
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

439

Development of Tool for Visualizing Pathfinding Algorithms
Mohak Mohan1, Mehak Pargal1, Dr. Simmi Dutta2

1Department of Computer Science & Engineering, GCET, Chak Bhalwal, Jammu, J&K, India
2HOD, Department of Computer Science & Engineering, GCET, Chak Bhalwal, Jammu, J&K, India

Article Info

Volume 7, Issue 4

Page Number : 439-454

Publication Issue :

July-August-2021

Article History

Accepted : 20 July 2021

Published : 30 July 2021

ABSTRACT

Dijkstra algorithm, A Search, Greedy Best-first Search, Swarm Search, Breadth-

first and Depth-first are some of the popular algorithms today. As a beginner’s

step to algorithms and their implementation, this paper demonstrates how the

pathfinding algorithm works.

Moreover, the user can get a better perception of how different algorithms

function and how programming works, in general. By understanding these

algorithms, they will also get a basic idea of how to implement various

navigation tools. The visualizer comprises a grid page that contains a ‘start node’

and an ‘end node’. The viewer can add various features such as a maze, walls and

weights to improve the general outlook and understand how these pathfinding

algorithms tackle our day-to-day problems. To build a visualizer, a programmer

needs a fair knowledge of front-end programming languages and a good

understanding of pathfinding Algorithms.

Keywords : Greedy Best-first Search, Swarm Search, Breadth-first, Depth-first

I. INTRODUCTION

“An algorithm must be seen to be believed.” are the

famous words said by Donald Knuth, a computer

scientist. Just like that with the help of this tool we

are doing the same.

This tool can help beginners and even experienced

programmer to understand algorithms a cut above. It

is an web app consisting of a (19x55) grid containing a

start node and an end node which a user can place

anywhere on this grid. A user can further add walls

and weights to imitate a real world

situation. When the grid is set choose an algorithm

and the with the help of this till you’ll be able to

visualize how an algorithm actually works.A user can

fuher can the speed and see the time taken by the

algorithm to complete the task.

II. LITERATURE REVIEW

Literature Review is required to take the matter into

considerations that can’t be cleared in the past

researches. Many researchers try to interpret various

kind of conclusions and to improve those past results

literature review is needed. The present literature

serves many varied interesting features, which forms

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Mohak Mohan et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 439-454

351

the vital background for the study and conducted a

consideration.

An important field of mathematical theory is the

mathematical study of the structure of abstract

relationships between objects by means of graphs

(networks). Although investigating of these

constructions can be purely theoretical, they can be

used to model pair wise relationships in many real

world systems. One of most widely using applications

is determination of shortest paths in many practical

applications as: maps; robot navigation; texture

mapping; typesetting in TeX; urban traffic planning;

optimal pipelining of VLSI chips; subroutines in

advanced algorithms; telemarketer operator

scheduling; routing of telecommunications messages;

approximating piecewise linear functions; network

routing protocols (OSPF, BGP, RIP); exploiting

arbitrage opportunities in currency exchange; optimal

truck routing through given traffic congestion pattern.

DATA STRUCTURES

In practice, graphs are usually represented by one of

two standard data structures: adjacency lists and

adjacency matrices. At a high level, both data

structures are arrays indexed by vertices; this requires

that each vertex has a unique integer identifier

between 1 and V. In a formal sense, these integers are

the vertices.

ADJACENCY LISTS

By far the most common data structure for storing

graphs is the adjacency list. An adjacency list is an

array of lists, each containing the neighbors of one of

the vertices (or the out-neighbors if the graph is

directed). For undirected graphs, each edge uv is

stored twice, once in u’s neighbor list and once in v’s

neighbor list; for directed graphs, each edge uv is

stored only once, in the neighbor list of the tail u. For

both types of graphs, the overall space required for an

adjacency list is O(V + E).

There are several dierent ways to represent these

neighbor lists, but the standard implementation uses a

simple singly-linked list. The resulting data structure

allows us to list the (out-)neighbors of a node v in O(1

+ deg(v)) time; just scan v’s neighbor list. Similarly,

we can determine whether uv is an edge in O(1 +

deg(u)) time scanning the neighbor list of u. For

undirected graphs, we can improve the time to O(1 +

min{deg(u), deg(v)}) by simultaneously scanning the

neighbor lists of both u and v, stopping either when

we locate the edge or when we fall of the end of a list.

ADJACENCY MATRICES

The other standard data structure for graphs is the

adjacency matrix, first proposed by Georges Brunelin.

The adjacency matrix of a graph G is a V ⇥ V matrix

of 0s and 1s, normally represented by a two-

dimensional array A[1 .. V, 1 .. V], where each entry

indicates whether a particular edge is present in G.

Specifically, for all vertices u and v:

if the graph is undirected, then A[u, v] := 1 if and only

if uv 2 E, and if the graph is directed, then A[u, v] := 1

if and only if uv 2 E.

For undirected graphs, the adjacency matrix is always

symmetric, meaning A[u, v] = A[v, u] for all vertices u

and v, because uv and vu are just dierent names for

the same edge, and the diagonal entries A[u, u] are all

zeros. For directed graphs, the adjacency matrix may

or may not be symmetric, and the diagonal entries

may or may not be zero.

Given an adjacency matrix, we can decide in

(1) time whether two vertices are connected by an

edge just by looking in the appropriate slot in the

matrix. We can also list all the neighbors of a vertex

in ⇥ (V) time by scanning the corresponding row (or

column). This running time is optimal in the worst

case, but even if a vertex has few neighbors, we still

have to scan the entire row to find them all.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Mohak Mohan et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 439-454

352

Similarly, adjacency matrices require ⇥ (V2) space,

regardless of how many edges the graph actually has,

so they are only space-evident for very dense graphs.

