example the business people when sending some

important information from one place to another

place can hide the actual information in some cover

file which may be a simple file. In defense also the

Steganography has a very important role, protecting

company trade secrets. Governments hide

information from other Governments, and

technophiles amuse themselves by sending secret

messages to each other just for fun. The only tie that

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT217352

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

269

binds all these people is a desire to hide something

from someone else.

Steganography is the art of hiding the fact that

communication is taking place, by hiding

information in other information. Many different

carrier file formats can be used, but digital images are

the most popular because of their frequency on the

Internet. For hiding secret information in images,

there exists a large variety of Steganographic

techniques, some are more complex than the others

and all of them have respective strong and weak

points. Different applicants have different

requirements and hence different Steganography

techniques are used. For example, some applications

may require absolute invisibility of the secret

information, while others require a larger secret

message to be hidden.

 In the present work the authors have introduced a

new method for hiding any encrypted secret message

inside a cover file. The cover file is chosen to be an

image file about 10 times larger than the payload file.

For encrypting secret message the authors have

introduced a unique byte modification algorithm.

The technique used here is little bit modified as

according to the traditional method of modifying the

LSBs of every pixels. Instead of changing the LSBs of

the cover file at a stretch the authors proposed to

change the LSB’s of the Red, Green and Blue channel

of every pixel. By doing so the advantage is that

maximum amount of data can be hidden within given

cover image.

In the present method the authors applied the

algorithm on different standard payload files such as

image file, audio file, video file, Microsoft word file,

Excel file, Power point file, .exe file and in every case

the result found was satisfactory. The authors found

that to embed any payload file we need to select a

cover image file whose size is much more than the

payload file and the size depends on the image file

types. For example if .jpg or .png files are chosen as

the cover file then the payload file of maximum size

can be about 90% of the size of the cover file. But

if .bmp file is chosen as the cover image file then the

payload file size should be less than 10% of the size of

the cover image file. This is because .jpg or .png files

are compressed initially so the actual file size is much

larger than it’s compressed version and thus it can

embed such huge amount of data but the problem

that has been noticed by the authors is that the stego

file obtained using .jpg file is about 10 times larger in

size as compared to its compressed version. This

problem has been overcome by using .bmp files

which is devoid of any kind of compression.

In order to keep the process simple as well as

intangible for the intruders to obtain the actual

hidden message a keyless method is used to encrypt

the data. The position of the message bits have been

shifted by certain value making the task difficult for

the intruder to obtain the actual values. Moreover

there is no possibility for the intruder to find out the

starting pixel and the ending pixel which has been

modified to embed the secret message.

II. HISTORY OF STEGANOGRAPHY

The earliest recordings of Steganography were by the

Greek historian Herodotus in his chronicles known

as "Histories" and date back to around 440 BC.

Herodotus recorded two stories of Steganographic

techniques during this time in Greece. The first

stated that King Darius of Susa shaved the head of

one of his prisoners and wrote a secret message on his

scalp. When the prisoner’s hair grew back, he was

sent to the Kings son in law Aristogoras in Miletus

undetected. The second story also came from

Herodotus, which claims that a soldier named

Demeratus needed to send a message to Sparta that

Xerxes intended to invade Greece. Back then, the

writing medium was text written on wax-covered

tablets. Demeratus removed the wax from the tablet,

wrote the secret message on the underlying wood,

recovered the tablet with wax to make it appear as a

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

270

blank tablet and finally sent the document without

being detected.

Romans used invisible inks, which were based on

natural substances such as fruit juices and milk. This

was accomplished by heating the hidden text, thus

revealing its contents. Invisible inks have become

much more advanced and are still in limited use

today.

During the 15th and 16th centuries, many writers

including Johannes Trithemius(author of

Steganographia) and Gaspari Schotti (author or

Steganographica) wrote on Steganographic

techniques such as coding techniques for text,

invisible inks, and incorporating hidden messages in

music.

Between 1883 and 1907, further development can be

attributed to the publications of Auguste Kerckhoff

(author of Cryptographic Militaire) and Charles

Briquet (author of Les Filigranes). These books were

mostly about Cryptography, but both can be

attributed to the foundation of some Steganographic

systems and more significantly to watermarking

techniques.

