
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT21761

38

Layman-Friendly Regional Language Unit Conversion
Compiler

Aditya Bhanwadiya*, Gautam Rizwani, Darshil Shah

Department of Information Technology, Dharmsinh Desai University, Nadiad, Gujarat, India

Article Info

Volume 7, Issue 6

Page Number: 38-46

Publication Issue :

November-December-2021

Article History

Accepted : 05 Nov 2021

Published : 14 Nov 2021

ABSTRACT

A compiler converts source language code to machine-understandable code. This

entire translation of code happens in different stages. So, one can define the

compiler as a collection of many phases or stages, where every phase performs a

single task and the code is translated. This paper is about brief information of the

compiler on how the language or source code is evaluated and translated, from

which phase what information is extracted in order to generate target code as

output. For better clarity, an example of an easy-to-understand language is

taken, all steps are explained, and a compiler is designed using FLEX and YACC.

Keywords : Compiler, lexical, syntactic, semantic, FLEX, YACC

I. INTRODUCTION

As a normal human being or a software developer,

one can understand high-level programming

languages such as C/C++/Java/Python etc. As such

languages have various English words such as for,

while, if-else, etc. for underlying concepts of loops,

conditional statements and so on. However, a

computer cannot understand such words. The only

thing it understands is binary code i.e., 0 or 1. So, in

order to run a program, we need to first convert our

program to machine understandable code. To do that,

we need to pass our code through a special program

called a Compiler.

Fig :1. Introduction to Compiler

So, there are two versions of a program now:

● The one written in a higher language which we

can understand.

● The second one which is converted and only the

machine can understand.

So, the compiler is a complex machine which bridges

the gap between human readable code and computer

readable code.

II. EXAMPLE DEFINITION

The valid sentences which should be accepted and

results should be displayed are:
1. 23 kilograms is how many grams?
2. 40 kilo is how many litres?
3. how many litres is 1 kilogram?
4. How many kilo is one gram?
Above sentences in regional language (Gujarati) is also

valid and are as follows:
1. 23 kilograms etle ketla grams?

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT21761

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

39

2. 40 kilo etle ketla litres?
3. ketla litres etle 1 kilogram?
4. Ketla kilo etle ek gram?
So, the above sentences with the mentioned units are

valid.

III. ALGORITHM OF A COMPILER

Algorithm of compiler denotes the activity of compiler

to translate the high-level language to machine

executable language. There is not any single phase for

translating the high-level language. It passes through

several phases where the language is processed as per

their phase-wise rules. By combining all of them we can

propose an algorithm for the compiler to work on. The

algorithm can be like as shown in Table 1.

IV. PHASES OF COMPILER

A. Lexical Analysis
Phase one of compiler construction is coined as

scanning or lexical analysis. A lexical analyzer, also

known as the lexer, is a pattern recognizer engine

simulated by mathematical computational model known

as Finite-State Machine (FSM) or Finite-State

Automaton (FSA) that reads a string of individual

characters as its input in the source program and clusters

read characters into meaningful sequences called

lexemes by matching with the token pattern and

produces stream of tokens. A token is a sequence of

characters having a collective meaning and they are

basic units of the programming language, that describes

the class or category of input string such as keywords,

identifiers, units, literal strings, constants, operators, and

punctuation symbols.

For our defined language, it will be like as shown in Table 2 :

Table 1: Algorithm of a Compiler

Name of the Phase Steps of Phase

Lexical Analyzer Step - 1: Taking input as Character Stream.

 Step - 2: Reading the character until the next token.

 Step - 3: Produce output as token

Syntax Analyzer Step - 4: Taking input as a token.

 Step - 5: Pass it to the Syntax analyser, and syntax analyser will create a

 syntax tree for the token.

 Step – 6: Produce a syntax tree as output.

Semantic Analyzer Step - 7: Taking input the syntax tree of a token.

 Step - 8: Check whether the tree is semantically correct or not.

 Step - 9: Produce a semantically correct syntax tree by type checking,

 level checking, flow control checking.

Intermediate Code Step - 10: Take input from the syntax tree.

Generation Step - 11: Produce intermediate code step by step.

Code Optimization Step - 12: Take input from intermediate code.

 Step - 13: Minimize the long code to short.

 Step - 14: The temporary location also reduced here

Code Generation Step - 15: Take input from code optimizer as optimized code.

 Step - 16: Process the task by some specialized instructions.

