
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the 

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, 

distribution, and reproduction in any medium, provided the original work is properly cited 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

ISSN : 2456-3307 (www.ijsrcseit.com) 

doi : https://doi.org/10.32628/IJSRCSEIT 

 

 

 

 

350 

Implementation of Genetic Algorithm Using the Traveling Salesman Problem 

in Cloud  
Aadil Bashir*1, Manoj Kumar Srivastava2 

*1 M.Tech (Scholar),  CSE Depatment Desh Bhagat University, Mandi Gobindgarh, Punjab, India 
2 CSE Department, Desh Bhagat University, Mandi Gobindgarh, Punjab, India 

 
 

 

Article Info 

Volume  7, Issue 4 

Page Number: 350-358 

 

Publication Issue : 

July-August-2021 

 

Article History 

Accepted :  20 July 2021 

Published : 27 July 2021 

ABSTRACT 

 

The paper below is utilised to create a novel cross-operator (SCX) for an 

algorithm which creates premium solutions for problem of travelling salesmen 

(TSP). In cross-operative sequential and constructive operator method it  creates 

a new offspring from a parent with increased constraints depending on its 

standards, which may be found in the composition of parents while maintaining 

the parent chromosomes' node order. The Internet connects the entire world. 

Artificial intelligence (AI) is in high demand, thanks to the large number of web 

users and the growing popularity of cloud computing research. Through natural 

selection and genetic development, genetic algorithms (GA) are applied as an AI 

optimisation technique in this study. There are numerous GA applications, such 

as web mining, load balancing, routing and planning, and online service 

selection. As a result, determining whether code has a significant impact on GA 

server speed and web-based language technology is a difficult undertaking. The 

Travel Salesman (TSP) specified as a Non Polynomial-Hard difficulty with the 

aim can be solved with GA (NP-hard). Although many academics use Python to 

implement GA, other popular high-level programming languages for 

interpreters, such as PHP, are also often used (PHP Hypertext Preprocessor). 

Different programming languages had different line of GA implementation and 

runtime codes, file sizes, and performance. The use of Python in GA 

implementation is suggested based on the findings. 

Keywords : NP-complete, problem of a travelling salesman,  an algorithm based 

on genetics, Cross-web-program sequencing and constructive.  

 

I. INTRODUCTION 

 

The (TSP) problem is a standard and an aged problem 

in computer science and operational research (TSP). 

It's possible to put it this way: A network with 'n' 

nodes,  and trip costs ( journey instance, or distance,  

etc.) is provided, as well as a matrix A= [Aij] of order 

n related with node i j). This network will be made 

available. The goal is to find the Hamiltonian cycle 

with the least amount of money. Based on the 

structure of the cost matrix, TSPs are: Asymmetries 

and Symmetry. When Aij = Aji, for i j, TSP is 

symmetrical; otherwise, it is asymmetric. In case of n-

city Asymmetric , there are approx (n-1)! Solutions, in 
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which one or other are at lowest rate. In any case, the 

number of answers for even a large n accumulates to 

the point where a thorough search is impossible. TSP 

has piqued the interest of many scholars and is a hot 

topic of study for three main reasons. To begin with, 

TSP may simulate a wide range of real-world 

challenges. Second, the existence of the NP-Complete 

problem has been demonstrated [1]. The, problem of 

NP-complete  are persistent in the intellect that no 

efficient solution identified for enormous problem 

dimensions. Furthermore, it is well known that NP-

complete problems are more or less equal; if you can 

solve one, you can solve the others. TSP is also useful 

in a variety of applications, such as automatic boiler 

boards and scan cell threading on a tested circuit[2], 

X-ray [3], and so on. Methods which endow with a 

solution for problem are known as accurate actions. 

Simply listing and evaluating the objective function 

values of all potential solutions and selecting the best 

is an implied strategy for resolving the TSP. However, 

due to the vast number of viable TSP solutions, even 

for moderate-scale problems, this "exhaustive search" 

is clearly wasteful and impracticable. Because real-

world applications necessitate the resolution of 

substantial challenges, the focus has shifted to finding 

'good answers' in a heuristic fashion within an 

acceptable timeframe, 'the degree of goodness,' with 

the goal of finding perfectly optimum solutions for 

TSP. Among the best heuristic strategies for resolving 

TSP instances is the genetic algorithm (GA). Because 

the crossover operator is so important in GA, the TSP 

has had multiple crossover operators. Because data 

processing and analysis scripts are often time 

consuming and need many hours of computation on a 

computer device, the iteration and debugging 

processes will be longer [5]. In addition, scientists 

emphasise their work differently than professional 

programmers. They are more concerned with the 

process than with the instruments they employ. 

