
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT2174128

561

PIN∆LΞ : FUSE based Filesystem and Folder Syncer

Parth Gor1, Rayson D’sa1, Harit Acharya1, Mrs. Geetha S.2

1Diploma Student, Department of Computer Engineering, Shri Bhagubhai Mafatlal Polytechnic, Mumbai,

Maharashtra, India
2Lecturer, Department of Computer Engineering, Shri Bhagubhai Mafatlal Polytechnic, Mumbai, Maharashtra,

India

Article Info

Volume 7, Issue 4

Page Number: 350-358

Publication Issue :

July-August-2021

Article History

Accepted : 15 Aug 2021

Published : 20 Aug 2021

ABSTRACT

In this digital world the data is organized by an entity called a file system. In

desktop operating systems the file manager manages the local data. But with

cloud technologies, reliance on online storage has increased since the past

decade, which demands a hybrid file managing solution. The proposed file

system using FUSE and application give the functionalities such as support for

multiple cloud storages on local file manager, automated syncing of folders on

different devices.

Keywords: Filesystem, FUSE, Cloud, Pindle, Sync, Gdrivefs, Onedrivefs.

I. INTRODUCTION

With global lockdown, business continuity

challenges, and the trend to work from home,

COVID19 is forcing organizations to migrate to the

cloud environment to deal with the crisis and

promote daily data access, sharing and work

collaboration of spatially disseminated teams. The

proliferation of transitions to the cloud has further

promoted the embracement of cloud storage solutions

by enterprises to achieve business continuity,

operational workloads, and data warehousing.

Additionally, due to scalability, flexibility, and

ubiquitous availability benefits of the cloud, quite a

large no. of companies are migrating their delegations

to the cloud, leading to a demand for services such as

consulting, training, support and maintenance,

integration and implementation is also increasing.

Though there’s more and more dependency on the

cloud, consumers are lacking to make full utilization

of its rich packed features. The features we use are its

ability to store our system configuration and the use

of respective cloud APIs. The basic idea of using cloud

storage is just storing, editing, and accessing it

through the WEB. We gave some thought to “how

can we make this process of cloud system be used

more conveniently”, so we developed a file system to

solve this problem. There are many GDriveFS and

OnedriveFS available in the marketplace, but this

one’s unique in the regards of, it is configurable by

GUI and provides ease of use and configuration to the

layman.

In this hybrid work culture i.e., alternate days at

office and work from home the other day has made

life on an employee difficult as they have to continue

the same work, but for that they have to carry the

data by pen drive or mail it or upload in cloud

storages, but no cloud storages does provide every

software as SaaS. Therefore, synced folders at office

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT2174128

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Parth Gor et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 561-566

562

and home can give huge relief of carrying data every

day with automated syncs.

II. BACKGROUND

FUSE (Filesystem in User space) is an attachment to

user space programs for using custom file systems

with the Linux kernel. There are two major

components of the FUSE first is the fuse kernel and

second, the libfuse user space library. For interfacing

the FUSE kernel module, libfuse caters us with a

citated execution for the same. The FUSE file system

linked with libfuse is usually standalone system.

Libfuse library provides the capability to unmount

and mount the filesystem, read kernel requisitions,

and respond back. libfuse provides two APIs: a

synchronous API which is “high level”, and an

asynchronous “low-level” API. [3] In both cases,

incoming requests from the kernel are passed to the

main program via call-backs. When using advanced

APIs, the call-back can use the filename and path

instead of the inode, and the request processing

completes when the call-back function returns. When

using low-level APIs, the callback must be used with

the inode, and a separate set of API functions must be

used to send the response explicitly.

Figure 1. FUSE working diagram in Linux Kernel.

Figure 1. flowchart showing the working principle of

FUSE [2]: The request list file (ls l / tmp / fuse) in the

user space is redirected to FUSE by the kernel via VFS.

FUSE then executes the registered handler program

(./hello) and passes it the request (ls -l /tmp/fuse). The

controller returns the response to FUSE, which then

redirects it to the user space program that originally

made the request.