 Step - 17: Get the targeted machine code.

Table 2 : Separated Tokens of defined language

Keywords Units Constants Special

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

40

 Characters

how kilogram 23, 40, 1 etc. ?

How kilograms One, two, hundred,

 thousand, etc.

many kilo ek, be, so, hajar etc.

is grams

etle gram

ketla litres

Ketla

For every recognized lexeme, a token is represented and

generated by a pair, <token-type and token-value>, is

an attribute for the token. Here, the token-type refers to

an abstract symbol of the token to be used in the syntax

analysis process of compilation and the token-value is a

pointer variable to the symbol table entry, in which the

token information is stored. For our definition, it is

shown in Table 3.

Table 3 : Token Table

Lexemes Token Token Value

 Name

how KW 1

How KW 2

many KW 3

is KW 4

etle KW 5

ketla KW 6

Ketla KW 7

kilogram UT 1

kilograms UT 2

kilo UT 3

grams UT 4

gram UT 5

litres UT 6

25,40,1 etc CO 1

one, two, CO 2

hundred,

thousand etc.

ek, be, tran etc. CO 3

? SC 1

delim - -

Apart from token recognition, lexical analyzer also

performs following tasks:
● Removes white spaces and comments from the

source program.
● Correlates error messages with the source

program.
● Read input characters from the source program.

Lex tool takes a set of formal description of tokens in

the form of regular expression and produces a C

program lex.yy.c which we call lexical analyzer or lexer

that can identify these tokens. The process of

identifying tokens is called lexical analysis or lexing.

The set of rules or descriptions given to lex is called a

lex specification which contains two parts: (1) patterns

and (2) corresponding actions. Lex tool automatically

converts the lex specification into c statements into a

file containing a C subroutine called yylex().

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

41

There are three sections of a FLEX code:
1. Definition Section
The definition section contains the declaration of

variables, regular definitions, manifest constants. In the

definition section, text is enclosed in “%{ %}” brackets.

Anything written in this brackets is copied directly to

the file lex.yy.c

%{
#include<stdio.h>

#include "y.tab.h"

extern int yylval; %}

2. Rules Section
The rules section contains a series of rules in the form:

pattern action and pattern must be unintended and action

begins on the same line in {} brackets. The rule section

is enclosed in “%% %%”.

%%
[0-9]+ {yylval=atoi(yytext); return NUM; } "is how

many"|"how many"|"How many"|"etle

ketla"|"Ketla"|"ketla"|"etle" {return KEYQUE;}

"kilograms"|"kilo"|"kilogram?"
{return UNITKG;} "grams?"|"gram?" {return

UNITGM;} "litres?"|"litres" {return UNITLIT;}

"is" {return IS;}

"one"|"ek" { yylval = 1; return ONE;} "twenty"|"vees"

{yylval = 20; return TWENTY;}
"thirteen"|"ter" {yylval = 13; return THIRTEEN;}
"hundred"|"so" {yylval = 100; return HUNDRED;}
"thousand"|"hajar" {yylval = 1000; return

THOUSAND;}

[\t] {;}
[\n] {return 0;}
. {return yytext[0];}
%%

1. User code section
This section contains C statements and additional

functions. We can also compile these functions

separately and load with the lexical analyzer.

int yywrap()
{
return 1;

}

B. Syntax Analysis
Where lexical analysis splits the input into tokens, the

purpose of syntax analysis (also known as parsing) is to

recombine these tokens that reflects the structure of the

text, typically a data structure called the syntax tree of

the text. As the name indicates, this is a tree structure. A

tree structure where the leaves are the token found by

the lexical analysis. And if the leaves are read from left

to right, the sequence is the same as in the input text. In

addition to finding the structure of the input text, the

syntax analysis must also reject invalid texts by

reporting syntax errors. The two major types of parsers

employed are:
• Top - Down parser
Top-Down parsers are constructed from the grammar

which is free from ambiguity and left recursion. It

uses leftmost derivation to construct a parse tree. It

allows a grammar which is free from Left

Factoring.
• Bottom-Up parser
A bottom-up parser builds the parse tree from the

bottom to the top. Bottom-up parsers make much

less extravagant predictions and can handle

grammars that top-down parsers cannot. Although

a bottom-up parser reads the sequence of tokens

from left to right, it builds the parse tree from right

to left. A bottom-up parser can be thought of as

creating a rightmost derivation.

