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ABSTRACT 

 

Conversational AI is an interesting problem in the field of Natural Language 

Processing and combines natural language processing with machine learning. 

There has been quite a lot of advancements in this field with each new model 

architecture capable of processing more data, better optimisation and execution, 

handling more parameters and having higher accuracy and efficiency. This 

paper discusses various trends and advancements in the field of natural language 

processing and conversational AI like RNNs and RNN based architectures such 

as LSTMs, Sequence to Sequence models, and finally, the Transformer networks, 

the latest in NLP and conversational AI. The authors have given a comparison 

between the various models discussed in terms of efficiency/accuracy and also 

discussed the scope and challenges in Transformer models.  

Keywords –  deep learning, neural networks, recurrent neural networks, long 

short term memory, sequence to sequence, transformer models, switch 

transformer models 

 

I. INTRODUCTION 

 

Neural networks are famous for mimicking the way a 

human mind functions or in a more elaborate sense, 

the way biological neurons signal one another. Neural 

networks, also knows as artificial neural networks 

(ANNs) comprises of layers of nodes, generally 

consisting of an input layer, numerous hidden layers 

and an output layer [2]. 

 

 
 

 
Structure of a simple Neural Network[3] 
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Once an input layer is determined, weights are 

assigned. These weights help determine the 

importance of any given variable, with larger ones 

contributing more significantly to the output 

compared to other inputs [3]. All inputs are then 

multiplied by their respective weights and then 

summed. Afterward, the output is passed through an 

activation function, which determines the output. If 

that output exceeds a given threshold, it “fires” (or 

activates) the node, passing data to the next layer in 

the network. This results in the output of one node 

becoming in the input of the next node.  

 

The manner in which the nodes in a neural network 

are structured is intimately linked with the learning 

algorithm used to train the network. In general, there 

are a few different classes of network architectures: 

 

● Single-layer Feedforward Networks 

● Multi-layer Feedforward Networks 

● Recurrent Neural Networks 

 

Conversational AI models explicitely make use of 

recurrent neural networks (RNNs) or a modification 

of the network architecture. In traditional neural 

networks it is generally assumed that all inputs (and 

outputs) are independent of each other, but for many 

tasks that is a bad idea. In order to predict the next 

word in a sentence, it is essential to know which 

words came before it. [4] 

 

II. Recurrent Neural Networks (RNN) 

 

A recurrent neural network (RNN) is a type of 

artificial neural network which uses sequential data 

or time series data. They are incorporated into 

popular applications such as Siri, voice search, and 

Google Translate [5]. They are distinguished by their 

“memory” as they take information from prior inputs 

to influence the current input and output. RNNs are 

called recurrent because they perform the same task 

for every element in a sequence, with the output 

being dependent on the previous computations and 

inputs. 

 

Another distinguishing characteristic of recurrent 

networks is that they share parameters across each 

layer of the network. While feedforward networks 

have different weights across each node, recurrent 

neural networks share the same weight parameter 

within each layer of the network. 

 

 
Recurrent Neural Network (RNNs)[6] 

 

● Input: x(t) is taken as the input to the network at 

time step t. For example, x1, could be a vector 

corresponding to a word of a sentence. 

● Hidden state: h(t) represents a hidden state at 

time t and acts as “memory” of the network. h(t) 

is calculated based on the current input and the 

previous time step’s hidden state:  

 

h(t)= f(U.x(t) + W.h(t−1)) 

 

The function f is taken to be a non-linear 

transformation such as tanh, ReLU. 

 

● Weights: The RNN has input to hidden 

connections parameterized by a weight matrix U, 

hidden-to-hidden recurrent connections 

parameterized by a weight matrix W, and 

hidden-to-output connections parameterized by 

a weight matrix V and all these weights 

(U,V,W) are shared across time. 

 

● Output: o(t) illustrates the output of the network. 

In the figure there are further arrows 
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after o(t) which is also often subjected to non-

linearity,especially when the network contains 

further layers downstream [6]. 

 

Recurrent neural network utilises Backpropagation 

Through Time algorithm (BPTT) to determine the 

gradients (slope of the loss function), which is slightly 

different from traditional backpropagation. The main 

principle of BPTT is similar to traditional 

backpropagation, where the model trains itself by 

calculating errors from its output layer to its input 

layer [5]. BPTT differs from the traditional approach 

in that BPTT sums errors at each time step whereas 

feedforward networks do not need to sum errors as 

they do not share parameters across each layer. 

