
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

350

Implementation of Genetic Algorithm Using the Traveling Salesman Problem

in Cloud
Aadil Bashir*1, Manoj Kumar Srivastava2

*1 M.Tech (Scholar), CSE Depatment Desh Bhagat University, Mandi Gobindgarh, Punjab, India
2 CSE Department, Desh Bhagat University, Mandi Gobindgarh, Punjab, India

Article Info

Volume 7, Issue 4

Page Number: 350-358

Publication Issue :

July-August-2021

Article History

Accepted : 20 July 2021

Published : 27 July 2021

ABSTRACT

The paper below is utilised to create a novel cross-operator (SCX) for an

algorithm which creates premium solutions for problem of travelling salesmen

(TSP). In cross-operative sequential and constructive operator method it creates

a new offspring from a parent with increased constraints depending on its

standards, which may be found in the composition of parents while maintaining

the parent chromosomes' node order. The Internet connects the entire world.

Artificial intelligence (AI) is in high demand, thanks to the large number of web

users and the growing popularity of cloud computing research. Through natural

selection and genetic development, genetic algorithms (GA) are applied as an AI

optimisation technique in this study. There are numerous GA applications, such

as web mining, load balancing, routing and planning, and online service

selection. As a result, determining whether code has a significant impact on GA

server speed and web-based language technology is a difficult undertaking. The

Travel Salesman (TSP) specified as a Non Polynomial-Hard difficulty with the

aim can be solved with GA (NP-hard). Although many academics use Python to

implement GA, other popular high-level programming languages for

interpreters, such as PHP, are also often used (PHP Hypertext Preprocessor).

Different programming languages had different line of GA implementation and

runtime codes, file sizes, and performance. The use of Python in GA

implementation is suggested based on the findings.

Keywords : NP-complete, problem of a travelling salesman, an algorithm based

on genetics, Cross-web-program sequencing and constructive.

I. INTRODUCTION

The (TSP) problem is a standard and an aged problem

in computer science and operational research (TSP).

It's possible to put it this way: A network with 'n'

nodes, and trip costs (journey instance, or distance,

etc.) is provided, as well as a matrix A= [Aij] of order

n related with node i j). This network will be made

available. The goal is to find the Hamiltonian cycle

with the least amount of money. Based on the

structure of the cost matrix, TSPs are: Asymmetries

and Symmetry. When Aij = Aji, for i j, TSP is

symmetrical; otherwise, it is asymmetric. In case of n-

city Asymmetric , there are approx (n-1)! Solutions, in

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

351

which one or other are at lowest rate. In any case, the

number of answers for even a large n accumulates to

the point where a thorough search is impossible. TSP

has piqued the interest of many scholars and is a hot

topic of study for three main reasons. To begin with,

TSP may simulate a wide range of real-world

challenges. Second, the existence of the NP-Complete

problem has been demonstrated [1]. The, problem of

NP-complete are persistent in the intellect that no

efficient solution identified for enormous problem

dimensions. Furthermore, it is well known that NP-

complete problems are more or less equal; if you can

solve one, you can solve the others. TSP is also useful

in a variety of applications, such as automatic boiler

boards and scan cell threading on a tested circuit[2],

X-ray [3], and so on. Methods which endow with a

solution for problem are known as accurate actions.

Simply listing and evaluating the objective function

values of all potential solutions and selecting the best

is an implied strategy for resolving the TSP. However,

due to the vast number of viable TSP solutions, even

for moderate-scale problems, this "exhaustive search"

is clearly wasteful and impracticable. Because real-

world applications necessitate the resolution of

substantial challenges, the focus has shifted to finding

'good answers' in a heuristic fashion within an

acceptable timeframe, 'the degree of goodness,' with

the goal of finding perfectly optimum solutions for

TSP. Among the best heuristic strategies for resolving

TSP instances is the genetic algorithm (GA). Because

the crossover operator is so important in GA, the TSP

has had multiple crossover operators. Because data

processing and analysis scripts are often time

consuming and need many hours of computation on a

computer device, the iteration and debugging

processes will be longer [5]. In addition, scientists

emphasise their work differently than professional

programmers. They are more concerned with the

process than with the instruments they employ.