During the times of WWI and WWII, significant

advances in Steganography took place. Concepts such

as null ciphers (taking the 3rd letter from each word

in a harmless message to create a hidden message,

etc), image substitution and microdot (taking data

such as pictures and reducing it to the size of a large

period on a piece of paper) were introduced and

embraced as great Steganographic techniques.

In the digital world of today, namely 1992 to present,

Steganography is being used all over the world on

computer systems. Many tools and technologies have

been created that take advantage of old

Steganographic techniques such as null ciphers,

coding in images, audio, video and microdot. With

the research this topic is now getting we will see a lot

of great applications for Steganography in the near

future.

III. STEGANOGRAPHY METHODS

There are a large number of Steganographic methods

that most of us are familiar with (especially if you

watch a lot of spy movies!), ranging from invisible

ink and microdots to secreting a hidden message in

the second letter of each word of a large body of text

and spread spectrum radio communication. With

computers and networks, there are many other ways

of hiding information, such as:

1. Covert channels (e.g., Loki and some distributed

denial-of-service tools use the Internet Control

Message Protocol, or ICMP, as the

communications channel between the "bad guy"

and a compromised system)

2. Hidden text within Web pages

3. Hiding files in "plain sight" (e.g., what better

place to "hide" a file than with an important

sounding name in

the c:\winnt\system32 directory?)

4. Null ciphers (e.g., using the first letter of each

word to form a hidden message in an otherwise

innocuous text)

Steganography today, however, is significantly more

sophisticated than the examples above suggest,

allowing a user to hide large amounts of information

within image and audio files. These forms of

Steganography often are used in conjunction with

cryptography so that the information is doubly

protected; first it is encrypted and then hidden so

that an adversary has to first find the information (an

often difficult task in and of itself) and then decrypt

it.

There are a number of uses for Steganography besides

the mere novelty. One of the most widely used

applications is for so-called digital watermarking. A

watermark, historically, is the replication of an

image, logo, or text on paper stock so that the source

of the document can be at least partially

authenticated. A digital watermark can accomplish

the same function; a graphic artist, for example,

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

271

might post sample images on her Web site complete

with an embedded signature so that she can later

prove her ownership in case others attempt to

portray her work as their own.

Steganography can also be used to allow

communication within an underground community.

There are several reports, for example, of persecuted

religious minorities using Steganography to embed

messages for the group within images that are posted

to known Web sites.

The following formula provides a very generic

description of the pieces of the steganographic

process:

cover_medium + hidden_data = stego_medium

In this context, the cover_medium is the file in

which we will hide the hidden_data, which may also

be encrypted. The resultant file is

the stego_medium (which will, of course. be the same

type of file as the cover_medium). The

cover_medium (and, thus, the stego_medium) are

typically image or audio files. In this article, I will

focus on image files and will, therefore, refer to

the cover_image and stego_image.

Before discussing how information is hidden in an

image file, it is worth a fast review of how images are

stored in the first place. An image file is merely a

binary file containing a binary representation of the

color or light intensity of each picture element (pixel)

comprising the image.

Images typically use either 8-bit or 24-bit color.

When using 8-bit color, there is a definition of up to

256 colors forming a palette for this image, each color

denoted by an 8-bit value. A 24-bit color scheme, as

the term suggests, uses 24 bits per pixel and provides

a much better set of colors. In this case, each pixel is

represented by three bytes, each byte representing

the intensity of the three primary colors red, green,

and blue (RGB), respectively. The Hypertext Markup

Language (HTML) format for indicating colors in a

Web page often uses a 24-bit format employing six

hexadecimal digits, each pair representing the

amount of red, blue, and green, respectively. The

color orange, for example, would be displayed with

red set to 100% (decimal 255, hex FF), green set to

50% (decimal 127, hex 7F), and no blue (0), so we

would use "#FF7F00" in the HTML code.

