
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

28

Enhancement of Resource Scheduling on Gui Based Operating System
Ulfat Altaf1 , Deepinder Kaur2

1M.Tech. Scholar, Department of CSE, SUSCET Tangori Mohali, Punjab, India
2Assistant Professor, Department of CSE, SUSCET Tangori, Mohali, Punjab, India

Article Info

Volume 8, Issue 1

Page Number : 28-31

Publication Issue :

January-February-2022

Article History

Accepted : 01 Jan 2022

Published : 05 Jan 2022

ABSTRACT

In computer architecture, multithreading is ability of a central processing unit

(CPU) or a single core within a multi-core processor to execute multiple

processes or threads concurrently, appropriately supported by operating system.

This approach differs from multiprocessing, as with multithreading processes &

threads have to share resources of a single or multiple cores: computing units,

CPU caches, & translation lookaside buffer (TLB). Multiprocessing systems

include multiple complete processing units, multithreading aims to increase

utilization of a single core by using thread-level as well as instruction-level

parallelism. Objective of research is increase efficiency of scheduling dependent

task using enhanced multithreading. gang scheduling of parallel implicit-

deadline periodic task systems upon identical multiprocessor platforms is

considered. In this scheduling problem, parallel tasks use several processors

simultaneously. first algorithm is based on linear programming & is first one to

be proved optimal for considered gang scheduling problem. Furthermore, it runs

in polynomial time for a fixed number m of processors & an efficient

implementation is fully detailed. Second algorithm is an approximation

algorithm based on a fixed-priority rule that is competitive under resource

augmentation analysis in order to compute an optimal schedule pattern.

Precisely, its speedup factor is bounded by (2−1/m). Both algorithms are also

evaluated through intensive numerical experiments. In our research we have

enhanced capability of Gang Scheduling by integration of multi core processor &

Cache & make simulation of performance in MATLAB.

Keywords: TLP, Response Time, Latency, throughput, multithreading,

Scheduling

I. INTRODUCTION

The multithreading paradigm has become more

popular as efforts to further exploit instruction-level

parallelism have stalled since late 1990s. This allowed

concept of throughput computing to re-emerge from

more specialized field of transaction processing; even

though it is very difficult to further speed up a single

thread or single program, most computer systems are

actually multitasking among multiple threads or

programs. Thus, techniques that improve throughput

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Ulfat Altaf et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 28-31

29

of all tasks result within overall performance gains.

there are various types of multithreding which

perform their task according t requrment.

To distinguish other types of multithreading from

SMT, term "temporal multithreading" is used to

denote when instructions from only one thread could

be issued at a time.

In addition to hardware costs discussed for

interleaved multithreading, SMT has additional cost

of each pipeline stage tracking thread ID of each

instruction being processed. Again, shared resources

such as caches & TLBs have to be sized for large

number of active threads being processed.

Implementations include DEC (later Compaq) EV8

(not completed), Intel Hyper-Threading, IBM

POWER5, Sun Microsystems UltraSPARC T2, MIPS

MT, & CRAY XMT.

II. LITERATURE REVIEW

Yeh-Ching Chung wrote on “Applications &

Performance Analysis of A Compile-Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory Multiprocessors”

They have proposedacompile-time optimization

approach, bottom-up top-down duplication heuristic

(BTDH), for static scheduling of directed+cyclic

graphs (DAGS) on distributed memory

multiprocessors (DMMs). In this paper, they discuss

applications of BTDH for list scheddhg algorithms

(LSAs). There are two ways to use BTDH for

LSAs.BTDHcan be used with aLSAto form a new

scheduling algorithm (LSA/BTDH). It could be usedas

apure optimization algorithm for a LSA (LSA-BTDH)..

Ishfaq Ahmad1 & Yu-Kwong Kwok2 wrote on “On

Parallelizing Multiprocessor Scheduling Problem”

Existing heuristics for scheduling a node & edge

weighted directed task graph to multiple processors

could produce satisfactory solutions but incur high

time complexities that tend to exacerbate within

more realistic environments with relaxed assumptions.

Consequently, these heuristics do not scale well &

cannot handle problems of moderate sizes. The

algorithm also exhibits an interesting trade-off

between solution quality & speedup while scaling

well with problem size.

Maruf Ahmed, Sharif M. H. Chowdhury wrote on

List Heuristic Scheduling Algorithms for Distributed

Memory Systems with Improved Time Complexity

They present a compile time list heuristic scheduling

algorithm called Low Cost Critical Path algorithm

(LCCP) for distributed memory systems. LCCP has

low scheduling cost for both homogeneous &

heterogeneous systems. In some recent papers list

heuristic scheduling algorithms keep their scheduling

cost low by using a fixed size heap & a FIFO, where

heap always keeps fixed number of tasks & excess

tasks are inserted within FIFO. When heap has empty

spaces, tasks are inserted within it from FIFO. Best

known list scheduling algorithm based on this

strategy requires two heap restoration operations, one

after extraction & another after insertion. Our LCCP

algorithm improves on this by using only one such

operation for both extraction & insertion, that within

theory reduces scheduling cost without compromising

scheduling performance. In our experiment they

compare LCCP with other well known list scheduling

algorithms & it shows that LCCP is fastest among all.

Wayne F. Boyer wrote on “Non-evolutionary

algorithm for scheduling dependent tasks within

distributed heterogeneous computing environments”

The Problem of obtaining an optimal matching &

scheduling of interdependent tasks within distributed

heterogeneous computing (DHC) environments is

well known to be an NP-hard problem. In a DHC

system, task execution time is dependent on machine

to which it is assigned & task precedence constraints

are represented by a directed acyclic graph. Recent

research within evolutionary techniques has shown

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Ulfat Altaf et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 28-31

30

that genetic algorithms usually obtain more efficient

schedules that other known algorithms.