Many scientists and even inexperienced programmers

who consider themselves to be competent aspire to

complete programming chores more quickly. They'll

use that programming language, of course (PL). It is

also based on a psychological assessment, as detailed

in [29]. AI programming must be quick and simple in

order to stay up with the quickly growing results in

AI. As a result, scientists need PLs that can iterate

quickly while keeping order and clarity so that they

can be used easily.

Even if compiler PL is faster than interpreter PL

while running programmes, Python[25] and PHP[26]

are less easier than newer PLs. The virtues of Python

are mainly its ease of use, its interpretations or its

object-oriented programming language which, in

keeping an object-oriented manner, may meet many

scientific needs. On the other hand, the effectiveness

of PL can be assessed by the number of lines of code

or syntaxes needed to achieve the same AG. In denial

of service assaults [30] another problem in using

built-in PL is evident.

II. Literature Survey

Two crossover points were used by the operator

dubbed PMX, Goldberg and Lings [4] defined the

operator. Interchange mapping is defined by the

section that connects these places. A well-known 33-

node problem was almost optimised in this first

attempt at applying GAs to the TSP.

It selects the tour sequence of one parent and keeps

the node n order of the other parent. Davis[5].

Oliver et al. [6] presented another crossover operator

called CX (cycle crossover) operator, which generated

offspring so that each node (and position) derives

from a parent.

Whitley et al. [7] suggested a crossover edge

recombination operator (ERX) using a 'edge map' for

building an offspring in which information from

parents' structures can be obtained as much as feasible.

This edge map saves all the connections that lead in

and out of a node from both parents.

Radcliffe and Surry presented a N-point crossover

operator (GNX).[8]

PMX operator added to TBX by Choi et al.[10].

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

352

Moon et al [11] proposes the novel Moon Crossover

operator (MX), which imitates moon variations, such

as moon-waxing half moon — all of them full moon

— to be known as gibbous. The performance of MX

and OX operators is approximately equal, however for

all the experiments OX never achieved an optimum

solution. A new crossover operator dubbed SCX is

introduced here and therefore, It is possible to solve

the TSP using a genetic algorithm based on SCX.

A huge number of tenants share resources in the

cloud. Fairness of resources is then studied by

multiple users [13, 14]. There is a multi-resource

distribution technique (known as DRFH)[13] which

ensures that cloud-users with heuristics use resources

fairly.

In huge datacenters with tens of thousands of servers,

resource efficiency is becoming highly important[15,

16]. Some approaches, such as memory[17] and

I/O[18], are intended to improve the use of

computational resources. Application SLAs have been

introduced in a number of ways [19]. Special

applications include streaming [20, 21] and the

business process [22]. Some resource management

solutions are also presented.

Cloud resources are generally rented under a model

that you can pay for. Many scholars have investigated

the economic efficiency of cloud computing[23, 24].

The demand response trading systems are meant to

reach the highest possible level of social welfare

randomly. In this paper, our work focuses mostly on

VM positioning stability. Due to the time-varied

workloads in mobile cloud computing in particular,

stability increases.

Problem Formulation

Many investigations are using GA for benchmarking

applications[27]. This document sets benchmarks for

PL in AI support. GA's problem area is the Travel-ling

Salesman's Problem, in which numerous heuristics

have formed a benchmark for GA performance

testing[28]. The utilisation of TSP depends on the

problem in its domain. TSP is an NP-hard issue that is

optimised by GA to address NP's entire domain

problem based on natural selects and genetic

developments.

At TSP, it is the aim to identify a route for a certain

number of towns by visiting every town exactly once

and to return to the beginning town where the route

is kept to a minimum. One way that goes back to

every city to make a closed route is called a route. It

goes back to the early city. The easiest and most

straightforward way to solve TSPs is to list each route,

to calculate the length of each routing and to select

the shortest route.

Genetic Algorithms

Genetic algorithms (GA) are mainly based on a

random alteration in the chromosomal genestructures

of evolutionary biology to replicate the survival of the

fittest among the species[12]. Two major needs must

be fulfilled to resolve any real life problem by GA: An

objective fitness function and hence a fitness function

can be used to determine whether a solution is

excellent or not. A simple GA operates by producing a

new, and presumably better population than

successive generations through random creation of an

initial string population, known as the gene pool then

using (three) operators. One can use the first operator

to recreate strings with an appropriate degree of

probability in subsequent generations, using their

objective function values. As a result, new strings are

formed. The second operator is the crossover, where

randomly selected string pairs are joined.