 

III. Long Short Term Memory Networks (LSTMs) 

 

Long Short Term Memory networks – usually called 

“LSTMs” – are a special kind of RNN, capable of 

learning long-term dependencies. The issue of 

gradients approaching zero due to BPTT is aptly 

termed as the ‘vanishing gradients problem’, and it 

was for many years the chief issue with recurrent 

neural networks, limiting their ability to learn 

correlations between inputs that were temporally 

distant from one another (particularly long sequences 

of data) [9]. 

 

The key to LSTMs is ‘cell state’ – the horizontal line 

at the top. For the most part, the purpose of the cell 

state is to pass information down the chain without 

transforming it. The LSTM does have the ability to 

remove or add information to the cell state from the 

previous states, carefully regulated by structures 

called gates. Gates optionally allow information 

through, and are made of sigmoid activated neural 

network layer and a pointwise multiplication 

operation [9].An LSTM has protect and control the 

cell state 

 

 

 
Understanding LSTM Networks -- colah's blog[9] 

 

The first step is to decide what information is not 

relevant to be considered in the next hidden layers 

and will be “thrown away” from the cell state. This 

decision is made by the first gate layer consisting of a 

sigmoid layer called the “forget gate layer”. For each 

number in the cell state vector, the forget gate 

outputs a number between zero and one. 

 
The second gate layer is responsible for adding 

features from the current input to the cell state. The 

second layer further contains two parts – first the 

“input gate layer” which is another sigmoid layer that 

produces values between zero and one, determining 

which values will be updated. The second part of the 

layer employs a tanh activation function to produce 

new values to be added to cell state. After values are 

produced by the sigmoid and tanh, they are point-

wise multiplied 

 
Finally, the output of the cell state is generated which 

will be forwarded to the next layer. Unsurprisingly, a 

sigmoid layer is used to output values between 0 and 
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1, determining which components of cell state will be 

part of the next hidden state (based on relevance to 

the input at hand) [9]. 

 

 
This decoupling of cell state and hidden state is 

noteworthy, because it means that the network can 

remember features in cell state for longer periods of 

time without including them in the hidden state that 

affects the current prediction [8] 

 

IV. Sequence to Sequence Models (Seq2Seq) 

 

Despite their flexibility and power, deep neural 

networks can only be applied to problems whose 

inputs and targets can be sensibly encoded with 

vectors of fixed dimensionality. It is a significant 

limitation since many important problems are best 

expressed with sequences whose lengths are not 

known a-priori [12]. For example, speech recognition 

and machine translation are sequential problems. 

Likewise, question answering can also be seen as 

mapping a sequence of words representing the 

question to a sequence of words representing the 

answer. It is therefore clear that a domain-

independent method that learns to map sequences to 

sequences would be useful. 

 

Sequence to sequence models are a straightforward 

application of the Long Short Term Memory 

architecture. A novel neural network architecture 

that learns to encode a variable-length sequence into 

a fixed-length vector representation and to decode a 

given fixed-length vector representation back into a 

variable-length sequence [13].  

 

 
Chatbots with Seq2Seq (suriyadeepan.github.io)[14]  

 

The idea is to use one LSTM (called the encoder) to 

read the input sequence, one time step at a time, to 

obtain fixed dimensional vector representation, and 

then use another LSTM (called the decoder) to extract 

the output sequence from that vector. Each hidden 

state influences the next hidden state and the final 

hidden state is called the context or thought vector 

since it represents the intention of the sequence. 

From the context vector, the decoder generates 

another sequence, one symbol at a time. 

 

In order to solve the variable length problem, the 

concept of padding was introduced. Prior to training, 

the dataset is modified from variable length sequences 

to fixed length sequences. Special symbols are used to 

fill in the sequences. For example,  

EOS: End of sentence,  

PAD: Filler,  

UNK: Unknown Symbol.  

 

Introduction of padding did solve the problem of 

variable length sequences but for datasets with very 

large sequences, the smaller sequences will require a 

lot of pad symbols in the encoded version. This might 

overshadow the actual information in the sentence. 