Many scientists and even inexperienced programmers 

who consider themselves to be competent aspire to 

complete programming chores more quickly. They'll 

use that programming language, of course (PL). It is 

also based on a psychological assessment, as detailed 

in [29]. AI programming must be quick and simple in 

order to stay up with the quickly growing results in 

AI. As a result, scientists need PLs that can iterate 

quickly while keeping order and clarity so that they 

can be used easily. 

Even if compiler PL is faster than interpreter PL 

while running programmes, Python[25] and PHP[26] 

are less easier than newer PLs. The virtues of Python 

are mainly its ease of use, its interpretations or its 

object-oriented programming language which, in 

keeping an object-oriented manner, may meet many 

scientific needs. On the other hand, the effectiveness 

of PL can be assessed by the number of lines of code 

or syntaxes needed to achieve the same AG. In denial 

of service assaults [30] another problem in using 

built-in PL is evident.  

 

II. Literature Survey 

 

Two crossover points were used by the operator 

dubbed PMX, Goldberg and Lings [4] defined the 

operator. Interchange mapping is defined by the 

section that connects these places. A well-known 33-

node problem was almost optimised in this first 

attempt at applying GAs to the TSP. 

It selects the tour sequence of one parent and keeps 

the node n order of the other parent. Davis[5].  

Oliver et al. [6] presented another crossover operator 

called CX (cycle crossover) operator, which generated 

offspring so that each node (and position) derives 

from a parent. 

Whitley et al. [7] suggested a crossover edge 

recombination operator (ERX) using a 'edge map' for 

building an offspring in which information from 

parents' structures can be obtained as much as feasible. 

This edge map saves all the connections that lead in 

and out of a node from both parents. 

Radcliffe and Surry presented a N-point crossover 

operator (GNX).[8] 

PMX operator added to TBX by Choi et al.[10]. 
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Moon et al [11] proposes the novel Moon Crossover 

operator (MX), which imitates moon variations, such 

as moon-waxing half moon — all of them full moon 

— to be known as gibbous. The performance of MX 

and OX operators is approximately equal, however for 

all the experiments OX never achieved an optimum 

solution. A new crossover operator dubbed SCX is 

introduced here and therefore, It is possible to solve 

the TSP using a genetic algorithm based on SCX. 

A huge number of tenants share resources in the 

cloud. Fairness of resources is then studied by 

multiple users [13, 14]. There is a multi-resource 

distribution technique (known as DRFH)[13] which 

ensures that cloud-users with heuristics use resources 

fairly. 

In huge datacenters with tens of thousands of servers, 

resource efficiency is becoming highly important[15, 

16]. Some approaches, such as memory[17] and 

I/O[18], are intended to improve the use of 

computational resources. Application SLAs have been 

introduced in a number of ways [19]. Special 

applications include streaming [20, 21] and the 

business process [22]. Some resource management 

solutions are also presented.  

 

Cloud resources are generally rented under a model 

that you can pay for. Many scholars have investigated 

the economic efficiency of cloud computing[23, 24]. 

The demand response trading systems are meant to 

reach the highest possible level of social welfare 

randomly. In this paper, our work focuses mostly on 

VM positioning stability. Due to the time-varied 

workloads in mobile cloud computing in particular, 

stability increases. 

 

Problem Formulation  

 

Many investigations are using GA for benchmarking 

applications[27]. This document sets benchmarks for 

PL in AI support. GA's problem area is the Travel-ling 

Salesman's Problem, in which numerous heuristics 

have formed a benchmark for GA performance 

testing[28]. The utilisation of TSP depends on the 

problem in its domain. TSP is an NP-hard issue that is 

optimised by GA to address NP's entire domain 

problem based on natural selects and genetic 

developments. 