3rd operators are used to change the value of a string

on occasion. As far as the GA search process goes,

crossover and reproduction is the most powerful. In

addition, mutation broadens the search area and

minimises the loss of genetic material for

reproduction and crossbreeding. The possibility of

exploiting a mutation is consequently quite little,

whereas the likelihood of crossover is elevated.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

353

Genetic coding

Encoding answers as viable chromosomes is necessary

to make feasible chromosomes viable.. The

technology of encoding solutions varies depending on

the situation and involves some art. For the TSP, the

chromosome-length solution is often the number of

nodes. Each chromosome gene receives a node label

such that there is no node in the same chromosome

twice. Both adjacency representation and track

representation are commonly used to describe the

TSP tour. As an example, let's look at a tour that

displays only the node label as a path. Let 1, 2, 3, 4, 5

be labels of nodes and can be shown as a tour (1, 3, 4,

2, 5).

Reproduction operator

As part of the selection procedure, chromosomes are

duplicated into the next-generation mattress with a

probability associated with their fitness value. A

larger share of the best suited chromosomes is allotted

the following generation in Darwinian reproduction.

Fitness is determined in nature through the capacity

of an organism to survive predators, pesticides and

other adult reproductive barriers. No new

chromosomes are generated in this period. The

generally utilised playback function is the

proportionate playback operator, when a string is

chosen with a probability proportional to the fitness

of the matting pond.

 The SCX

As new chromosomes are produced from old ones, the

solution space is sought. Crossover is the single most

important search in the world. First, a couple of

parents are selected randomly from the mattress.

Second, a location known as the crossover site is

randomly selected along the common length of the

site and information is exchanged after the crossover

site of both parent strings and two new children are

created. Naturally, the TSP does not support this

fundamental crossover strategy. The SCX produces a

heir utilising superior borders based on the values in

the parents' structure. The superior vertices that are

not present in the structure of the parents are also

utilised in the design process. Similar to the structure

of parents in the case of Erx and Gnx, SCx creates

new kindergarten edges that do not exist in the

current population. It is therefore more likely that a

better offspring than those of ERX and GNX will be

born. In an early version, the operator is cited as the

local strategy for enhancing [14, 15]. The SCX

algorithm consists of:

Step 1: - Begin at 'node one' (for example, p =1)..

Step 2: Sequence the two parent chromosomes to look

for the first 'valid node' Sequence

Appeared in each parent following 'node p' (the node

not yet visited). Sequentially seek { 2,3, ...,n{regard as

the first "valid" nodule in a single parent when p,

node is found, to set off through step 3. Suppose that

in the 1st and 2nd parents the 'Node α' and the 'Node

β' are identified, then move to step 4 to find a next

node.

Step 4: If cpα < cpβ, select the 'Node α' as the next

node and link it to the partially formed daughter

chromosome. If the offspring is a whole chromosome,

otherwise stop renaming the current node as 'node p'

and go to step 2.

Figure 1: Example of SCCO

Survivor selection

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

354

After the crossover process, the survivor selection

method is utilised to select the next generation

population. Typically, only the fitter chromosomes

are taken into account by the survivors of GA. Two

types of GA chromosomes are taken into account in

the survivor selection of the following generation: (1)

parents in the current size m population and (2)

descent created by size m cross-over. The selection

technique (μ+α) of survivors combines chromosomes

into (1) and (2), arranges chromosomes in upwards

according to fitness and consider the future

generation's first m chromosomes. In the worst

situation, all μ parents will survive in the following

generation.

Mutation operator

The mutation operator selects a chromosomal location

randomly and alters the

Related alone, changing information thereby.

Mutation is needed because the inadequate members

of subsequent generations are removed, so that

certain aspects of the genetic material may never be

lost. By carrying out infrequent random chromosome

modifications, GAs ensure that new search area

sections are accessed, which can not be fully

guaranteed by reproduction and crossover alone. This

ensures that no key characteristics are missed

prematurely, hence preserving the diversity of the

matrix pool. The TSP is not working with the

conventional mutation operator. We evaluated the

mutual exchange mutation in this survey, which

randomly chooses two nodes and exchanges them.