Bucketing aims to solve this problem, by putting the 

sequences into buckets of different sizes [14]. 

 

V. Transformer Models 

 

Most sequence generation models have an encoder-

decoder structure (as in sequence to sequence model). 

In the case of the Transformer model, the encoder 
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maps an input sequence of symbol representations 

(x1, . . . , xn) to a sequence of continuous 

representations z = (z1, ..., zn). Given z, the decoder 

then generates an output sequence (y1, . . . , ym) of 

symbols one element at a time. At each step the 

model is auto-regressive, consuming the previously 

generated symbols as additional input when 

generating the next[15]. 

 

The Encoder and Decoder models used in the 

Transformer do not use LSTM, GRU or RNNs hence 

there are no recurrent connections and thus no 

“memory” of previous states are implemented. 

Transformers get around this lack of memory by 

perceiving entire sequences simultaneously.  

 
Attention Is All You Need - Transformer Model[15] 

 

V.1 Input Embeddings 

 

Here is a detailed visualisation of the embedding 

process in Natural Language Processing models. 

Consider an input from the user, 

 

Input – Do you like Game of Thrones 

  

 The first step is to fetch the indices of the words 

occurring in the input sequence from the vocabulary 

of all the learned words by the model. Therefore we 

get, 

 

Vocabulary Indices – [ 2456, 56, 6674, 5345, 86, 145 ] 

 

Now these indices are fed as the input to the Input 

Embedding Module of the network. Here, against 

each of these word indices obtained from the 

vocabulary, a vector is generated. Initially, the vectors 

are filled with random numbers. Later on, during 

training, the model updates them. These vectors are 

called word embeddings. In the transformer model 

presented in the paper, “Attention is All you Need”, 

the embedding size or the length of these vectors are 

512. 

 
Example of a word embedding 

 

Each element of the vector or in other words, each 

“dimension” of the word embedding tries to capture a 

unique linguistic feature for that word. These could 

be things like whether it is a verb or a pronoun or 

something else. Now, n-dimensional (here it's 5-

dimensional) word embeddings can be represented on 

a n-dimensional hyperspace, where words sharing 

similar linguistic features are plotted closer to each 

other while dissimilar word embeddings are plotted 

farther apart from each other. 
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Word Embeddings and their representation 

 

Hence, the main purpose of the embedding layer is to 

select the proper embedding of the input words and 

pass them on to the positional encoding module. 

 

V.2 Positional Encoding 

 

Position and order of words in a sentence is an 

essential part of any language. They define the 

grammar and thus the actual semantics of a sentence. 

Recurrent Neural Networks (RNNs) inherently take 

the order of word into account i.e. they parse a 

sentence word by word in a sequential manner, but 

the Transformer architecture ditched the recurrence 

mechanism in favor of multi-head self-attention 

mechanism (discussed later). Avoiding the RNNs’ 

method of recurrence will result in massive speed-up 

in the training time and theoretically, it can capture 

longer dependencies in a sentence[20]. 

 

As each word in a sentence simultaneously flows 

through the Transformer’s encoder or decoder stack 

(layers of encoder or decoder), the model by itself 

does not have any sense of the position or order for 

each word. Consequently, there’s still the need for a 

way to add some information about the positions into 

the input embeddings. 

 

So a new set of vectors called the position embeddings 

are introduced, one for each word embedding. Thay 

have the same embedding size (vector length) as that 

of the word embeddings. Generally, the position 

embeddings and the word embeddings are simply 

added to generate a new set of embeddings; only this 

time these embeddings also contain the position as 

well as the linguistic information of the words in the 

sentence. 

 
Positional Embeddings 

 

The tricky part here is to set the values of the various 

position embeddings. The authors of the paper 

“Attention is All you Need” came up with a clever 

trick to use wave functions (sine and cosine) to 

capture position information. Here,  

 
• pos is the position index of the word in the input 

sequence.  

• dmodel is the embedding size (which is 512).  

• i represents the indices of each of the position 

embedding dimensions 

 

So, basically, for every odd value of pos on the 

position vector, create a vector using the cosine 
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function. For every even value of pos, create a vector 

using the sine function  

 

 
Visualization of Positional Embeddings when plotted 

using sine and cosine functions [20] 

 

Here is how the position embedding curves looks like 

when plotted in full scale against the embedding size 

(i). The above plot is a great way to visualise the 

position embedding dimensions (or values) for a 

particular embedding size. Finally, the position 

embeddings are added to their corresponding word 

embeddings. 