At TSP, it is the aim to identify a route for a certain 

number of towns by visiting every town exactly once 

and to return to the beginning town where the route 

is kept to a minimum. One way that goes back to 

every city to make a closed route is called a route. It 

goes back to the early city. The easiest and most 

straightforward way to solve TSPs is to list each route, 

to calculate the length of each routing and to select 

the shortest route. 

 

Genetic Algorithms 

 

Genetic algorithms (GA) are mainly based on a 

random alteration in the chromosomal genestructures 

of evolutionary biology to replicate the survival of the 

fittest among the species[12]. Two major needs must 

be fulfilled to resolve any real life problem by GA: An 

objective fitness function and hence a fitness function 

can be used to determine whether a solution is 

excellent or not. A simple GA operates by producing a 

new, and presumably better population than 

successive generations through random creation of an 

initial string population, known as the gene pool then 

using (three) operators. One can use the first operator 

to recreate strings with an appropriate degree of 

probability in subsequent generations, using their 

objective function values. As a result, new strings are 

formed. The second operator is the crossover, where 

randomly selected string pairs are joined. 

3rd operators are used to change the value of a string 

on occasion. As far as the GA search process goes, 

crossover and reproduction is the most powerful. In 

addition, mutation broadens the search area and 

minimises the loss of genetic material for 

reproduction and crossbreeding. The possibility of 

exploiting a mutation is consequently quite little, 

whereas the likelihood of crossover is elevated. 
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Genetic coding 

Encoding answers as viable chromosomes is necessary 

to make feasible chromosomes viable.. The 

technology of encoding solutions varies depending on 

the situation and involves some art. For the TSP, the 

chromosome-length solution is often the number of 

nodes. Each chromosome gene receives a node label 

such that there is no node in the same chromosome 

twice. Both adjacency representation and track 

representation are commonly used to describe the 

TSP tour. As an example, let's look at a tour that 

displays only the node label as a path. Let 1, 2, 3, 4, 5 

be labels of nodes and can be shown as a tour (1, 3, 4, 

2, 5). 

 

Reproduction operator 

As part of the selection procedure, chromosomes are 

duplicated into the next-generation mattress with a 

probability associated with their fitness value. A 

larger share of the best suited chromosomes is allotted 

the following generation in Darwinian reproduction. 

Fitness is determined in nature through the capacity 

of an organism to survive predators, pesticides and 

other adult reproductive barriers. No new 

chromosomes are generated in this period. The 

generally utilised playback function is the 

proportionate playback operator, when a string is 

chosen with a probability proportional to the fitness 

of the matting pond. 

 

 The SCX  

As new chromosomes are produced from old ones, the 

solution space is sought. Crossover is the single most 

important search in the world. First, a couple of 

parents are selected randomly from the mattress. 

Second, a location known as the crossover site is 

randomly selected along the common length of the 

site and information is exchanged after the crossover 

site of both parent strings and two new children are 

created. Naturally, the TSP does not support this 

fundamental crossover strategy. The SCX  produces a 

heir utilising superior borders based on the values in 

the parents' structure. The superior vertices that are 

not present in the structure of the parents are also 

utilised in the design process. Similar to the structure 

of parents in the case of Erx and Gnx, SCx creates 

new kindergarten edges that do not exist in the 

current population. It is therefore more likely that a 

better offspring than those of ERX and GNX will be 

born. In an early version, the operator is cited as the 

local strategy for enhancing [14, 15]. The SCX 

algorithm consists of: 

Step 1: - Begin at 'node one' (for example, p =1).. 

Step 2: Sequence the two parent chromosomes to look 

for the first 'valid node' Sequence  

Appeared in each parent following 'node p' (the node 

not yet visited). Sequentially seek { 2,3, ...,n{regard as 

the first "valid" nodule in a single parent when p, 

node is found, to set off through step 3. Suppose that 

in the 1st and 2nd parents the 'Node α' and the 'Node 

β' are identified, then move to step 4 to find a next 

node. 

Step 4: If cpα < cpβ, select the 'Node α' as the next 

node and link it to the partially formed daughter 

chromosome. If the offspring is a whole chromosome, 

otherwise stop renaming the current node as 'node p' 

and go to step 2. 