 Parameters of control

The GA search process is governed by these factors.

Some of the following are: (a) Population size: -

Determines how many genetic materials are

accessible for the research and then how many

chromosomes. When the search is too small, the space

is not covered sufficiently. If too much is involved,

the GA delays chromosomal evaluation.

(b) Probability for crossover: – Specifies the

likelihood of crossover between two chromosomes. c)

Probability for mutation: - The likelihood of making

bit-wise mutation is specified. (d) Criteria for

termination: - Specifies when the genetic search will

end.

Structure of genetic algorithms

The following can be summarised: GAs: Random

population initialization; population assessment;

generation = 0; {generation = generation + 1 is not met

when the termination requirement is not satisfied;

Crossing with crossover probabilities (Pc); choose

fitting chromosomes by selecting the survivor;

perform mutation with mutation probability (Pm);;

Population assessment; Something for TSP class

implementation Initialize individual function (route)

Start of a person consisting of cities or nodes Make

function Chromosome Chrome (file) Generate a

single file function chromosomal evaluate Using the

Euclid formula, calculate the length of the population

given (a number of cities) Crossover function (other)

Recombine a new child from a specific step in a wife's

function Make a jump Assess the fitness expenses of

everyone in the current cross-over of population

Candidate population initialization Choose from the

present population two best parent candidates (Parent

A and Parent B).. Something for TSP class

implementation Initialize individual function (route)

Initialization of a person consisting of cities or nodes

While there is a still smaller pool of candidates, the

crossover rate is random. when the rate of crossover is

then descended = crossover parent A with parent B

other descendants = copy parent A randomise

mutation rate when the rate of mutation is then

descended = current descended descendants assess

descendants' fitness costs If there is no offspring in

the candidate population then add (individual)

offspring to the candidate population. Population

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

355

candidates are changing the new population function

(individual)

III. Methodology

In this research TSP-based GA is implemented in two

extensively used cloud server-side languages without

frames. It's Python, PHP. All GA codes representing

each PL are written on the basis of the pseudo code

given. The variable names, methods and logic of

initialization were used for the implementation. The

data were tested using one source of information and

the identical values for all PL parameters during

implementation.

Every PL's GA codes are as close as possible

implemented. If a single PL uses numerous methods,

functions or variables for the implementation of any

section of the pseudo code, then the second PL should

also be done in the same way. Maintaining the code

closest to the measurement findings apparently results.

A random number generator is one of the many

important functions utilised in GA. In GA, random

numbers are generating random numbers to

compensate for the possibility that parents are cross-

cutting, copying or mutating. A Pseudo-Random

Number Generator function is used to generate the

random number. PRNG is a random number

generator feature that returns the same random value

when it receives the same seed number. This

methodology is used to ensure that all programmes

are performed in the programme using the same

method and loop, and that the same result is obtained.

In this research, the PRNG function is implemented

by means of a distinct script run by one system call

every implemented PL.

A modest adjustment of the scripts was introduced in

the performance measurement of the implemented PL

with the addition of the current time or micromotion

function at numerous points of code, while taking

into account the best fitness cost. In order to confirm

that all implemented scripts use the same seed

number and random value, a test unit was used before

any measures were performed using a predefined

value and data, and all implemented PL would mate

the same parents and produce the identical candidates

in each generation. At the end of the script execution

you should return the best person in the same

generation.

Python, PHP built GA pseudo code for solving TSP in

this research. All method and variables are unit tested

to ensure that all implementations of the specified

pseudo code have the same results and values. The

codes use the same demographic data.

Due to the varying types of programming of each PL,

methods and variables cannot be exactly implemented.

All methods codes and variables applied throughout

all PLs, however, are guaranteed to be consistent with

the same values and are based on the same GA

environment and population data.

IV. Result Analysis

Python, the PHP-codes result in the implementation

of the GA pseudo code supplied. In 245, 300 lines of

code, Python, PHP, PHP codes were implemented.

