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ABSTRACT 

 

Single Cell RNA Sequencing has given us a broad domain to study heterogeneity 

& expression profiles of cells. Downstream analysis of such data has led us to 

important observation and classification of cell types. However, these 

approaches demand great exertion and effort added that it seems the only way to 

proceed ahead for the first time. Results of such verified analysis have led us to 

create labels from our dataset. We can use the same labeled data as an input to a 

neural network and this way we would be able to automate the tedious & time-

consuming process of downstream analysis. In this paper, we have automated 

the process of mapping cancer cells to cancer cell lines & cancer types. For the 

same, we have used pan-cancer single cell sequencing data of 53513 cells from 

198 cell lines reflecting 22 cancer types. 

Keywords : Single Cell RNA-Seq, Deep Learning, Cancer Biology, Cancer Cell 

Lines, Automation, Neural Network, Gene Expression, Transfer Learning 

 

I. INTRODUCTION 

 

Transcriptional profiling of thousands of individual 

cells is possible with Single-Cell RNA-Seq. This 

degree of throughput analysis allows researchers to 

see what genes are expressed, in what quantities, and 

how they differ across thousands of cells in a 

heterogeneous sample at the single-cell level. Getting 

better insights into individual cell tissues has gotten a 

lot easier thanks to Single Cell RNA-Seq. As a result, 

more information and a better understanding of 

immunology and various diseases are available. In 

comparison to traditional procedures, this technology 

allows you to evaluate millions of single cells with 

high throughput in a cost-effective manner. 

Referring to our key paper “Pan-Cancer single cell 

RNA-seq identifies recurring programs of cellular 

heterogeneity[1]” has identified 12 expression 

programs that are recurrently heterogeneous within 

multiple cell lines. For the same, they had assigned 

profiled cells to 198 cancer cell lines reflecting 22 

cancer types. They had assigned profiled cells to cell 

lines based on the consensus between two 

complementary approaches, which used genetic and 

expression profiles. In the first method, cells were 

clustered by their global expression profiles, and each 

cluster was mapped to the cell line with the most 

similar bulk RNA-seq profile[2]. In the Second 

method by detection of SNPs in the scRNA-seq reads, 

they assigned cells to the cell line with the highest 

similarity by SNP profiles derived from bulk RNA-

seq[2-4]. These cell line assignments were consistent 

for 98% of the cells, they were used for the 

downstream analysis which led them to result in 12 
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expression programs as mentioned. As a result, they 

assigned cells to cell lines from single cell RNA-seq 

data, so now eventually we got a labeled data set 

where all the genes in the data are features and the 

respective cell line mapped is the label. As this cell 

line also reflects the cancer type we have another 

label as well. Such data can be an easy input to a 

neural network and can be trained to predict the 

labels with good accuracy. This way we would be 

automating the process of mapping cancer cells to cell 

lines. The Genes of each cell will be the features 

input to the model and the Cell Lines & Cancer types 

will be the labels i.e the outputs of the model. 

However, our model will be restricted to predict 

from those 198 cell lines reflecting 22 cancer types 

only but the layers for the same model can be used 

later on if one has to add additional cell lines by the 

method of transfer learning. 

 

Traditional Approach Followed by Authors of our 

key paper to Classify Cells to cell lines & Cancer 

types. 

 

 
Fig-1 

 

II. Method & Discussion 

 

Single Cell RNA - seq data is of the form Genes X 

Cells, the authors of our key paper1 had already 

preprocessed the data & done the quality control 
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work. The resultant dataset obtained post cells 

mapped to cell lines was of the form Cell_Line X 

Genes X Cells. I used the same data as my raw data. 

There were in total 198 Cell Lines, 31015 Genes & 

53513 Cells. These 198 Cell lines reflected 22 cancer 

types as mentioned above. Both Cell lines and Cancer 

type are labels for us. 