It is further divided into various different parsers as

shown:

Fig : 2. Types of Parsers

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

42

We have used YACC(Yet Another Compiler-

Compiler) which is a LALR(1)(LookAhead, Left-

to-right, Rightmost derivation producer with 1

lookahead token) parser generator. So, for our

definition, we have used a bottom-up parsing

approach.

There are three different parts in the input file of
YACC, all are separated by %%, as follows :

1. Definition Part
The definition part includes information about the

tokens used in the syntax definition. It also consists

of token declarations and C code bracketed by

“%{“ and “%}”.

%{
#include<stdio.h>
%}
%token

NUM %token

UNITKG %token

KEYQUE %token

UNITGM %token

UNITLIT %token

IS %token

ONE %token

TWENTY %token

THIRTEEN %token

HUNDRED %token

THOUSAND

2. Rule Part
The second section of the Bison file consists of the

context-free grammar for the language. Productions

are separated by semicolons, the "::=" symbol of the

BNF is

the parser. There must also be the function

yyerror() which is used to report on errors

during the parse.

void main()
{
printf("Layman-Friendly Regional Unit
Conversion Compiler \n");
printf("NOTE :: If string will be valid then

output will be displayed else error will be
shown. \n \n");
yyparse();
}
void yyerror()
{
printf("Please enter valid values. \n");
}

C. Semantic Analysis
Semantic Analysis is the third phase of the compiler.

Semantic Analysis makes sure that declarations and

statements of a program are semantically correct.

Both the syntax tree of the previous phase and symbol

table are used to check the consistency of the given

code.

Following are the major functionalities of semantic

analysis:
1. Type Checking
It ensures that data types are used in a way such that

they’re consistent with their definition.

2. Label Checking
Labels references in a program must exist
3. Flow Control Check
It keeps a check that control structures are used in a

proper manner such as no break statement

outside a loop etc.

Few of the errors that are recognized by semantic

analyzer includes:
● Type mismatch
● Undeclared variable
● Reserved identifier misuse.
● Multiple declaration of variables in a scope.
● Accessing an out of scope variable.
● Actual and formal parameter mismatch.

Apart from these, semantic analyzer also helps to store

the type information gathered and save it in symbol

table or syntax tree. In case of any type mismatch, it

will show the error. It also checks if the source language

permits the operand or not.

D. Intermediate Code Generation
What is the need of Intermediate code generation? Let’s

say we have n different programming languages and m

different types of machine. If we want to execute n

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

43

different programming languages on m different

machines, then n*m compilers need to be implemented.

The implementation of n*m compiling is not an easy

task. The above problem can be transform into n + m

compiler by introducing a new language IR, known as

intermediate representation

Fig : 3. Intermediate Code Generation

There are different ways of intermediate code

representation:
➢ Postfix Notation
Postfix Notation is also known as “Reverse Polish

Notation”. The application of an operator op to

sub-expressions E1 and E2 is written in postfix

notation as E1 E2 op. Postfix notation can be

mechanically evaluated with the help of stack data

structure.

➢ Syntax Tree
Syntax tree is a reduced form of parse tree, which is

useful for representing language constructs. It

shows the structure of a program by abstracting

away irrelevant details from a parse tree. So, a

parent node represents a computation to be

performed and the child node represents what that

computation is performed on.
➢ Directed - Acyclic Graph (DAG)
The data structure with more than one path from starting

symbol to terminals is called Directed Acyclic Graph

(DAG). DAG gives information as a syntax tree but in a

more compact way. DAG has nodes for every sub-

expression of the expression. An interior node

represents an operator and its children represent an

operand. DAGs are useful in optimizing the code by

eliminating the sub-expressions and duplicate codes.

4. Three Address Code
The three address code statements are represented in the

form a= b op c a, b and c are the variables and will have

memory locations (address) and op is the operator.

For example: the three address code representation for

the expression x + y * z + s :
T1 = y * z T2=

x + T1

T3= T2 + s , where T1, T2 and T3 are the

temporary variables.