 

 
 

Figure 1: Example of SCCO 

 

 

Survivor selection 
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After the crossover process, the survivor selection 

method is utilised to select the next generation 

population. Typically, only the fitter chromosomes 

are taken into account by the survivors of GA. Two 

types of GA chromosomes are taken into account in 

the survivor selection of the following generation: (1) 

parents in the current size m population and (2) 

descent created by size m cross-over. The selection 

technique (μ+α) of survivors combines chromosomes 

into (1) and (2), arranges chromosomes in upwards 

according to fitness and consider the future 

generation's first m chromosomes. In the worst 

situation, all μ parents will survive in the following 

generation. 

  

Mutation operator 

 

The mutation operator selects a chromosomal location 

randomly and alters the 

Related alone, changing information thereby. 

Mutation is needed because the inadequate members 

of subsequent generations are removed, so that 

certain aspects of the genetic material may never be 

lost. By carrying out infrequent random chromosome 

modifications, GAs ensure that new search area 

sections are accessed, which can not be fully 

guaranteed by reproduction and crossover alone. This 

ensures that no key characteristics are missed 

prematurely, hence preserving the diversity of the 

matrix pool. The TSP is not working with the 

conventional mutation operator. We evaluated the 

mutual exchange mutation in this survey, which 

randomly chooses two nodes and exchanges them. 

 

 Parameters of control 

 

The GA search process is governed by these factors. 

Some of the following are: (a) Population size: - 

Determines how many genetic materials are 

accessible for the research and then how many 

chromosomes. When the search is too small, the space 

is not covered sufficiently. If too much is involved, 

the GA delays chromosomal evaluation. 

(b) Probability for crossover: – Specifies the 

likelihood of crossover between two chromosomes. c) 

Probability for mutation: - The likelihood of making 

bit-wise mutation is specified. (d) Criteria for 

termination: - Specifies when the genetic search will 

end. 

 

Structure of genetic algorithms 

 

The following can be summarised: GAs: Random 

population initialization; population assessment; 

generation = 0; {generation = generation + 1 is not met 

when the termination requirement is not satisfied; 

Crossing with crossover probabilities (Pc); choose 

fitting chromosomes by selecting the survivor; 

perform mutation with mutation probability (Pm);; 

Population assessment; Something for TSP class 

implementation Initialize individual function (route) 

Start of a person consisting of cities or nodes Make 

function Chromosome Chrome (file) Generate a 

single file function chromosomal evaluate Using the 

Euclid formula, calculate the length of the population 

given (a number of cities) Crossover function (other) 

Recombine a new child from a specific step in a wife's 

function Make a jump Assess the fitness expenses of 

everyone in the current cross-over of population 

Candidate population initialization Choose from the 

present population two best parent candidates (Parent 

A and Parent B).. Something for TSP class 

implementation Initialize individual function (route) 

Initialization of a person consisting of cities or nodes 

While there is a still smaller pool of candidates, the 

crossover rate is random. when the rate of crossover is 

then descended = crossover parent A with parent B 

other descendants = copy parent A randomise 

mutation rate when the rate of mutation is then 

descended = current descended descendants assess 

descendants' fitness costs If there is no offspring in 

the candidate population then add (individual) 

offspring to the candidate population. Population 
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candidates are changing the new population function 

(individual) 

 

III. Methodology 

 

In this research TSP-based GA is implemented in two 

extensively used cloud server-side languages without 

frames. It's Python, PHP. All GA codes representing 

each PL are written on the basis of the pseudo code 

given. The variable names, methods and logic of 

initialization were used for the implementation. The 

data were tested using one source of information and 

the identical values for all PL parameters during 

implementation. 

 

Every PL's GA codes are as close as possible 

implemented. If a single PL uses numerous methods, 

functions or variables for the implementation of any 

section of the pseudo code, then the second PL should 

also be done in the same way. Maintaining the code 

closest to the measurement findings apparently results. 

A random number generator is one of the many 

important functions utilised in GA. In GA, random 

numbers are generating random numbers to 

compensate for the possibility that parents are cross-

cutting, copying or mutating. A Pseudo-Random 

Number Generator function is used to generate the 

random number. PRNG is a random number 

generator feature that returns the same random value 

when it receives the same seed number. This 

methodology is used to ensure that all programmes 

are performed in the programme using the same 

method and loop, and that the same result is obtained. 