III. WORKING AND IMPLEMENTATION

 A. Mounter

Mounting a filesystem by making entries in fstab is

not user-friendly, it may require some technical skills

and if not configured properly it may prove

hazardous. Complexity of mounting, the classical

way, is quite cumbersome, so the mounter provides

Graphical-User-Interface, hiding the under-lying

procedure. Mounting filesystem by just providing the

mail-id and the mount point. The first page displays

the previously mounted records along with the

accounts linked, if any. The Add button in the

interface will prompt the new config window where

the user will input the mail-id and mount point. Both

are then verified; the format of the mail-id is verified,

and the mount point is verified by checking whether

the folder exists in the said path or doesn’t plus it has

to be empty. Clicking the OAuth setup will be done;

accordingly, required permissions need to be granted

by the user. After that a token or session file will be

generated as a reference to sign-in the user later on

whenever he/she desires a new mount point for the

same account. The FUSE [FileSystem in User Space]

kernel module mounts the G-Drive FS in the User

Space and through the virtual FS, all the system calls

are made without tampering with the kernel code. In

the OneDrive and G-Drive the python file takes the

mount point as an argument and passes it to FuseArgs.

The OneDrive/G-Drive class inherits the Fuse class.

Inside the OneDrive/GDrive class various functions

are defined such as readdir, open, create, etc.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Parth Gor et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 561-566

563

getattr() : It is an essential function for files and

folders for assigning meta-data such as GID, UID,

Size, last-modified, creation time, etc. Size of the file

is fetched from the cloud and assigned here.

readdir() : Folders and files in the mounting directory

say for example root will be read from cloud and as

we browse through the mounted directory, all the

files and folders will be shown using the FuseDir

entry.

read() : the read function is used with a read proxy

which is used to get a stream of bytes from the cloud

using the HTTP GET method. When the end-user

clicks on the file e.g. pdf, docx from explorer, FUSE

calls this function , in that getattr is called which gets

all the metadata related to the file. And one locally

maintained data structure present in the .py file gives

the file id and that gets passed to the read proxy

which uses the base URL of API, Authorization URL

and specifies the byte range to receive. After

receiving a stream of bytes, the file is loaded with that

data, and another GET request is sent to fetch the

next chunk of bytes.

mkdir() : This function creates a new folder on the

cloud after receiving the folder name and parent

folder name.

rmdir(): After receiving the folder name rmdir

removes the folder from the cloud. This removal is a

forced removal, i.e., non-empty will also get deleted.

create() : In this function, the name of the file is

received from FUSE, a temporary file is created and

uploaded to cloud, and then renamed with the

filename received.

write() :In the write function, file-ID is fetched from

the data structure from the filename received from

fuse, then that file is read from the cloud and stored

into a temporary file. The modification done by the

user is also overwritten in the temporary file and this

file is uploaded to the file while the old file is deleted.

Along with this write function, a truncate function is

also called which updates the file size locally.

unlink() : It is used to delete the file. Based on the

received file name, the file-ID is fetched, and the

folder is deleted locally and from the cloud; also, the

entry is automatically removed from the explorer.

All received mail-id and mounting points from

different cloud platforms and multiple cloud accounts

are stored in one JSON file which is used at boot time

for mounting. Authenticated Token/Session file is also

stored into the same folder and a log file for the user-

account is generated in which all the operations

performed while using the file system are logged.

Mounting or un-mounting can be done from the

Command line tool.

B. Syncer

The next application is Syncer, as the name suggests

what it does is syncs folders between two different

PCs. Setting up it is easy; the user has to first

download the package. The installation process is

standard. Once having opened the application, the

user needs to input his/her email u id through which

the cloud account is adjoined, the application will

validate the mail-id and will also detect the cloud

provider, currently two leading cloud storage

platforms are supported, G-Drive and OneDrive.

Clicking next, the user will be redirected to the

browser wherein the O-Auth and agreement to give

permissions will occur. After that, both the systems

among which the sync has to take place should be

given unique usernames in the given field. Storage

stats are given in the next page. The current synced

folders are shown in the next page, using the edit

button which will redirect to a new page where

current directories are shown, and the user can select

the folder for sync. The next phase in configuration is

to map the folders to be synced. After pressing the

apply button, the new configurations are uploaded to

the cloud along with the content that needs to be

synced. Once done, the folders which are to be

synced are selected on both the systems, and the

observer runs on both the devices from boot

time(start-up) . Any event occurring under observed

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Parth Gor et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 561-566

564

folders will call respective functions. On-creating the

event, the respective file will be uploaded to the cloud

platform provided by the user and the event is cached

in the configuration file and then uploaded. On-

delete event, only the delete action is updated in the

configuration file. Clicking ’Sync Now’ displays, and

thereby a confirmation that the changes are received.

