
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

125

A Multithreading Based Enhanced Process Scheduling Technique for

Heterogeneous Distributed Environment
Krishan Kumar1, Renu2

1Assistant Professor, Department of CSE, JCDM College of Engineering, Sirsa
2M.Tech. Scholar, Department of CSE, JCDM College of Engineering, Sirsa

Article Info

Volume 7, Issue 5

Page Number: 125-129

Publication Issue :

September-October-2021

Article History

Accepted : 15 Oct 2021

Published : 30 Oct 2021

ABSTRACT

Multithreading is ability of a central processing unit (CPU) or a single core

within a multi-core processor to execute multiple processes or threads

concurrently, appropriately supported by operating system. This approach

differs from multiprocessing, as with multithreading processes & threads have to

share resources of a single or multiple cores: computing units, CPU caches, &

translation lookaside buffer (TLB). Multiprocessing systems include multiple

complete processing units, multithreading aims to increase utilization of a single

core by using thread-level as well as instruction-level parallelism. Objective of

research is increase efficiency of scheduling dependent task using enhanced

multithreading. gang scheduling of parallel implicit-deadline periodic task

systems upon identical multiprocessor platforms is considered. In this scheduling

problem, parallel tasks use several processors simultaneously. first algorithm is

based on linear programming & is first one to be proved optimal for considered

gang scheduling problem. Furthermore, it runs in polynomial time for a fixed

number m of processors & an efficient implementation is fully detailed. Second

algorithm is an approximation algorithm based on a fixed-priority rule that is

competitive under resource augmentation analysis in order to compute an

optimal schedule pattern. Precisely, its speedup factor is bounded by (2−1/m).

Both algorithms are also evaluated through intensive numerical experiments. In

our research we have enhanced capability of Gang Scheduling by integration of

multi core processor & Cache & make simulation of performance in MATLAB.

Keywords : MATLAB, computing units, CPU caches, translation lookaside buffer

I. INTRODUCTION

MULTITHREADING

The multithreading paradigm has become more

popular as efforts to further exploit instruction-level

parallelism have stalled since late 1990s. This allowed

concept of throughput computing to re-emerge from

more specialized field of transaction processing; even

though it is very difficult to further speed up a single

thread or single program, most computer systems are

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/IJSRCSEIT

Volume 7, Issue 5, September-October-2021 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, September-October-2021, 7 (5) : 125-129

126

actually multitasking among multiple threads or

programs. Thus, techniques that improve throughput

of all tasks result within overall performance gains.

Types of multithreading:

Block multithreading

The simplest type of multithreading occurs when one

thread runs until it is blocked by an event that

normally would create a long-latency stall. Such a

stall might be a cache miss that has to access off-chip

memory, that might take hundreds of CPU cycles for

data to return. Instead of waiting for stall to resolve, a

threaded processor would switch execution to

another thread that was ready to run. Only when data

for previous thread had arrived, would previous

thread be placed back on list of ready-to-run threads.

Interleaved multithreading

The purpose of interleaved multithreading is to

remove all data dependency stalls from execution

pipeline. Since one thread is relatively independent

from other threads, there is less chance of one

instruction within one pipelining stage needing an

output from an older instruction within pipeline.

Conceptually, it is similar to preemptive multitasking

used within operating systems; an analogy would be

that time slice given to each active thread is one CPU

cycle.

Simultaneous multithreading

The most advanced type of multithreading applies to

superscalar processors. Whereas a normal superscalar

processor issues multiple instructions from a single

thread every CPU cycle, within simultaneous

multithreading (SMT) a superscalar processor could

issue instructions from multiple threads every CPU

cycle. Recognizing that any single thread has a

limited amount of instruction-level parallelism, this

type of multithreading tries to exploit parallelism

available across multiple threads to decrease waste

associated with unused issue slots.

Implementation specifics

A major area of research is thread scheduler that must

quickly choose among list of ready-to-run threads to

execute next as well as maintain ready-to-run &

stalled thread lists. An important subtopic is different

thread priority schemes that could be used by

scheduler. The thread scheduler might be

implemented totally within software, totally within

hardware, or as a hardware/software combination.

Another area of research is what type of events

should cause a thread switch: cache misses, inter-

thread communication, DMA completion, etc.

II. LITERATURE REVIEW

Yeh-Ching Chung wrote on “Applications &

Performance Analysis of A Compile-Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory Multiprocessors”

They have proposed a compile-time optimization

approach, bottom-up top-down duplication heuristic

(BTDH), for static scheduling of directed+cyclic

graphs (DAGS) on distributed memory

multiprocessors (DMMs). In this paper, they discuss

applications of BTDH for list scheduling algorithms

(LSAs). There are two ways to use BTDH for LSAs.