The size of an image file, then, is directly related to

the number of pixels and the granularity of the color

definition. A typical 640x480 pix image using a

palette of 256 colors would require a file about 307

KB in size (640 • 480 bytes), whereas a 1024x768 pix

high-resolution 24-bit color image would result in a

2.36 MB file (1024 • 768 • 3 bytes).

To avoid sending files of this enormous size, a

number of compression schemes have been

developed over time, notably Bitmap (BMP), Graphic

Interchange Format (GIF), and Joint Photographic

Experts Group (JPEG) file types. Not all are equally

suited to steganography, however.

GIF and 8-bit BMP files employ what is known

as lossless compression, a scheme that allows the

software to exactly reconstruct the original image.

JPEG, on the other hand, uses lossycompression,

which means that the expanded image is very nearly

the same as the original but not an exact duplicate.

While both methods allow computers to save storage

space, lossless compression is much better suited to

applications where the integrity of the original

information must be maintained, such as

steganography. While JPEG can be used for stego

applications, it is more common to embed data in GIF

or BMP files.

The simplest approach to hiding data within an image

file is called least significant bit (LSB) insertion. In

this method, we can take the binary representation of

the hidden_data and overwrite the LSB of each byte

within the cover_image. If we are using 24-bit color,

the amount of change will be minimal and

indiscernible to the human eye. As an example,

suppose that we have three adjacent pixels (nine

bytes) with the following RGB encoding:

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

272

10010101 00001101 11001001

10010110 00001111 11001010

10011111 00010000 11001011

Now suppose we want to "hide" the following 9 bits

of data (the hidden data is usually compressed prior

to being hidden): 101101101. If we overlay these 9

bits over the LSB of the 9 bytes above, we get the

following (where bits in bold have been changed):

10010101 00001100 11001001

10010111 00001110 11001011

10011111 00010000 11001011

Note that we have successfully hidden 9 bits but at a

cost of only changing 4, or roughly 50%, of the LSBs.

This description is meant only as a high-level

overview. Similar methods can be applied to 8-bit

color but the changes, as the reader might imagine,

are more dramatic. Gray-scale images, too, are very

useful for steganographic purposes. One potential

problem with any of these methods is that they can

be found by an adversary who is looking. In addition,

there are other methods besides LSB insertion with

which to insert hidden information.

Without going into any detail, it is worth

mentioning steganalysis, the art of detecting and

breaking steganography. One form of this analysis is

to examine the color palette of a graphical image. In

most images, there will be a unique binary encoding

of each individual color. If the image contains hidden

data, however, many colors in the palette will have

duplicate binary encodings since, for all practical

purposes, we can't count the LSB. If the analysis of

the color palette of a given file yields many

duplicates, we might safely conclude that the file has

hidden information.

But what files would you analyze? Suppose I decide

to post a hidden message by hiding it in an image file

that I post at an auction site on the Internet. The item

I am auctioning is real so a lot of people may access

the site and download the file; only a few people

know that the image has special information that

only they can read. And we haven't even discussed

hidden data inside audio files! Indeed, the quantity of

potential cover files makes steganalysis a Herculean

task.

In the above figures samplepic.jpg is chosen to be the

cover image file and spdf.pdf is chosen to be the

payload file (i.e. the secret file).

The algorithm takes input a cover image file and a

payload file and after processing it returns the stego

file which is similar to the cover image file while

viewing with bare eyes but in reality few bits of

pixels have been modified. Now we are going to

explain the process step by step.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

273

1. Input the files:

In this step the user has to input the name of the

cover image file and the payload file. The user has to

give the path and file names properly.

Internally a byte array stores all the bytes of the

inputted payload file.

2. Modifying the bytes of the payload file

The raw data bytes that are stored in the byte array is

encrypted by just modifying the data bytes as follows.

All the byte values which are in even indices of the

array is added with 12 and all the byte values which

are in odd indices of the array is subtracted by 12.

By doing such modification we ensure the security of

the hidden file. Since if we assume that the intruder

has successfully revealed the payload file from the

stego file then he will not get the original hidden file

but a modified one which will be actually useless to

him.

3. Creating File overheads

File overheads include the size of the payload file and

the extension of the file. We can obtain file length

using a java function and the file extension is

obtained from the variable which stores the name of

the payload file that was inputted by the user in step

1.