Henceforth both the folders are in sync. In the same

window, the remove button is provided by which the

user can discard the changes and the apply button

will make changes to the destination. There is one

connection-manager running behind which switches

between online and offline service which

continuously senses the network. Going from online

to offline, stops the files from being uploaded, instead

it is locally cached and whenever the connection

resumes i.e. offline-to-online service it gets latest

configuration from cloud and compares it with local

configuration, if any deviation is found then locally

applied changes are considered as the latest one and

are applied again and it first clears the queue of

pending requests.

IV. RESULTS AND DISCUSSION

Figure 2. Activity diagram depicting the activities of

cloud storage Mounter.

Figure 3. An edit window to add a new cloud storage

account or remove an existing one.

.

Figure 4. Window to add the cloud account to

associate with the desired mount point in the system.

Figure 5. Use Case diagram showcasing the process

between actors.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Parth Gor et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 561-566

565

Figure 6. Selecting the folders that need to be synced.

V. ACKNOWLEDGEMENT

Special vote of thanks to: Mike Kazantsev, Dustin

Oprea, and Christian Reyes, who regardless of being

unknown, gave guidance throughout and our dear

friend Gaurav Chawda helped in, from designing the

system all the way through fixing bugs.

VI. CONCLUSION & FUTURE SCOPE

The Pindle application suite is a demanding solution

for today’s environment. The cloud mounter brings

different cloud storages together with multiple

accounts at one local place allowing users to save time

and switch browser tabs. Python is not suitable for a

faster filesystem as it is an interpreted language, but

on the other hand it has rich API support and is easy

to implement. The GUI is Intuitive and pretty much

convenient as users don't have to use a terminal for

mounting and unmounting. Local security could be

worked out with the current authenticated tokens

stored in a pickle file which can be easily penetrated.

The current implementation of FUSE allows 4KiB of

byte streams at once (some claims it to be 128KiB by

adding extra parameter "big_writes" but it doesn't

work for our implementation) which makes read

write slower, by editing the FUSE kernel module and

increasing allowed stream bytes we can improve read

write speed significantly. Support for more cloud

platforms such as : iCloud, Amazon S3, Mega etc.

In Syncer, Support for more than two-device could be

added which will require a more robust concurrent

algorithm. Multiple accounts at once are also helpful.

The synced folder is not passed through security

check-ups therefore the threat to another device also

exists hence we require local file security. Also synced

folders can be exploited, hindering privacy.

Synchronization between folders could be

improvised.

VII. REFERENCES

[1]. https://googleapis.github.io/google-api-python-

client/docs/epy/index.html

[2]. "Create GUI applications with Python & Qt5 -

4th edition April 2021" by Martin Fitzpatrick

[3]. Fuse-appendix. 2018. FUSE Library Options

and APIs.

http://www.fsl.cs.stonybrook.edu/docs/fuse/fuse

-article-appendices.html

[4]. “Performance and Resource Utilization of FUSE

User-Space File Systems” BHARATH KUMAR

REDDY VANGOOR, Avere Systems, Inc.

PRAFFUL AGARWAL, MANU MATHEW,

ARUN RAMACHANDRAN, and

SWAMINATHAN SIVARAMAN, Stony Brook

University VASILY TARASOV, IBM Research -

Almaden EREZ ZADOK, Stony Brook

University ACM Trans. Storage, Vol. 15, No. 2,

Article 15, Publication date: May 2019.

https://dl.acm.org/doi/fullHtml/10.1145/331014

8.

[5]. “Writing a FUSE Filesystem: a Tutorial” Joseph

J. Pfeiffer, Jr., Ph.D. Emeritus Professor,

Department of Computer Science New Mexico

State University Version of 2018-02-04

https://www.cs.nmsu.edu/~pfeiffer/fuse-

tutorial/

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Parth Gor et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 561-566

566

Cite this article as :

Parth Gor, Rayson D'sa, Harit Acharya, Mrs. Geetha

S., "PIN∆LΞ : FUSE based Filesystem and Folder

Syncer", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 7

Issue 4, pp. 561-566, July-August 2021. Available at

doi : https://doi.org/10.32628/CSEIT2174128

Journal URL : https://ijsrcseit.com/CSEIT2174128

https://doi.org/10.32628/CSEIT2174128
https://ijsrcseit.com/CSEIT2174128