BTDH can be used with LSAto form a new scheduling

algorithm (LSA/BTDH). It could be used as a pure

optimization algorithm for a LSA (LSA-BTDH). We

have applied BTDH with two well known

LSAs,highest level first with estimated time

(HLFET)&earlier taskfirst(ETF) heuristics. We have

performed extensive simulation to study performance

of BTDH for LSAs. Three parameters, graph

parallelism (GP) of a DAG,ratio of average

communication cost to average computation cost

(CCR) of a DAG&number(PN) of a DMM, ares

imulated. From simulation, they have following

conclusions. Given a DAG,GP of DAG could

accurately predict number of processors to be used

such that a good scheduling length &a good resource

utilization (or efficiency) could be achieved .

Volume 7, Issue 5, September-October-2021 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, September-October-2021, 7 (5) : 125-129

127

Maruf Ahmed, Sharif M. H. Chowdhury wrote on”

List Heuristic Scheduling Algorithms for Distributed

Memory Systems with Improved Time Complexity”

They present a compile time list heuristic scheduling

algorithm called Low Cost Critical Path algorithm

(LCCP) for distributed memory systems. LCCP has

low scheduling cost for both homogeneous &

heterogeneous systems. In some recent papers list

heuristic scheduling algorithms keep their scheduling

cost low by using a fixed size heap &a FIFO, where

heap always keeps fixed number of tasks & excess

tasks are inserted within FIFO. When heap has empty

spaces, tasks are inserted within it from FIFO. Best

known list scheduling algorithm based on this

strategy requires two heap restoration operations, one

after extraction& another after insertion. Our LCCP

algorithm improves on this by using only one such

operation for both.

Ishfaq Ahmad1&Yu-Kwong Kwok2 wrote on “On

Parallelizing Multiprocessor Scheduling Problem”

Existing heuristics for scheduling a node& edge

weighted directed task graph to multiple processors

could produce satisfactory solutions but incur high

time complexities that tend to exacerbate within

more realistic environments with relaxed

assumptions. Consequently, these heuristics do not

scale well& cannot handle problems of moderate

sizes. A natural approach to reducing complexity

while aiming for a similar or potentially better

solution is to parallelize scheduling algorithm. This

could be done by partitioning task graphs&

concurrently generating partial schedules for

partitioned parts, that are then concatenated to obtain

final schedule. The problem, however, is nontrivial as

there exists dependencies among nodes of a task

graph that must be preserved for generating a valid

schedule. Moreover, time clock for scheduling is

global for all processors (that are executing parallel

scheduling algorithm), making inherent parallelism

invisible. In this paper, they introduce a parallel

algorithm that is guided by a systematic partitioning

of task graph to perform scheduling using multiple

processors. The algorithm schedules bothtasks &

messages, &is suitable for graphs with arbitrary

computation & communication costs &is applicable to

systems with arbitrary network topologies using

homogeneous or heterogeneous processors. They have

implemented algorithm on Intel Paragon &compared

it with three closely related algorithms. The

experimental results indicate algorithm yields higher

quality solutions while using an order of magnitude

smaller scheduling times. The algorithm also exhibits

an interesting trade-off between solution quality &

speedup while scaling well with problem size.

Wayne F. Boyer wrote on “Non-evolutionary

algorithm for scheduling dependent tasks within

distributed heterogeneous computing environments”

The Problem of obtaining an optimal matching &

scheduling of interdependent tasks within distributed

heterogeneous computing (DHC) environments is

well known to be an NP-hard problem. In a DHC

system, task execution time is dependent on machine

to which it is assigned &task precedence constraints

are represented by a directed acyclic graph. Recent

research within evolutionary techniques has shown

that genetic algorithms usually obtain more efficient

schedules that other known algorithms.

 They propose a non-evolutionary random scheduling

(RS) algorithm for efficient matching& scheduling of

inter-dependent tasks within a DHC system. RS is a

succession of randomized task orderings &a heuristic

mapping from task order to schedule. Randomized

task ordering is effectively a topological sort where

outcome may be any possible task order for which

task precedent constraints are maintained. A detailed

comparison to existing evolutionary techniques

(GA&PSGA) shows proposed algorithm is less

complex than evolutionary techniques, computes

schedules within less time, requires less memory

&fewer tuning parameters. Simulation results show

Volume 7, Issue 5, September-October-2021 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, September-October-2021, 7 (5) : 125-129

128

that average schedules produced by RS are

approximately as efficient as PSGA schedules for all

cases studied &clearly more efficient than PSGA for

certain cases. extraction &insertion, that within

theory reduces scheduling cost without compromising

scheduling performance. In our experiment they

compare LCCP with other well known list scheduling

algorithms &it shows that LCCP is fastest among all.

III. RESEARCH METHODOLOGY

3.1 OBJECTIVE:

1. To analyze previous design algorithms for task

scheduling and find the limitations.