The file size is 7981 bytes, accordingly Python, PHP,

6886 bytes. As Python scripters don't require closing

tags on its method, function, or loop implementation

like in PHP, the shortest line of codes is Python. But

Python uses more bytes to implement when it comes

to code file size.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

356

Table 1

Number

of Cities

PL
Maximum

(ms)

Minimum

(ms)

Average

(ms)

Standard

Deviation

Best Fitness

Cost

(Length)

Performance

over PHP

(%)

6 PHP 38,44 36,00 37,18 0,84 30,397 -5,53

6 Python 35,73 34,94 35,23 0,26 30,397 -

7 PHP 47,91 45,85 46,79 0,73 41,135 -1,56

7 Python 47,11 45,36 46,07 0,57 41,135 -

8 PHP 62,23 58,61 60,14 1,18 34,020 -6,09

8 Python 57,25 56,21 56,69 0,36 34,020 -

9 PHP 51,16 49,49 50,06 0,58 49,062 -3,56

9 Python 49,44 47,75 48,34 0,50 49,062 -

10 PHP 72,97 69,72 71,67 1,15 51,881 -2,63

10 Python 71,66 68,56 69,84 0,85 51,881 -

As the most frequently used python to conduct

research, Python is utilised as the basis for

performance measuring [11]. So we compare the

running time of all PL with Python. In the field of

web environment, PHP outperforms Python from

research carried out by Jafar et al.[12].

On the basis of last seed, optimum fitness cost and the

best measurement results from TABLE I, we can

conclude that in the same generation all tests for the

same number of cities return the best individual. This

shows that all PL executions and their running flow

are identical.

Fig. 2. Fitness cost as per number of cities

V. CONCLUSION

For a travellers' problem genetic algorithm We

introduced a novel crossover operation called as the

SCX crossover (TSP). Our main objective was to

compare the effectiveness of remedies provided by

various crossover operators. Our purpose was not to

increase the optimal solution in any way. As a result,

we don't use a local search technique to improve the

method's quality. There is no large population size,

and parallel versions of methods are not used to

obtain a precise result, as Whitley et al. [7] did. To

emphasise the true nature of crossover operators, the

highest likelihood of crossover is also established.

Lowest probability mutation is only used to avoid

becoming stranded in local minima too quickly. It's

tough to argue that this is exactly a moderated

instance of our crossover operator. As a result, adding

a capable localized search technique to the program

can precisely resolve the other investigations. Data

quantity (number of cities) in all PLs is measured and

analysed in accordance with the programme

execution time and the best potential fitness costs.

The more the data, the longer it takes and the less

time it takes for the GA result to become TSP

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

357

VI. REFERENCES

[1]. Fozia Hanif Khan, Nasiruddin Khan, Syed

Inayatullah and Shaikh Tajuddin

Nizami‘SOLVING TSP PROBLEM BY USING

GENETIC ALGORITHM’- International

Journal of Basic & Applied Sciences IJBAS Vol:

9 No: 10.

[2]. IEEE paper by Mahdieh Poostchi on “A new

Approach to Solve Traveling Salesman Problem

Using Genetic Algorithm”

[3]. Crossover(Genetic Algorithm),

http://www.wikipedia.org/genetic_algorithms.

[4]. Zakir H. Ahmed ‘Genetic Algorithm for the

Traveling Salesman Problem using Sequential

Constructive Crossover Operator’-

International Journal of Biometrics &

Bioinformatics (IJBB) Volume (3): Issue (6).

[5]. Richard Johnsonbaugh , Marcus Schaefer,

“Algorithms“, Pearson Education, 2006 3rd

edition.

[6]. Wikipedia: http://en.wikipedia.org/.

[7]. Genetic algorithms - A business perspective:

Fritz H. Grupe and Simon Jooste (University of

Nevada, Reno, Nevada, USA); Journal of

Information Management & Computer

Security.

[8]. http://lancet.mit.edu/.

[9]. http://www.iba.k.u-tokyo.ac.jp/ : Graduate

School of Frontier Sciences, The University of

Tokyo.

[10]. Practical Handbook of Genetic Algorithm

Complex Coding System by Lance D Chambers.

[11]. H. Koepke. "10 reasons python rocks for

research (and a few reasons it doesn’t), " 2010.

[12]. Jafar, Anderson, and Abdullat. "Comparison of

dynamic web content processing language

performance under a LAMP architecture,"

West Texas A&M University Canyon, 2008.