Along with the message bits we need to also store the

file overheads information which is actually required

while extracting the payload file from the stego file.

Since this is crucial information so instead of storing

the data as it is we do little bit of modification as

follows:

We exchange the first 4 characters with the last 4

characters and subtract 12 from the ASCII values of

this 8 characters. Then from position m-1 to m+1 we

add 14 to the ASCII values of the these 3 characters

where m=(total no. of characters-1)/2.

For example:

Suppose the user inputs a payload file sample.pdf

(100KB).

File overhead=”102400E.pdf”

Here 100*1024=102400B is the file size and .pdf is the

file extension and ‘E’ is the separator.

Modification takes place as follows:

Modified File overheads=”SZXd”>>S(&$%H”.

S and H are added to the beginning and end of the

string to indicate the start and end of the actual file

overhead part.

This information is then converted into bytes and

stored in a byte array.

 File Overheads Description

10 2400E.pdf This is the original one

%$&(00E”dXZ First 4 characters is

subtracted by 12. Similarly

last 4 characters are

subtracted by 12.

 “ZXd”00E(&$% First 4 characters are

exchanged with the last 4

characters.

 ZXd”>>S(&$% From position m-1 to m+1 all

the characters are added with

14. Here m is the (total no. of

characters-1)/2.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

274

4. LSB Substitution Technique

In order to understand how to modify the pixels of

the cover image we first understand a pixel.

A digital image is stored as a 2D array of pixels and a

pixel is the smallest element of digital image.

The 2D array of pixels can be viewed as follows:

P11 P12 ……………. P1n

P21 P22 ……………. P2n

.

. .

. .

. .

 .

.

. .

. .

. .

 .

Pm1 Pm2 ………… Pmn

Fig.2 (m X n)

Here m=height of the cover file and n=width of the

cover file

Pij= Pixel value (4 bytes) at ith row and jth column

Each pixel contains the values of alpha, red, green,

blue values and the value of each color lies between 0

to 255 which consumes 8 bits (2^8).

The ARGB values are stored in 4 bytes of memory in

the same order (right to left) with blue value at 0-7

bits,

Green value at 8-15 bits, Red value at 16-23 bits and,

alpha at 24-31 bits.

We can retrieve the RGB values from a pixel using

the shift operators .To do so −

• Right, shift to the beginning position of each

color i.e. 24 for alpha 16 for red, etc.

• The shift right operation may impact the values

of other channels, to avoid this, you need to

perform bitwise and operation with 0Xff. This

masks the variable leaving the last 8 bits and

ignoring all the rest of the bits.

p = img.getRGB(x, y);

//Getting the A R G B values from the pixel value

a = (p>>24)&0xff;

r = (p>>16)&0xff;

g = (p>>8)&0xff;

b = p&0xff;

Using the below example it is clear that from a pixel

we can obtain four 8 bit values corresponding to its

respective positions in the pixel.

Now the algorithm has all the components required

for embedding the secret payload file in the cover

image file. It has the file overheads byte array

obtained in step 3, it has the raw data bytes of the

payload file obtained in step 2 and finally, it has the

R,G,B and A values corresponding to every pixels of

the cover image.

We replace the LSB’s of R,G and B values of some of

the pixels of the cover image with the message bits

until all the elements of the byte array which stored

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

275

the data bytes is utilized and using this modified R, G

and B values we create a new image which is the

stego image. The stego image will be almost similar to

the cover image since only one bit of R, G and B

values is modified which is impossible to be

distinguished with bare eyes. We do not modify the

Alpha values.

As discussed earlier in fig 2, corresponding to every

coordinate(i,j) we get a pixel value. The authors have

decided to start replacing the pixel values from a

position i=0, j=312. This position is arbitrarily chosen.

And the file overheads are also embedded at position

i=10. While the rest of the bits are modified with the

payload file bits.

The following figure will help us to understand

which pixels are actually modified to embed the

payload file along with its overheads.

From the above figure the shaded colored portion

represents that the pixels at these positions can be

modified with the payload file bits. And the blue

colored portion represents that the pixels at these

positions is to be modified for the file overhead bits.

Whereas the unshaded portion is left as it is.