2. Researcher to design new algorithm for task

scheduling.

3. Implementation and deployment of proposed

algorithm for providing better performance.

4. comparison between previously developed

algorithm and proposed one .

3.2 CHALLENGES WITHIN RESEARCH

Multiple threads could interfere with each other

when sharing hardware resources such as caches or

translation look aside buffers (TLBs). As a result,

execution times of a single thread are not improved

but could be degraded, even when only one thread is

executing, due to lower frequencies or additional

pipeline stages that are necessary to accommodate

thread-switching hardware. Overall efficiency varies;

Intel claims up to 30% improvement with its Hyper

Threading technology,[1] while a synthetic program

just performing a loop of non-optimized dependent

floating-point operations actually gains a 100% speed

improvement when run within parallel. On other

hand, hand-tuned assembly language programs using

MMX or Altivec extensions &performing data pre-

fetches (as a good video encoder might) do not suffer

from cache misses or idle computing resources. Such

programs therefore do not benefit from hardware

multithreading& could indeed see degraded

performance due to contention for shared resources.

From software standpoint, hardware support for

multithreading is more visible to software, requiring

more changes to both application programs

&operating systems than multiprocessing. Hardware

techniques used to support multithreading often

parallel software techniques used for computer

multitasking of computer programs. Thread

scheduling is also a major problem within

multithreading.

IV. IMPLIMENTATION

PROPOSED WORK

Choosing a scheduling algorithm

When designing an operating system, a programmer

must consider which scheduling algorithm would

perform best. There is no universal “best” scheduling

algorithm,& several operating systems use extended

or combinations of scheduling algorithms above.

Operating system process scheduler implementations

The algorithm used may be as simple as round-robin

within which each process is given equal time (for

instance 1 ms, usually between 1 ms&100 ms) within

a cycling list. So, process A executes for 1 ms, then

process B, then process C, then back to process A.

More advanced algorithms take into account process

priority, or importance of process. This allows some

processes to use more time than other processes. The

kernel always uses whatever resources it needs to

ensure proper functioning of system, &so could be

said to have infinite priority. In SMP(symmetric

multiprocessing) systems, processor affinity is

considered to increase overall system performance,

even if it may cause a process itself to run more

slowly. This generally improves performance by

reducing cache thrashing.

In computer science, thrashing occurs when a

computer's virtual memory subsystem is within a

constant state of paging, rapidly exchanging data

within memory for data on disk, toexclusion of most

application-level processing. This causes performance

of computer to degrade or collapse. The situation may

continue indefinitely underlying cause is addressed.

The term is also used for various similar phenomena,

Volume 7, Issue 5, September-October-2021 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, September-October-2021, 7 (5) : 125-129

129

particularly movement between other levels of

memory hierarchy, where a process progresses slowly

because significant time is being spent acquiring

resources.

Scope of research

If a thread gets a lot of cache misses, other threads

could continue taking advantage of unused computing

resources, that may lead to faster overall execution as

these resources would have been idle if only a single

thread were executed. Also, if a thread cannot use all

computing resources of CPU (because instructions

depend on each other's result), running another

thread may prevent those resources from becoming

idle. If several threads work on same set of data, they

could actually share their cache, leading to better

cache usage or synchronization on its values .

V. CONCLUSION

Scheduling of a task and deployment on processers in

heterogeneous environment is very complex. We will

make assumption and implement our proposed

algorithm in abstract environment.

VI. REFERENCES

[1]. Abraham Silberschatz, Peter Baer Galvin &

Greg Gagne (2013). Operating System Concepts

9. John Wiley & Sons,Inc. ISBN 978-1-118-

06333-0.

[2]. Yeh-Ching Chung and Sanjay Ranka,

Applications and Performance Analysis of A

Compile-Time Optimization Approach for List

Scheduling Algorithms on Distributed Memory

Multiprocessors, 1063-953Y92 $3.00 0 1992

IEEE

[3]. Ishfaq 5. Wayne F. Boyer, Gurdeep S. Hurab,

Non-evolutionary algorithm for scheduling

dependent tasks in distributed heterogeneous

computing environments, J. Parallel Distrib.

Comput. 65 (2005) 1035 - 1046

[4]. Ahmad and Yu-Kwong Kwok, On Parallelizing

the Multiprocessor Scheduling Problem,1998

[5]. Maruf Ahmed , Sharif M. H. Chowdhury and

Masud Hasan, List Heuristic Scheduling

Algorithms for Distributed Memory Systems

with Improved Time Complexity.

Cite this article as :

Krishan Kumar, Renu, "A Multithreading Based

Enhanced Process Scheduling Technique for

Heterogeneous Distributed Environment",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 7

Issue 5, pp. 125-129, September-October 2021.

Journal URL : https://ijsrcseit.com/CSEIT217543

https://ijsrcseit.com/CSEIT217543