 

From now on, the final embeddings of the words will 

be referred to as the position embeddings for easier 

understanding. 

 

V.3 Encoder Stack 

 

This module consists of a stack of N Encoder Layers. 

These encoder layers, each of which has two 

sublayers – the Multi-Head Attention Layer and the 

Position-wise Full Connected Feed-Forward Network 

layer. Finally each encoder layer has an Add-Norm 

(Addition and Normalization) layer component. 

 

 
Encoder Layer[20] 

 

All the operations inside each encoder stack are 

implemented to encode the input embeddings to a 

continuous representation with attention information. 

This will help the decoder focus on the appropriate 

words in the input during the decoding process. The 

encoder can be stacked on top of each other N times 

to further encode the information, where each stack 

has the opportunity to learn different attention 

representations therefore potentially boosting the 

predictive power of the transformer network and 

offer more parallelization. 

 

V.3.1 Multi Head Attention Layer 

 

The Multi-Head Attention layer in the encoder 

applies a specific attention mechanism called the self-

attention. The task of self attention is to find out the 

relationship of each word in a sequence with all the 

other words in that sequence.  

 

The input to the attention layer, in the case of 

encoders, is the position embedding matrix. Three 

identical copies of the input embeddings are made – 

Query (Q), Key (K) and Value (V). The concept of 

query, key and value comes from retrieval systems 

like search engines. 
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Scaled Dot Product Attention[18] 

 

After feeding the query, key and value matrices 

through a linear layer, the queries and keys undergo a 

dot-product matrix multiplication operation to 

produce a score matrix. The score matrix determines 

how much focus should a particular word put on 

other words. So each word will have a score that 

corresponds to other words in the time-step. The 

higher the score the more focus. This is how the 

queries are mapped to the keys. 

 
Example of a Score Matrix[20] 

 

Then these scores are scaled down by dividing each 

score by the square root of the dimension of the query 

and key (which is dk). The scaling is done in order to 

achieve more stable and normalized gradients since 

multiplication can have exploding effects. 

 

 
Softmax operation on the scaled scores to get 

attention weights[20] 

 

A softmax of the scaled scores is performed to get the 

attention weights, which outputs probability values 

between 0 and 1. By doing a softmax the higher scores 

get elevated, and lower scores are depressed. This 

allows the model to be more confident about which 

words to attend too. 

 

Finally, the attention weights are multiplied to the 

value matrix to get an output matrix. The higher 

softmax scores will keep the value of words the model 

learns is more important. The lower scores will 

drown out the irrelevant words. The following 

equation summarizes the whole process, 

 

 
The query, key and value matrices go through the 

self-attention process individually. Each self-attention 

process is called a head. Each head produces an output 

vector that gets concatenated into a single vector 

before going through the final linear layer. In theory, 

each head would learn something different therefore 

giving the encoder model more representation power. 

 

 
Multi-Head Attention Layer[18] 

 

A critical and apparent disadvantage of this fixed-

length context vector design as used in sequence to 

sequence models has the incapability of the system to 

remember longer sequences. It often forgets the 

earlier parts of the sequence once it has processed the 
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entire sequence. The attention mechanism was born 

to resolve this problem. [18] 

 

The multi-headed attention output vector is added to 

the original positional input embedding. This is called 

a residual connection. The output of the residual 

connection goes through a layer normalization. 

 

V.3.2 Feed Forward Network and Normalization 

 

The normalized residual output gets projected 

through a pointwise feed-forward network for further 

processing. The pointwise feed-forward network is a 

couple of linear layers with a ReLU (Rectified Linear 

Unit) activation function in between. The output of 

that is then again added to the input of the Add and 

Normalize layer and further normalized. 

 

 
Rectified Linear Unit activation function 

 

The residual connections help the network train, by 

allowing gradients to flow through the networks 

directly. The layer normalizations are used to stabilize 

the network which results in substantially reducing 

the training time necessary. The pointwise 

feedforward layer is used to project the attention 

outputs potentially giving it a richer representation. 