5. Creating Stegonographed Image

In step 4 we have obtained R, G, B and A values

corresponding to every pixel and also modified the

LSBs of those values with the payload file bits and it’s

overhead. In this step we are going to combine the R,

G, B and A values in order to form the modified

pixels. Then this pixels are combined together and

written in the hard disk with a new file name as

inputted by the user in step 1.This is the stego image.

finalpixel=(a<<24);

finalpixel=finalpixel | (r<<16);

finalpixel=finalpixel | (g << 8);

finalpixel=finalpixel | b;

This is the process how we can create a new pixel

with the given R, G, B and A values.

The above figure shows that upon successful running

of the algorithm a stego file which is similar to the

cover file is created at the location specified by the

user in step 1.

6. Reveal the hidden file

The receiver on receiving the stego file at his end

through the public communication medium will now

feed in the algorithm with name of the stego image

by mention it’s path clearly and the algorithm will

extract the hidden file from the stego image and save

the file in the same location as the stego file. If there

is no hidden message file present in the image

P0,0

P0,1

 ……. P0,312

……

P0,n

P1,0

P1,1

 ……. ……

……

P1,n

P2,0

P2,1

 ……. ……

……

P2,n

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

P10,0

P10,1

 ……. ……

……

P10,n

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

Pm,0

Pm,1

 ……. ……..

…….

Pm,n

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

276

received then the program will display the

appropriate message.

a) Input from user

The user will input the name of the stego file along

with it’s path.

b) Extracting the file overheads of the hidden file

In step 3 of the previous algorithm we have discussed

the process to create the file overheads of the payload

file and in the step 4 we have also discussed that in

position i=0 of the 2D array of pixels we have

modified the LSBs of these file overhead bits. Now, in

this step we are going to extract the LSB’s of these

pixels and covert every 8 bits into a character and

store it in a string variable.

So following the example taken in step 3 of the

previous algorithm we will get the file parameters

(or file overhead) by just reversing the process as

follows:-

File overhead=”SZXd”>>S(&$%H”.

File overhead=”ZXd”>>S(&$%”. Removing the last

two variables as it was used just to mark the

beginning and ending of the file overheads. If the

variable S and H is missing then we will display the

message “There is no hidden file” and the program

terminates.

Here we got the original file overheads back. Now

with this value we can extract the data bytes of the

payload file and save the file in the user inputted

location.

c) Extracting the payload file bits

We have seen in Fig 3 that shows which pixels are

actually modified to store the message file bits. We

get the LSBs of only those pixels and we store every 8

bits in a byte array. As a result we get a byte array of

size same as that is obtained in the file overheads in

step 2 and every element of this byte array is actually

the message bytes. These message bytes are then

saved into the location as inputted by the user in

step1.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

277

From the above figures it is clear that the payload file

spdf.pdf and the extracted file hidden.pdf is same.

IV. RESULTS

We applied our present method on different cover

files and secret message files and the results are given

below

V. CONCLUTION

In the present work we try to embed some secret

message inside cover image file in encrypted form so

that no one will be able to extract actual secret

message. The program is developed in JAVA. We

embed the data in the LSBs of the R, G and B

component of every pixel of the cover file. The bytes

of the secret message file are encrypted before

embedding into the cover image file so that the task

becomes difficult for the intruder to decrypt the

actual hidden message. Moreover we left first few

pixels unchanged and position of actual modification

of the pixel starts from a fixed pixel value which is

kept secret, the advantage of this is that the even if

the intruder gets a partial portion of the file, the file

will get corrupted. Moreover file extension and file

size are most important factors which is also

encrypted in a different way and this Information is

stored in the cover image file in few specific pixels

which only the algorithm knows, thus it is almost

undetectable by the intruder.

VI. HARDWARE AND SOFTWARE

REQUIREMENTS

No as such specific Hardware add-ons are required to

compile the following program other then the default

System Requirements to execute JAVA executable

files. This was build using JAVA and with the support

of Java Directory Kit (JDK) version 12.0.1 and is

supportable to Java Runtime Environment (JRE)

version 12.0.1.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

278

VII. ACKNOLEDGEMENT

On the very outset, We would like to express our

sincere gratitude to our project advisor Dr. Ashoke

Nath, Associate Professor, St. Xavier’s College,

Kolkata, for his continuous support in our project.