[13]. W. Wang, B. Li, and B. Liang, “Dominant

resource fairness in cloud computing systems

with heterogeneous servers,” in Proceedings of

the IEEE Conference on Computer

Communications (INFOCOM ’14), pp. 583–591,

IEEE, Toronto, Canada, May 2014.

[14]. J. Guo, F. Liu, J. C. S. Lui, and H. Jin, “Fair

network bandwidth allocation in IaaS

datacenters via a cooperative game approach,”

IEEE/ACM Transactions on Networking, vol.

24, no. 2, pp. 873–886, 2016.

[15]. D. Lo, L. Cheng, R. Govindaraju, P.

Ranganathan, and C. Kozyrakis, “Improving

resource efficiency at scale with heracles,”

ACM Transactions on Computer Systems, vol.

34, no. 2, 2016.

[16]. S. Singh and I. Chana, “QoS-aware autonomic

resource management in cloud computing: a

systematic review,” ACM Computing Surveys,

vol. 48, no. 3, article 42, 2016.

[17]. K. H. Park, W. Hwang, H. Seok et al., “MN-

MATE: elastic resource management of

manycores and a hybrid memory hierarchy for

a cloud node,” ACM Journal on Emerging

Technologies in Computing Systems, vol. 12,

no. 1, article 5, 2015.

[18]. R. C. Chiang, S. Rajasekaran, N. Zhang, and H.

H. Huang, “Swiper: exploiting virtual machine

vulnerability in third-party clouds with

competition for I/O resources,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 26, no. 6, pp. 1732–1742, 2015.

[19]. N. Jain, I. Menache, J. Naor, and J. Yaniv,

“Near-optimal scheduling mechanisms for

deadline-sensitive jobs in large computing

clusters,” ACM Transactions on Parallel

Computing, vol. 2, no. 1, 2015.

[20]. J. Ghaderi, S. Shakkottai, and R. Srikant,

“Scheduling storms and streams in the cloud,”

ACM Transactions on Modeling and

Performance Evaluation of Computing Systems,

vol. 1, no. 4, 2016.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Aadil Bashir et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 350-358

358

[21]. T. Wu, W. Dou, F. Wu, S. Tang, C. Hu, and J.

Chen, “A deployment optimization scheme

over multimedia big data for large-scale media

streaming application,” ACM Transactions on

Multimedia Computing, Communications, and

Applications, vol.12, no. 5, article 73, 2016.

[22]. J. Xu, C. Liu, X. Zhao, S. Yongchareon, and Z.

Ding, “Resource management for business

process scheduling in the presence of

availability constraints,” ACM Transactions on

Management Information Systems, vol. 7, no. 3,

article 9, 2016

[23]. L. Zhang, Z. Li, and C. Wu, “Dynamic resource

provisioning in cloud computing: a randomized

auction approach,” in Proceedings of the 33rd

IEEE Conference on Computer

Communications (’INFOCOM ’14), pp. 433–

441, Ontario, Canada, May 2014.

[24]. Z. Zhou, F. Liu, Z. Li, and H. Jin, “When smart

grid meets geodistributed cloud: an auction

approach to datacenter demand response,” in

Proceedings of the IEEE Conference on

Computer Communications (INFOCOM ’15),

pp. 2650–2658, IEEE, May 2015.

[25]. Python. http://www.python.org.

[26]. PHP. http://www.php.net

[27]. D. Dunlop, S. Varrette, and Pascal. "On the use

of a genetic algorithm in high performance

computer benchmark tuning," University of

Luxem- bourg, 2008.

[28]. A. G. Najera. "TSP: three evolutionary

approaches vs. local search," University of

Birmingham, 2009

[29]. P. J. Guo and D. Engler. "Toward practical

incremental recomputation for scientists: an

implementation for python language, " Stanford

Uni- versity, 2010.

[30]. S. Branigan. "Risk with web programming

technologies, " Lucent Tech- nologies, 2000.

Cite this article as :

Aadil Bashir, Manoj Kumar Srivastava,

"Implementation of Genetic Algorithm Using the

Traveling Salesman Problem in Cloud ", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 7, Issue 4,

pp.350-358, July-August-2021.