In this research, the PRNG function is implemented 

by means of a distinct script run by one system call 

every implemented PL. 

A modest adjustment of the scripts was introduced in 

the performance measurement of the implemented PL 

with the addition of the current time or micromotion 

function at numerous points of code, while taking 

into account the best fitness cost. In order to confirm 

that all implemented scripts use the same seed 

number and random value, a test unit was used before 

any measures were performed using a predefined 

value and data, and all implemented PL would mate 

the same parents and produce the identical candidates 

in each generation. At the end of the script execution 

you should return the best person in the same 

generation. 

Python, PHP built GA pseudo code for solving TSP in 

this research. All method and variables are unit tested 

to ensure that all implementations of the specified 

pseudo code have the same results and values. The 

codes use the same demographic data. 

Due to the varying types of programming of each PL, 

methods and variables cannot be exactly implemented. 

All methods codes and variables applied throughout 

all PLs, however, are guaranteed to be consistent with 

the same values and are based on the same GA 

environment and population data. 

 

IV. Result Analysis 

 

Python, the PHP-codes result in the implementation 

of the GA pseudo code supplied. In 245, 300 lines of 

code, Python, PHP, PHP codes were implemented. 

The file size is 7981 bytes, accordingly Python, PHP, 

6886 bytes. As Python scripters don't require closing 

tags on its method, function, or loop implementation 

like in PHP, the shortest line of codes is Python. But 

Python uses more bytes to implement when it comes 

to code file size. 
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Table 1 

 

Number 

of Cities 

 

PL 
Maximum 

(ms) 

Minimum 

(ms) 

Average 

(ms) 

Standard 

Deviation 

Best Fitness 

Cost 

(Length) 

Performance 

over PHP 

(%) 

6 PHP 38,44 36,00 37,18 0,84 30,397 -5,53 

6 Python 35,73 34,94 35,23 0,26 30,397 - 

7 PHP 47,91 45,85 46,79 0,73 41,135 -1,56 

7 Python 47,11 45,36 46,07 0,57 41,135 - 

8 PHP 62,23 58,61 60,14 1,18 34,020 -6,09 

8 Python 57,25 56,21 56,69 0,36 34,020 - 

9 PHP 51,16 49,49 50,06 0,58 49,062 -3,56 

9 Python 49,44 47,75 48,34 0,50 49,062 - 

10 PHP 72,97 69,72 71,67 1,15 51,881 -2,63 

10 Python 71,66 68,56 69,84 0,85 51,881 - 

 

As the most frequently used python to conduct 

research, Python is utilised as the basis for 

performance measuring [11]. So we compare the 

running time of all PL with Python. In the field of 

web environment, PHP outperforms Python from 

research carried out by Jafar et al.[12]. 

On the basis of last seed, optimum fitness cost and the 

best measurement results from TABLE I, we can 

conclude that in the same generation all tests for the 

same number of cities return the best individual. This 

shows that all PL executions and their running flow 

are identical. 

 

 
 

Fig. 2.  Fitness cost as per  number of cities 

 

 

 

 

V. CONCLUSION 

 

For a travellers' problem genetic algorithm We 

introduced a novel crossover operation called as the 

SCX crossover (TSP). Our main objective was to 

compare the effectiveness of remedies provided by 

various crossover operators. Our purpose was not to 

increase the optimal solution in any way. As a result, 

we don't use a local search technique to improve the 

method's quality. There is no large population size, 

and parallel versions of methods are not used to 

obtain a precise result, as Whitley et al. [7] did. To 

emphasise the true nature of crossover operators, the 

highest likelihood of crossover is also established. 

Lowest probability mutation is only used to avoid 

becoming stranded in local minima too quickly. It's 

tough to argue that this is exactly a moderated 

instance of our crossover operator. As a result, adding 

a capable localized search technique to the program 

can precisely resolve the other investigations. Data 

quantity (number of cities) in all PLs is measured and 

analysed in accordance with the programme 

execution time and the best potential fitness costs. 

The more the data, the longer it takes and the less 

time it takes for the GA result to become TSP 
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