III. RESEARCH METHODOLOGY

In computing, scheduling is method by which work

specified by some means is assigned to resources that

complete work. The work may be virtual

computation elements such as threads, processes or

data flows, that are within turn scheduled onto

hardware resources such as processors, network links

or expansion cards.

A scheduler is what carries out scheduling activity.

Schedulers are often implemented so they keep all

computer resources busy (as within load balancing),

allow multiple users to share system resources

effectively, or to achieve a target quality of service.

Scheduling is fundamental to computation itself, & an

intrinsic part of execution model of a computer

system; concept of scheduling makes it possible to

have computer multitasking with a single central

processing unit (CPU).

A scheduler may aim at one of several goals, for

example, maximizing throughput (total amount of

work completed per time unit), minimizing response

time (time from work becoming enabled until first

point it begins execution on resources), or minimizing

latency (the time between work becoming enabled &

its subsequent completion), maximizing fairness

(equal CPU time to each process, or more generally

appropriate times according to priority & workload of

each process). In practice, these goals often conflict

(e.g. throughput versus latency), thus a scheduler

would implement a suitable compromise. Preference

is given to any one of concerns mentioned above,

depending upon user's needs & objectives.

IV. CHALLENGES WITHIN RESEARCH

Multiple threads could interfere with each other

when sharing hardware resources such as caches or

translation lookaside buffers (TLBs). As a result,

execution times of a single thread are not improved

but could be degraded, even when only one thread is

executing, due to lower frequencies or additional

pipeline stages that are necessary to accommodate

thread-switching hardware.

Overall efficiency varies; Intel claims up to 30%

improvement with its HyperThreading technology,[1]

while a synthetic program just performing a loop of

non-optimized dependent floating-point operations

actually gains a 100% speed improvement when run

within parallel. On other hand, hand-tuned assembly

language programs using MMX or Altivec extensions

& performing data pre-fetches (as a good video

encoder might) do not suffer from cache misses or

idle computing resources. Such programs therefore do

not benefit from hardware multithreading & could

indeed see degraded performance due to contention

for shared resources.

From software standpoint, hardware support for

multithreading is more visible to software, requiring

more changes to both application programs &

operating systems than multiprocessing. Hardware

techniques used to support multithreading often

parallel software techniques used for computer

multitasking of computer programs. Thread

scheduling is also a major problem within

multithreading.

Parallel computing

Parallel computing is a type of computation in which

many calculations are carried out simultaneously,

operating on principle that large problems could often

be divided into smaller ones, which are then solved at

same time. There are several different forms of

parallel computing: bit-level, instruction-level, data,

& task parallelism. Parallelism has been employed for

many years, mainly in high-performance computing,

but interest in it has grown lately due to physical

constraints preventing frequency scaling. As power

consumption (and consequently heat generation) by

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Ulfat Altaf et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 28-31

31

computers has become a concern in recent years,

parallel computing has become dominant paradigm in

computer architecture, mainly in form of multi-core

processors. Parallel computing is closely related to

concurrent computing—they are frequently used

together, & often conflated, though two are distinct:

it is possible to have parallelism without concurrency

& concurrency without parallelism. In parallel

computing, a computational task is typically broken

down in several, often many, very similar subtasks

that could be processed independently & whose

results are combined afterwards, upon completion. In

contrast, in concurrent computing, various processes

often do not address related tasks; when they do, as is

typical in distributed computing, separate tasks may

have a varied nature & often require some inter-

process communication during execution.

V. SCOPE OF RESEARCH

If a thread gets a lot of cache misses, other threads

could continue taking advantage of unused computing

resources, that may lead to faster overall execution as

these resources would have been idle if only a single

thread were executed. Also, if a thread cannot use all

computing resources of CPU (because instructions

depend on each other's result), running another

thread may prevent those resources from becoming

idle. If several threads work on same set of data, they

could actually share their cache, leading to better

cache usage or synchronization on its values.

VI. REFERENCES

[1] Remzi H. Arpaci-Dusseau; Andrea C. Arpaci-

Dusseau (January 4, 2015). "Chapter 7:

Scheduling: Introduction, Section 7.6: A New

Metric: Response Time". Operating Systems:

Three Easy Pieces (PDF). p. 6. Retrieved

February 2, 2015.

[2] Paul Krzyzanowski (2014-02-19). "Process

Scheduling: Who gets to run next?".

cs.rutgers.edu. Retrieved 2015-01-11.

[3] Abraham Silberschatz, Peter Baer Galvin &

Greg Gagne (2013). Operating System Concepts

9. John Wiley & Sons,Inc. ISBN 978-1-118-

06333-0.

[4] Here is C-code for FCFS

[5] Early Windows at Wayback Machine

[6] Sriram Krishnan. "A Tale of Two Schedulers

Windows NT & Windows CE".

[7] Inside Windows Vista Kernel: Part 1, Microsoft

Technet

[8] "Vista Kernel Improvements".

[9] "Technical Note TN2028 - Threading

Architectures".

[10] "Mach Scheduling & Thread Interfaces".

[11] http://www.ibm.com/developerworks/aix/librar

y/au-aix5_cpu/index.html#N100F6

[12] Molnár, Ingo (2007-04-13). "[patch] Modular

Scheduler Core & Completely Fair Scheduler

[CFS]". linux-kernel (Mailing list).

Cite this article as :

Ulfat Altaf, Deepinder Kaur, "Enhancement of

Resource Scheduling on Gui Based Operating System",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8

Issue 1, pp. 28-31, January-February 2022.

Journal URL : https://ijsrcseit.com/CSEIT2176111

https://ijsrcseit.com/CSEIT2176111