 

2.1 Pre-Processing 

 

Observing the structure of the data it is easy to notice 

that there is an unequal distribution of the number of 

cells with respect to each cell line. So taking a 

random split of 60-20-20 for training-validation-test 

data directly on the whole dataset might not be a 

feasible approach as we might end up having more 

cells from one cell line in the training set while fewer 

cells from other cell line and this way we might end 

up creating a model that might be better at predicting 

one cell line than other. So we need to split up the 

data such that there is an even distribution across the 

labels for training the model. At the same time, we 

would also face multiclass label loss distribution but it 

will be covered up ahead in the model by the softmax 

function of Keras.  

 

To keep an intuition of the data structure imagine it 

as a three-dimensional matrix with each layer from 

top representing one cell line and this layer is of the 

form Genes X Cells. ASo we started selecting each 

layer then taking a transpose of the layer and added 

two new columns in the layer denoting as ‘Cell_Line’ 

and ‘Cancer_Type’ filling it with the string names of 

cell line and cancer type it reflected respectively for 

all the cells in that layer. Then we had a random split 

of 60-20-20 for the train-validation-test sets of each 

layer. Then clubbed all the train, validation, test sets 

for each layer denoted now as TRAIN, TEST, 

VALIDATE respectively, and shuffled the rows 

randomly. However we need to normalize this data, 

so for that we will also club TRAIN, TEST & 

VALIDATE which will be in the matrix of form 

Genes X Cells. Further on we took transpose of this 

clubbed data as it makes it easier for us to work with, 

so now we had it of the structure Cells X Genes 

denoted as DATA in our paper. 

First, we separated the two label columns which are 

‘Cell_Line’ & ‘Cancer_Type’ from TRAIN, TEST & 

VALIDATE. As these labels are in string format we 

need to convert them into label forms that can be 

accepted by the neural network. So for that we first 

created two python dictionaries and saved unique 

values from those two label columns as key and 

unique iterated integer as value. Label structures are 

represented below in Table 1. Now that we have 

integer-coded label values we replaced the values in 

the labels column with the relevant integer. Further 

on we one-hot encoded this labels column as it is 

much better for the loss function of the TensorFlow 

API to work with.  

Then we used two different normalization techniques 

(1) Min-Max Scaling and (2) Z-Score normalization. 

For (1) Min-Max Scaling we calculated the max and 

min value with respect to each column of DATA and 

then applied the formula of Min-Max Scaling on 

individual data frames of train, validation, test set and 

to be denoted as train_s, validation_s, test_s 

respectively. For (2) Z-Score Normalization we 

calculated the mean and standard deviation with 

respect to each column of DATA and then applied 

the formula of Z-Score normalization on individual 

data frames of train, validation, test set and to be 

denoted as train_z, validation_z, test_z respectively. 

Now we are ready to input this into a neural network. 

 

2.2 Selection of an Optimal Neural Network for 

Classification of Cancer Cells to Cancer Cell lines 

We started by creating a basic neural network with 4 

dense layers of neurons structured as 32,64,64,198 we 

denote it as model 1 using Keras API in TensorFlow. 

We also had to implement L2 kernel regularizers at 

each of these hidden layers. Where the 198 neurons 
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in the output layer resemble to classify for the cell 

lines labels, it has the activation function softmax of 

Keras API from TensorFlow. We instantiated two 

copies of model 1 and trained one with the Z-Score 

normalized data while the other with Min-Max 

normalized data. Taking a look at the training curve 

of accuracy and loss for training and validation, it 

becomes quite clear that Min-Max normalized data 

suits better for the task as the one with Z-Score 

normalized shows a lot of aberrations, check out 

Table 1 for the same. We can argue at this point that 

the Z-Score data has gene-expression values negative 

for certain genes and Fig-2 part 1 

 

 
Follow Fig-2 part 2 from this step 

 
Fig-2 Part 2 

  

Graphical Representation of Pre-Processing. Note 

down that the raw data we used was of the obtained 
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to us as a part of the process performed in the key 

paper. 

cells, so it kind of makes no sense to how you would 

interpret a gene expression of a cell at that moment 

as negative instead of it being zero. Hence it is much 

better to use Min-Max normalized data. 