 

V.4 The Decoder Stack 

 

The main purpose of the decoder is to generate text 

sequences. The decoder stack also comprises multiple 

decoder layers. Each decoder layer has similar sub-

layers as the encoder layers – it has two multi-head 

attention layers (one is masked, discussed later), a 

pointwise feed-forward layer, and layer normalization 

(add and normalization) layers after each sub-layer. 

 

These sub-layers behave similarly to the layers in the 

encoder but each multi-headed attention layer has a 

different job. The decoder is autoregressive, it begins 

with a start token, and it takes in a list of previous 

outputs as inputs, as well as the encoder outputs that 

contain the attention information from the input[20]. 

 

The beginning of the decoder is pretty much the same 

as the encoder. The input goes through an embedding 

layer and positional encoding layer to get positional 

embeddings. The positional embeddings get fed into 

the first multi-head attention layer which computes 

the attention scores for the decoder’s input only. 

 

V.4.1 Masked Multi-head Attention Layer 

 

This multi-headed attention layer operates slightly 

differently. Since the decoder is autoregressive and 

generates the sequence word by word, the model 

needs to prevent it from taking future words from the 

encoder into account[20]. This is true for all other 

words, where they can only attend to previous words. 

 

Therefore, the model needs to prevent computing 

attention scores for future word embeddings. This 

method is called masking and hence this attention 

layer is called Masked Multi-Head Attention Layer. 

To prevent the decoder from taking future words into 

account, a look-ahead mask is applied to the scaled 

score matrix. The look-ahead mask is a matrix with 

the same size as the score matrix with values of zeros 

and negative infinities only. The mask is simply added 

to the scales score matrix, and a masked score matrix 

is obtained.  
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Using Look-Ahead Mask to generate Masked Score 

Matrix[20] 

 

The reason for the mask is because once the model 

calculates the softmax of the masked scores, the 

negative infinities get zeroed out, leaving zero 

attention scores for future tokens. This essentially 

tells the model to put no focus on those words whose 

attention scores are zero. This masking is the only 

difference in how the attention scores are calculated 

in the first multi-headed attention layer.  

 

This layer still has multiple heads that the mask is 

being applied to, before getting concatenated and fed 

through a linear layer for further processing. The 

output of the first multi-headed attention is a masked 

output vector with information on how the model 

should attend to the decoder’s input. 

 

 
Softmax Operation on the Masked Score Matrix[20] 

 

For the second multi-headed attention layer, the 

encoder’s outputs are the queries and the keys, and 

the first multi-headed attention layer outputs act as 

the values. This process matches the encoder’s input 

to the decoder’s input, allowing the decoder to decide 

which encoder input is relevant to put a focus on. The 

output of the second multi-headed attention goes 

through a pointwise feedforward layer for further 

processing. 

 

The Transformer, a model architecture eschewing 

recurrence and instead relying entirely on an 

attention mechanism to draw global dependencies 

between input and output allows for significantly 

more parallelization [15] and can reach a new state of 

the art in translation quality. 

 

VI. Switch Transformers 

 

Large scale training has been an effective path 

towards flexible and powerful neural language models. 

Simple architectures – backed by a generous 

computational budget, dataset size and parameter 

count – surpass more complicated algorithms. 

Inspired by the success of model scale, but seeking 

greater computational efficiency, a sparsely-activated 

expert model was proposed: the Switch Transformer 

[20]  

  

 
Switch Transformer Encoder Block (arXiv:2101.03961)  

 

The guiding design principle for Switch Transformers 

is to maximize the parameter count of a Transformer 

model in a simple and computationally efficient way. 

Importantly, this work advocates training large 

models on relatively small amounts of data as the 

computationally optimal approach. 

 

In a Switch Transformer feed-forward neural network 

(FFN) layer, each token passes through a router 
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function which sends it to a single FNN, known as an 

‘expert.’ While each token passes through a single 

FFN, thecomputation does not increase with the 

number of experts. “We replace the dense feed-

forward network (FFN) layer present in the 

Transformer with a sparse Switch FFN layer. The 

layer operates independently on the tokens in the 

sequence. We diagram two tokens (x1 = “More” and 

x2 = ‘Parameters’ in the figure) being routed across 

four FFN experts, where the router independently 

routes each token. The switch FFN layer returns the 

output of the selected FFN multiplied by the router 

gate value,” wrote Google researchers [20]. 