There are three representations of 3-Address codes

namely:
● Quadruple
● Triples
● Indirect Triples

E. Code Optimization
Code Optimization is the process of transforming a

piece of source code to produce more efficient target

code. Efficiency is measured both in terms of time and

space. Most of the optimization techniques attempt to

improve the target code by eliminating unnecessary

instructions in the object code, or by replacing one

sequence of instructions by another faster sequence of

instructions. Code optimization may either be

performed on the intermediate representation of the

source code or on the unoptimized version of the target

machine code. If applied on the intermediate

representation, the code optimization phase will reduce

the size of the Abstract Syntax Tree or the Three

Address Code instructions. Otherwise, if it is applied as

part of final code generation, the code optimization

phase attempts to choose which instructions to emit,

how to allocate registers and when to spill, and so on.

The optimization process can be broadly classified into

two types :

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

44

1. Machine Independent Optimization – This

code optimization phase attempts to improve

the intermediate code to get a better target code

as the output. The part of the intermediate code

which is transformed here does not involve any

CPU registers or absolute memory locations.
2. Machine Dependent Optimization –

Machine-dependent optimization is done after

the target code has been generated and when

the code is transformed according to the target

machine architecture. It involves CPU registers

and may have absolute memory references

rather than relative references. Machine-

dependent optimizers put efforts to take

maximum advantage of the memory hierarchy.

replaced with ":", the empty production is left

empty, non-terminals are written in all lower

case, and the multi character terminal symbols

in all upper case. Within the braces for the

action associated with a production is just

ordinary C code. If no action is present, the

parser will take no action upon reducing that

production.

ADI: A{
printf("Answer is: %d \n",$$);
return 0;
};
|B{
printf("Answer is: %f \n",(float)$$/1000);
return 0;
};
A:NUM' 'UNITKG' 'KEYQUE' 'UNITGM

{$$=($1*1000);}
|NUM' 'UNITKG' 'KEYQUE' 'UNITLIT {$$ = $1;}
|KEYQUE' 'UNITLIT' 'IS' 'NUM' 'UNITKG

{$$=$7;}
|KEYQUE' 'UNITLIT' 'KEYQUE' 'NUM'

'UNITKG {$$=$7;}
B:KEYQUE' 'UNITKG' 'IS' 'ONE'

'UNITGM {$$=$7;}
|KEYQUE' 'UNITKG' 'IS' 'THIRTEEN'

'UNITGM {$$=$7;}
|KEYQUE' 'UNITKG' 'KEYQUE' 'ONE'

'UNITGM {$$=$7;}

|KEYQUE' 'UNITKG' 'IS' 'TWENTY'

'UNITGM {$$=$7;}
|KEYQUE' 'UNITKG' 'KEYQUE' 'TWENTY'

'UNITGM {$$=$7;}
|KEYQUE' 'UNITKG' 'IS' 'ONE' 'HUNDRED'

'UNITGM {$$=$7*$9;} |KEYQUE' 'UNITKG'

'KEYQUE' 'ONE' 'HUNDRED' 'UNITGM {$$=$7*$9;}

|KEYQUE' 'UNITKG' 'IS' 'TWENTY' 'THOUSAND'

'UNITGM {$$=$7*$9;} |KEYQUE' 'UNITKG'

'KEYQUE' 'TWENTY' 'THOUSAND' 'UNITGM

{$$=$7*$9;}

3. Auxiliary Routine Part
The third section of the Yacc file consists of C code.

There must be a main() routine which calls the function

yyparse(). The function yyparse() is the driver routine

for Code Optimization can be done in following

different ways:
o Compile time evaluation
o Variable Propagation
o Dead-code elimination
o Code motion
o Induction Variable and Strength Reduction

F. Code Generation
Code generation is the last and final phase of a compiler.

Target code generation deals with assembly language to

convert optimized code into machine understandable

format. Target code can be machine readable code or

assembly code. Therefore, all the memory locations and

registers are also selected and allotted during this phase.

The objective of this phase is to allocate storage and

generate relocatable machine code.

Properties desired by the code generation phase are

mentioned below.
● Correctness
● High Quality
● Quick Code Generation
● Efficient use of resources of target machine

Target code which is now low level language goes

into linker and loader.

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

45

V. RESULTS AND OUTCOMES

Fig : 4. Output of valid sentences in English and

Gujarati

Fig : 5. Output of few more valid sentences in English and

Gujarati

Fig : 6. Output of some invalid sentences

V. CONCLUSION

Throughout the process of translation, code written in

high-level language passes through various phases and

as a result, is converted to machine-understandable code

but the original meaning of code never changes. So

basically, it’s like a language processing system. Entire

procedure is divided into two parts, frontend and

backend. Front-end part of the compiler includes lexical,

syntactic and semantic phases of translation. On the

other hand, the back-end part consists of intermediate

code generation, code optimization and target code

generation. We have also presented our own definition

which is quite simple but easy to understand and tried to

construct a compiler using FLEX and YACC tools.