Then we created 4 models with different specs 

represented in Table 2 and trained them with Min-

Max normalized data for 30 epochs as well as plotted 

the accuracy & loss curves along with evaluating the 

test data to interpret which one suits better, check 

out Table 3 & 4 for the same. Our one goal in mind 

about selection is that the model should not have an 

unnecessary amount of parameters as it would just 

increase the computational load on the machine, so 

we would like to approach with a model that is easy 

to publish and can be loaded on a simple machine as 

well. After the interpretation, it was quite clear that 

Model 2 seems fine enough to work with our data 

added that we have a benefit of large amounts of data 

for training in the first place i.e around 32107 cells. 

Also the trade-off for selecting Model 2 then 1 is that 

Model 1 might be overfitting the data at the end. In 

practice, we had tried with these 4 models having a 

varied number of neurons per layer as well but these 

4 models were the prime structures we tried out 

working with represented in Table 2.  

Further to train our neural network better we 

approached by giving the model batched data as an 

input, for the same we tried with different sizes of 

the batch for a specific number of epochs and figure 

out which one suits them best, one can interpret the 

results from Table 5. It seems feasible to select the 

number of epochs as 20 and batch size as 128. That 

way we will also not be overfitting the model. Now 

we can implement checkpoints for our model & also 

save the weights of the model so we can use it later 

on for our use. While running through all of them we 

had always tested our model at the end of the test 

data and the results are also mentioned in Table 4. 

 

2.3 Selection of Optimal Neural Network for 

Classification of Cancer Types  

 

As we have already created a model to classify 198 

cell lines, now we need to make one that can classify 

cancer cells to 22 cancer types reflected from these 

198 cell lines. So for that we approached with the 

idea of transfer learning. As we have already created 

a model that can classify 198 cell lines we can use the 

same for 22 cancer types. We loaded the trained 

model to classify 198 cell lines along with the learned 

weights and then added a layer of 22 neurons with 

activation function softmax at the end of the previous 

model. Then trained this model with as low as 6 

epochs and gained an accuracy of 0.97 & a loss of 0.45 

on the test set. This should be fine enough for us as it 

won’t be overfitting the data if we seek out more 

accuracy. Saved this model with weights so one can 

use the same to do this process.  

Check out the supplementary content files to see 

which 198 cell lines and 22 cancer types the two 

models can predict & one should make sure that 

while using the model the input vector to the model 

must have the same order of features i.e the genes. 

 

III. Results & Observations 

 

Here we presented all the tables related to our 

method from section 2, and it's quite clear to make a 

catch why we selected certain specific models. 

 

Table 1 

  

 Accuracy Loss 
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Plotting the training curves for Model 1 with Z-Score 

normalized & Min-Max Normalized data. The Red 

line represents training data and the blue one for 

validation data. It can be noticed that while training 

the model with Z-Score normalized data it has a lot 

of aberrations which is not a good sign. 

 

Table 2 – Different Model Structures 

  

 

 

 

 

 

 The structure of the neural network of the 4 models 

we tried out added that we had tried with a varied 

number of neurons in the hidden layers initially but 

in practice, we chose this once. It was build using 

Keras API in TensorFlow. Also to note that we have 

used L2 kernel regularizers at each of those hidden 

layers. 

 

Table 3 

Results of 4 different models on the test set. We 

chose Model_2 as it would be the best candidate 
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which will not overfit as well as it has an acceptable 

accuracy 

Model  

Names 

Epochs Test Loss Test 

Accuracy 

Model_1 30 0.0572 0.9927 

Model_2 30 0.2520 0.9520 

Model_3 30 0.7626 0.8639 

Model_4 30 0.5470 0.8796 

 

Table 4 - Different Model Training Curves 

 

 Accuracy Loss 

Mod

el_1 

  

 

Mod

el_2 

  

 

Mod

el_3 

 
 

 

Mod

el_4 

  

 

Training curves of all 4 Models. We chose to work 

with model 2 as it doesn’t show any aberrations in 

the training curves for 30 epochs. Further, we trained 

model 2 with batches which would even optimize 

training more. 