 

VII. Result and Discussion 

 

Transformer based self-supervised pre-trained models 

have transformed the concept of Transfer learning in 

Natural language processing (NLP) using Deep 

learning approach. Self-attention mechanism made 

transformers more popular in transfer learning across 

a broad range of NLP tasks [21]. 

 

An experiment as carried out and published in the 

paper by Xiaoyu Yin, Dagmar Gromann and Sebastian 

Rudolph [23], which used different datasets to train 

RNNs based models, CNN based models and 

Transformer models and compare their performance, 

accuracy and BLEU scores. BLEU (bilingual 

evaluation understudy) is an algorithm for evaluating 

the quality of text which has been machine-translated 

from one natural language to another. Although the 

models were not trained on large sequences of data, it 

is still an interesting experiment.  

Table 1 - BLEU scores for all models[22] 

 

 
Table 2 - Accuracy (in %) | F1 score[22] 

  

In the above tables, T represents training scores and V 

refers to validation scores. The rows represent the 

scores of different RNN based and ConS2S models and 

finally, the transformer model. While the columns 

refer to the different datasets on which these models 

were trained and validated. 

 

In Table 1, BLEU scores are reported on the 

validation V and test T set for each dataset for the best 

performing version of each model. ConvS2S 

outperforms all other models on most datasets. 

Similarily in Table 2, there are some cases where 

Transformer outperforms ConS2S in terms of 

Accuracy. It is evident that, although Transformer is 

proved as the best model to handle really long 

sequences, the RNN and CNN based model could still 

work very well or even better than Transformer in 

the short-sequences task. 

 

Another experiment in Machine Translation 

presented in the paper “Attention is all you Need” 

[15], the participating models were trained on the 

standard WMT 2014 English-German dataset 

consisting of about 4.5 million sentence pairs. For 

English-French, a significantly larger WMT 2014 

English-French dataset consisting of 36M sentences 

and split tokens into a 32000 word-piece vocabulary 

was used. Sentence pairs were batched together by 

approximate sequence length. Each training batch 

contained a set of sentence pairs containing 

approximately 25000 source tokens and 25000 target 

tokens.  

 

  



Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com 

Arighna Chakraborty  et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384 

 

 

 

 
383 

 
BLEU scores on the English-to-German and English-

to-French newstest2014 tests [15] 

  

On the WMT 2014 English-to-German translation 

task, the big transformer model (Transformer (big)) 

outperforms the best previously reported models 

(including ensembles) by more than 2.0 BLEU, 

establishing a new state-of-the-art BLEU score of 28.4. 

Even the base model surpasses all previously 

published models and ensembles, at a fraction of the 

training cost of any of the competitive models. On the 

WMT 2014 English-to-French translation task, the 

big model achieves a BLEU score of 41.0, 

outperforming all of the previously published single 

models, at less than 1/4 the training cost of the 

previous state-of-the-art model. 

 

This is to be noted that the experiments conducted 

are all based on the base transformer model. Since 

then, based on the basic architecture, researchers 

have introduced BERT, RoBERTa, ALBERT, 

Transformer XL, and many more state-of-the-art 

models. These models further improve upon the 

underlying transformer architecture in many aspects 

providing higher accuracy and better performance. 

 

VIII. Conclusion and Future Scope 

 

The recent developments in language modeling offer 

a lot of improvements in the field of Natural 

Language Processing. The transformer architecture 

has become the preferred deep-learning model for 

conversational AI research. Many efforts have been 

towards increasing the size of these models, primarily 

measured in the number of parameters. For 

translation tasks, the Transformer can be trained 

significantly faster than architectures based on 

recurrent or convolutional layers [17]. While these 

models provide excellent results, further efforts can 

make them adapt better to a specific domain. 

 

BAAI’s 1.75 trillion parameters, Wu Dao 2.0 and 

OpenAI’s GPT-3 175 billion parameters, alongside 

HuggingFace DistilBERT and Google GShard, are 

other popular language models. Compared to Google’s 

T5 NLP model, the baseline version of the Switch 

Transformer achieved a target pre-training perplexity 

metrics in 1/7 the training time. It also outperformed 

a T5-XXL on the perplexity metric, with comparable 

or better performance on downstream NLP tasks, 

despite training on half of the data. 
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