VI. REFERENCES

[1]. Vishal Trivedi. 2018. International Journal of

Creative Research Thoughts. (Jan 2018), ISSN

NO: 2320-2882

[2]. Md. Alomgir Hossain, Rihab Rahman, Md.

Hasibul Islam, Mahabub Azam.2019.American

Journal of Engineering Research. (Dec 2019), e-

ISSN NO: 2320-0847

[3]. Nisha N. Shirvi, Mahesh H. Panchal.2014.

International Journal of Computer Science and

Mobile Computing. (Feb 2014), ISSN 2320–

088X

[4]. Vaikunta Pai T., A. Jayanthila Devi, P. S.

Aithal. 2020.International Journal of Applied

Engineering and Management Letters. (Dec

2020), ISSN: 2581-7000

[5]. T.Æ. Mogensen. 2011. Springer-Verlag London

Limited. DOI 10.1007/978-0-85729-829-4_2

[6]. Neha Bhateja, Nishu Sethi. 2018. Journal of

Emerging Technologies and Innovative

Research. (June 2018), ISSN:2349-5162

[7]. Anjan Kumar Sarma. 2015. International

Journal of Computer Applications. (Dec 2015),

ISSN NO: 0975 - 8887

[8]. John Smit, Lexical Analysis (Analyzer) in

Compiler Design with Example, Nov.

2021.Online].

Available:https://www.guru99.com/compiler-

design-lexical-analysis.html

[9]. Shivani Mittal, Flex (Fast Lexical Analyzer

Generator,Aug.2021.Online].Available:https://

www.geeksforgeeks.org/flex-fast-lexical-

analyzer-generat or/

[10]. Sanjay Monu, Classification of Top Down

Parsers,

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Aditya Bhanwadiya et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 38-46

46

Nov.2019.Online].Available:https://www.geeksf

org eeks.org/classification-of-top-down-parsers/

[11]. “Bottom-UpParsing”,Online].

Available:http://www.cs.ecu.edu/karl/5220/spr1

6/No tes/Parsing/bottomup.html

[12]. Thakur Aman, Introduction to YACC, April.

2021.Online].Available:https://www.geeksforge

eks. org/introduction-to-yacc/

[13]. John Smit, Syntax Analysis: Compiler Top

Down & Bottom Up Parsing Types, Oct.

2021.Online].

Available:https://www.guru99.com/syntax-

analysis-p arsing-types.html

[14]. “Compiler Design Semantic Analysis-Compiler-

Design”.Online].Available:https://www.w

isdomjobs.com/e-university/compiler-design-

tutorial -1144/compiler-design-semantic-

analysis-25305.htm l

[15]. Palak Singhal, Semantic Analysis in Compiler

Design,April.2020.Online].Available:https://ww

w.geeksforgeeks.org/semantic-analysis-in-

compiler-design/

[16]. John Smit, Phases of Compiler with Example:

Compilation Process & Steps, Oct.

2021.Online].

Available:https://www.guru99.com/compiler-

design-phases-of-compiler.html#4

[17]. C.Naga Raju, Intermediate Code Generation,

June.

2020.Online].Available:https://www.jntua.ac.in

/gate -online-

classes/registration/downloads/material/a159

254722029.pdf

[18]. “Code Optimization in Compiler Design”,

July.2020.Online].Available:https://www.geeksf

orge eks.org/code-optimization-in-compiler-

design/

[19]. Tom Niemann. “Lex And Yacc Tutorial”

Online].

Available:https://cse.iitkgp.ac.in/~bivasm/notes/

Lex AndYaccTutorial.pdf

Cite this article as :

Aditya Bhanwadiya, Gautam Rizwani, Darshil Shah,

"Layman-Friendly Regional Language Unit

Conversion Compiler", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 7 Issue 6, pp. 38-46, November-

December 2021. Available at

doi : https://doi.org/10.32628/CSEIT21761

Journal URL : https://ijsrcseit.com/CSEIT21761

https://doi.org/10.32628/CSEIT21761
https://search.crossref.org/?q=10.32628/CSEIT21761&from_ui=yes
https://ijsrcseit.com/CSEIT21761

