
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT217696

372

Scope and Challenges in Conversational AI using Transformer

Models
Arighna Chakraborty, Asoke Nath

Department of Computer Science, St. Xavier’s College (Autonomous) Kolkata, India

Article Info

Volume 7, Issue 6

Page Number : 372-384

Publication Issue :

November-December-2021

Article History

Accepted : 12 Dec 2021

Published : 26 Dec 2021

ABSTRACT

Conversational AI is an interesting problem in the field of Natural Language

Processing and combines natural language processing with machine learning.

There has been quite a lot of advancements in this field with each new model

architecture capable of processing more data, better optimisation and execution,

handling more parameters and having higher accuracy and efficiency. This

paper discusses various trends and advancements in the field of natural language

processing and conversational AI like RNNs and RNN based architectures such

as LSTMs, Sequence to Sequence models, and finally, the Transformer networks,

the latest in NLP and conversational AI. The authors have given a comparison

between the various models discussed in terms of efficiency/accuracy and also

discussed the scope and challenges in Transformer models.

Keywords – deep learning, neural networks, recurrent neural networks, long

short term memory, sequence to sequence, transformer models, switch

transformer models

I. INTRODUCTION

Neural networks are famous for mimicking the way a

human mind functions or in a more elaborate sense,

the way biological neurons signal one another. Neural

networks, also knows as artificial neural networks

(ANNs) comprises of layers of nodes, generally

consisting of an input layer, numerous hidden layers

and an output layer [2].

Structure of a simple Neural Network[3]

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT217696

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

373

Once an input layer is determined, weights are

assigned. These weights help determine the

importance of any given variable, with larger ones

contributing more significantly to the output

compared to other inputs [3]. All inputs are then

multiplied by their respective weights and then

summed. Afterward, the output is passed through an

activation function, which determines the output. If

that output exceeds a given threshold, it “fires” (or

activates) the node, passing data to the next layer in

the network. This results in the output of one node

becoming in the input of the next node.

The manner in which the nodes in a neural network

are structured is intimately linked with the learning

algorithm used to train the network. In general, there

are a few different classes of network architectures:

● Single-layer Feedforward Networks

● Multi-layer Feedforward Networks

● Recurrent Neural Networks

Conversational AI models explicitely make use of

recurrent neural networks (RNNs) or a modification

of the network architecture. In traditional neural

networks it is generally assumed that all inputs (and

outputs) are independent of each other, but for many

tasks that is a bad idea. In order to predict the next

word in a sentence, it is essential to know which

words came before it. [4]

II. Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) is a type of

artificial neural network which uses sequential data

or time series data. They are incorporated into

popular applications such as Siri, voice search, and

Google Translate [5]. They are distinguished by their

“memory” as they take information from prior inputs

to influence the current input and output. RNNs are

called recurrent because they perform the same task

for every element in a sequence, with the output

being dependent on the previous computations and

inputs.

Another distinguishing characteristic of recurrent

networks is that they share parameters across each

layer of the network. While feedforward networks

have different weights across each node, recurrent

neural networks share the same weight parameter

within each layer of the network.

Recurrent Neural Network (RNNs)[6]

● Input: x(t) is taken as the input to the network at

time step t. For example, x1, could be a vector

corresponding to a word of a sentence.

● Hidden state: h(t) represents a hidden state at

time t and acts as “memory” of the network. h(t)

is calculated based on the current input and the

previous time step’s hidden state:

h(t)= f(U.x(t) + W.h(t−1))

The function f is taken to be a non-linear

transformation such as tanh, ReLU.

● Weights: The RNN has input to hidden

connections parameterized by a weight matrix U,

hidden-to-hidden recurrent connections

parameterized by a weight matrix W, and

hidden-to-output connections parameterized by

a weight matrix V and all these weights

(U,V,W) are shared across time.

● Output: o(t) illustrates the output of the network.

In the figure there are further arrows

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

374

after o(t) which is also often subjected to non-

linearity,especially when the network contains

further layers downstream [6].

Recurrent neural network utilises Backpropagation

Through Time algorithm (BPTT) to determine the

gradients (slope of the loss function), which is slightly

different from traditional backpropagation. The main

principle of BPTT is similar to traditional

backpropagation, where the model trains itself by

calculating errors from its output layer to its input

layer [5]. BPTT differs from the traditional approach

in that BPTT sums errors at each time step whereas

feedforward networks do not need to sum errors as

they do not share parameters across each layer.

III. Long Short Term Memory Networks (LSTMs)

Long Short Term Memory networks – usually called

“LSTMs” – are a special kind of RNN, capable of

learning long-term dependencies. The issue of

gradients approaching zero due to BPTT is aptly

termed as the ‘vanishing gradients problem’, and it

was for many years the chief issue with recurrent

neural networks, limiting their ability to learn

correlations between inputs that were temporally

distant from one another (particularly long sequences

of data) [9].