 

Table 5 

Model 2 

Types 

Epochs Batch 

Size 

Test 

Loss 

Test 

Accura

cy 

K1 10 16 0.4807 0.9202 

K2 10 32 0.4634 0.9328 

K3 10 256 0.4560 0.9872 

K4 10 512 0.5817 0.9796 

K5 20 32 0.4800 0.9136 

K6 20 128 0.2729 0.9836 

K7 20 512 0.3872 0.9889 

K8 25 256 0.2391 0.9936 

 

Table 5 gives a review on how Model 2 works with 

different  
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Table 6- Final Model for prediction of Cancer Cell 

Line 

Accuracy 

 

Loss 

 

Training Curves for Model to predict Cancer Cell Line. 

It has Test loss: 0.2124 & Test accuracy: 0.9932. 

We call this model CancerCellLinePredictor. As 

discussed above we added a new layer of 22 neurons at 

the end for classifying cancer types on the same model 

and we denote the model as CancerTypePredictor. It 

has a Test loss: 0.4190 & Test accuracy: 0.9915. 

  

Training Curves for Model to predict Cancer Cell 

Line. It has Test loss: 0.2124 & Test accuracy: 0.9932. 

We call this model CancerCellLinePredictor. As 

discussed above we added a new layer of 22 neurons 

at the end for classifying cancer types on the same 

model and we denote the model as 

CancerTypePredictor. It has a Test loss: 0.4190 & Test 

accuracy: 0.9915. 

 

One should keep a note that when using the model to 

predict they should give the input feature vector 

having the same gene names in the order and it is 

Min-Max normalized data. 

 

IV. Conclusion  

 

We can conclude that it is possible to automate 

traditional & tedious approaches very easily with the 

help of machine learning. One can now use this 

model if they have an interest to map cancer cells to 

cell lines or cancer types in particular of related our 

set. We have saved the model with weights and saved 

it as CancerCellLinePredictor & CancerTypePredictor 

in the code files. Also this model can also be used to 

classify a cell line or cancer type which is not present 

in our data by using the approach of transfer learning. 

We have had an advantage of training the model 

easily because of a large amount of data added that is 

Pan-Cancer data which help also us to conclude that 

it is a generalized model. 

 

V. Limitations & Future Scope  

 

Currently, the model is limited to 198 cell lines and 

22 cancer type but as mentioned above by the 

method of transfer learning one can keep adding 

additional neurons in the last layer and train the 

model a few epochs on the saved weights of the 

current model & would again gain the required 

results. 

 

VI. Data Availability 

 

Raw and processed scRNA-seq data are available 

through the Broad Institute’s single-cell portal 

(SCP542) and at the Gene Expression Omnibus (GEO) 

(accession number GSE157220). Publicly available 

databases used in our analysis included the DepMap 

portal (18q3 data release; https://depmap.org/), the 

CCLE portal (https://portals.broadinstitute.org/ccle), 
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the CTD2 portal (https://ocg.cancer.gov/programs/), 

GTRD database version 20.06 (http://gtrd.biouml.org) 

and MSigDB version 7.0 (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). 

 

We Used the Data from the results of the experiment 

performed in our key paper located in 

CCLE_heterogeneity_Rfiles as 

CCLE_scRNAseq_CPM.RDS obtained after extraction 

of the zip file CCLE_scRNAseq_github.zip obtained 

from Broad Institute’s single-cell portal. 

 

VII. Code availability  

 

Code for all steps from downloading the data to pre-

processing to training the deep learning model is 

available at https://github.com/Science1804/Deep-

Learning-model-to-Automate-the-process-of-

mapping-Cancer-Cells-to-Cell-Lines-Cancer-Types. 

The code file to run the saved model to predict 

Cancer Cells and Cancer Type is available here as 

“Using the model to Predict Cancer Cell lines and 

Cancer Types.ipynb”. 
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