III. METHODOLOGY

In this section, the overall working of the project has

been described. How the project started and how the

project works and how the various phases of project

were carried out and the challenges faced at each

level.

What does the project do?

At its core, a pathfinding algorithm seeks to find the

shortest path between two points.

This project visualizes various pathfinding algorithms

in action, and more!

All of the algorithms on this project are adapted for a

2D grid, where 90 degree turns have a "cost" of 1 and

movements from a node to another have a "cost" of 1.

PICKING AN ALGORITHM

Choose an algorithm from the "Algorithms" drop-

down menu. Note that some algorithms are

unweighted, while others are weighted. Unweighted

algorithms do not take turns or weight nodes into

account, whereas weighted ones do.

Additionally, not all algorithms guarantee the shortest

path.

MEET THE ALGORITHMS

Dijkstra's Algorithm:The father of pathfinding

algorithms; guarantees the shortest path.

A*: A* Search algorithm is one of the best and popular

technique used in path-finding and graph traversals.

It is a very smart algorithm and is very efficient.

Greedy Best-first Search (weighted): A faster, more

heuristic-heavy version of A*; does not guarantee the

shortest path.

Breath-first Search (unweighted): A great algorithm;

guarantees the shortest path.

Depth-first Search (unweighted): A very bad

algorithm for pathfinding; does not guarantee the

shortest path.

ADDING WALLS

Click on the grid to add a wall.

Walls are impenetrable, meaning that a path cannot

cross through them.

Visualizing and more: Use the navbar buttons to

visualize algorithms and to do other stuff!

You can clear the current path, clear walls and

weights, clear the entire board, and adjust the

visualization speed, all from the navbar. If

You want to access this tutorial again, click on

"Pathfinding Visualizer" in the top left corner of your

screen.

IV. OBJECTIVE

✓ It can be used as a E learning tool to understand

Algorithms.

✓ It is used in finding Shortest Path.

✓ It is used in the telephone network.

✓ It is used in IP routing to find Open shortest Path

First.

✓ It is used in geographical Maps to find locations

of Map which refers to vertices of graph.

✓ We can make a GPS system which will guide you

to the locations.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Mohak Mohan et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 439-454

353

✓ Search engine crawlers are used BFS to build

index. Starting from source page, it finds all links

in it to get new pages.

✓ In peer-to-peer network like bit-torrent, BFS is

used to find all neighbor nodes.

✓ As users of wireless technology, people demand

high data rates beyond GigaBytes per second for

Voice, Video and other applications. There are

many standards to achieve data rates beyond

GB/s. One of the standards is MIMO(Multi input

Multi output).MIMO employs K-best

Algorithm(which isa Breadth-First Search

algorithm) to find the shortest partial euclidian

distances.

V. OVERVIEW

The development of this project has been carved out

in 6 phases. These phases include all the steps of the

project, beginning from data collection and processing

to output for the user. The 6 phases are:

1. Building of the graph matrix.

2. Adding walls and event listeners.

3. Embed the graph algorithms.

4. Integrate the pathfinding functionality.

5. Improve the design and UI.

6. Added the timer functionality. After all these

phases the project is completely ready for the user to

use.

VI. PATHFINDING VISUALIZER

Now our visualizer is complete, so let’s use it.

Firstly pick an algorithm of your choice.

Now, add walls and weights. (optional)

Click on visualize and it will start visualizing the

algorithm you chose.

After a couple seconds, will will find the shortest path

and will trace that path using the yellow line.

VII. FUTURE WORK

For time being the program contains only limited

amount of pathfinding algorithms we would like to

add a lot more algorithms and want to visualize then

in both 2-D and 3-D. We would also like to add more

tools for comparing these algorithms.

VIII. CONCLUSION

In this paper we have described a pathfinding

visualizer that was implemented and created using

entirely open source off the shelf software. By making

this particular project we made it easy to understand

and learn about the algorithms.

Volume 7, Issue 4, July-August-2021 | http://ijsrcseit.com

Mohak Mohan et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, July-August-2021, 7 (4) : 439-454

354

IX. REFERENCES

[1]. https://en.wikipedia.org/wiki/Algorithm#:~:text=

Algorithms%20are%20always%20

unambiguous%20and,automated%20reas

oning%2C%20and%20other%20tasks.&t

ext=As%20an%20effective%20method%

2C%20an,language%20for%20calculatin

g%20a%20function.

[2]. https://www.geeksforgeeks.org/dijkstras-s

hortest-path-algorithm-greedy-algo-7/

[3]. https://www.geeksforgeeks.org/a-search-a

lgorithm/

[4]. https://www.geeksforgeeks.org/best-first- search-

informed-search/

[5]. https://www.geeksforgeeks.org/breadth-fi rst-

search-or-bfs-for-a-graph/

[6]. https://www.geeksforgeeks.org/depth-first-

search-or-dfs-for-a-graph/

[7]. https://www.w3schools.com/js/default.asp

[8]. https://www.meta-chart.com/histogram

[9]. Roles J.A. & ElAarag H. (2013). A Smoothest

Path algorithm and its visualization tool.

Southeastcon, In Proc. of IEEE, DOI:

10.1109/SECON.2013.6567453

Cite this article as :

Mohak Mohan, Mehak Pargal, Dr. Simmi Dutta,

"Development of Tool for Visualizing Pathfinding

Algorithms", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 7, Issue 4, pp.439-454, July-August-

2021.