His guidance supporting our ideas with patience,

motivation, enthusiasm and immense knowledge,

helped us all the time through our work. We could

not have imagined having a better advisor and

mentor for our project. We came to know about so

many new things from him, and are really grateful to

him for that.

We also take this opportunity to thank all the

professors of our department and to all our friends

who have shared their valuable inputs with us and

helped us in making this project a success.

Last but not the least; we are indebted to our parents

who have always supported us morally and

economically.

VIII. REFERENCES

[1]. Data Hiding and Retrieval, A. Nath, S. Das, A.

Chakrabarti, Proceedings of IEEE. International

conference on Computer Intelligence and

Computer Network held at Bhopal from 26-28

Nov, 2010.

[2]. Advanced Steganographic approach hiding

encrypted secret message in LSB,LSB+1,

LSB+2and LSB+3 bits in non standard cover

files, Joyshree Nath, Sankar Das, Shalabh

Agarwal and Asoke Nath , International Journal

of Computer Applications (0975-8887) Vol 14-

No7, Feb 2011.

[3]. Advanced Steganography Algorithm using

Encrypted secret message, Joyshree Nath and

Asoke Nath, International Journal of Advanced

Computer Science and Application (IJACSA)

Vol-2 No.3 March (2011) (Accepted for

publication).

[4]. Symmetric key cryptography using random key

generator, A. Nath, S. Ghosh, M.A. Mallik,

Proceedings of International conference on

SAM-2010 held at Las Vegas(USA) 12-15 July,

2010, Vol-2, P-239-244.

[5]. Steganography in Digital Media Principles,

Algorithms, and Applications- Jessica Fridrich,

Cambridge University Press, 2010.

[6]. Jpeg20000 Standard for Image Compression

Concepts algorithms and VLSI Architectures by

Tinku Acharya and Ping-Sing Tsai, Wiley

Interscience.

[7]. Steganography and Seganalysis by Moerland, T,

Leiden Institute of Advanced Computing

Science.

[8]. An Overview of Image Steganography by

T.Morkel, J.H.P. Eloff and M.S.Oliver.

[9]. Websites (Tutorialspoint, Geeksforgeeks,

Wikipedia), and other online resources.

IX. AUTHOR PROFILE

Dr. Asoke Nath is working as

Associate Professor in the Department

of Computer Science, St. Xavier’s

College (Autonomous), Kolkata. He is

engaged in research work in the field

of Cryptography and Network Security,

Steganography, Green Computing, Big data analytics,

Li-Fi Technology, Mathematical modelling of Social

Area Networks, MOOCs etc. He has published 253

research articles in different Journals and conference

proceedings.

Mr. Soham Mondal is a student of St.

Xavier’s College, currently pursuing

B.Sc. in Computer Science. His

interests lie in the field of Cyber

Security, Data Science, AI and real

world project implementation of these fields.

Volume 7, Issue 3, May-June-2021 | http://ijsrcseit.com

Asoke Nath et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June -2021, 7 (3) : 267-279

279

Mr. Raj Deb is a student of St. Xavier’s

College, currently pursuing B.Sc. in

Computer Science. His interests lie in

the field of Cyber Security, Data

Science, Algorithms, Coding,

Cryptography, AI and real world project

implementation of these fields.

Mr. Akash Das is a student of Comp[uter Science in

St. Xavier’s College. His interests lie in the field of

Cryptanalysis, Data Models, DBMS and real world

project implementation of these fields.

Cite this article as :

Asoke Nath, Soham Mondal, Raj Deb, Akash Das,

"Data Hiding and Retrieval Method Using LSB

Substitution Algorithm", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 7 Issue 3, pp. 267-279, May-June

2021. Available at

doi : https://doi.org/10.32628/CSEIT217352

Journal URL : https://ijsrcseit.com/CSEIT217352

https://doi.org/10.32628/CSEIT217352
https://search.crossref.org/?q=10.32628/CSEIT217352&from_ui=yes
https://ijsrcseit.com/CSEIT217352