The key to LSTMs is ‘cell state’ – the horizontal line

at the top. For the most part, the purpose of the cell

state is to pass information down the chain without

transforming it. The LSTM does have the ability to

remove or add information to the cell state from the

previous states, carefully regulated by structures

called gates. Gates optionally allow information

through, and are made of sigmoid activated neural

network layer and a pointwise multiplication

operation [9].An LSTM has protect and control the

cell state

Understanding LSTM Networks -- colah's blog[9]

The first step is to decide what information is not

relevant to be considered in the next hidden layers

and will be “thrown away” from the cell state. This

decision is made by the first gate layer consisting of a

sigmoid layer called the “forget gate layer”. For each

number in the cell state vector, the forget gate

outputs a number between zero and one.

The second gate layer is responsible for adding

features from the current input to the cell state. The

second layer further contains two parts – first the

“input gate layer” which is another sigmoid layer that

produces values between zero and one, determining

which values will be updated. The second part of the

layer employs a tanh activation function to produce

new values to be added to cell state. After values are

produced by the sigmoid and tanh, they are point-

wise multiplied

Finally, the output of the cell state is generated which

will be forwarded to the next layer. Unsurprisingly, a

sigmoid layer is used to output values between 0 and

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

375

1, determining which components of cell state will be

part of the next hidden state (based on relevance to

the input at hand) [9].

This decoupling of cell state and hidden state is

noteworthy, because it means that the network can

remember features in cell state for longer periods of

time without including them in the hidden state that

affects the current prediction [8]

IV. Sequence to Sequence Models (Seq2Seq)

Despite their flexibility and power, deep neural

networks can only be applied to problems whose

inputs and targets can be sensibly encoded with

vectors of fixed dimensionality. It is a significant

limitation since many important problems are best

expressed with sequences whose lengths are not

known a-priori [12]. For example, speech recognition

and machine translation are sequential problems.

Likewise, question answering can also be seen as

mapping a sequence of words representing the

question to a sequence of words representing the

answer. It is therefore clear that a domain-

independent method that learns to map sequences to

sequences would be useful.

Sequence to sequence models are a straightforward

application of the Long Short Term Memory

architecture. A novel neural network architecture

that learns to encode a variable-length sequence into

a fixed-length vector representation and to decode a

given fixed-length vector representation back into a

variable-length sequence [13].

Chatbots with Seq2Seq (suriyadeepan.github.io)[14]

The idea is to use one LSTM (called the encoder) to

read the input sequence, one time step at a time, to

obtain fixed dimensional vector representation, and

then use another LSTM (called the decoder) to extract

the output sequence from that vector. Each hidden

state influences the next hidden state and the final

hidden state is called the context or thought vector

since it represents the intention of the sequence.

From the context vector, the decoder generates

another sequence, one symbol at a time.

In order to solve the variable length problem, the

concept of padding was introduced. Prior to training,

the dataset is modified from variable length sequences

to fixed length sequences. Special symbols are used to

fill in the sequences. For example,

EOS: End of sentence,

PAD: Filler,

UNK: Unknown Symbol.

Introduction of padding did solve the problem of

variable length sequences but for datasets with very

large sequences, the smaller sequences will require a

lot of pad symbols in the encoded version. This might

overshadow the actual information in the sentence.

Bucketing aims to solve this problem, by putting the

sequences into buckets of different sizes [14].

V. Transformer Models

Most sequence generation models have an encoder-

decoder structure (as in sequence to sequence model).

In the case of the Transformer model, the encoder

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

376

maps an input sequence of symbol representations

(x1, . . . , xn) to a sequence of continuous

representations z = (z1, ..., zn). Given z, the decoder

then generates an output sequence (y1, . . . , ym) of

symbols one element at a time. At each step the

model is auto-regressive, consuming the previously

generated symbols as additional input when

generating the next[15].

The Encoder and Decoder models used in the

Transformer do not use LSTM, GRU or RNNs hence

there are no recurrent connections and thus no

“memory” of previous states are implemented.

Transformers get around this lack of memory by

perceiving entire sequences simultaneously.

Attention Is All You Need - Transformer Model[15]

V.1 Input Embeddings

Here is a detailed visualisation of the embedding

process in Natural Language Processing models.

Consider an input from the user,

Input – Do you like Game of Thrones

 The first step is to fetch the indices of the words

occurring in the input sequence from the vocabulary

of all the learned words by the model. Therefore we

get,

Vocabulary Indices – [2456, 56, 6674, 5345, 86, 145]

Now these indices are fed as the input to the Input

Embedding Module of the network. Here, against

each of these word indices obtained from the

vocabulary, a vector is generated. Initially, the vectors

are filled with random numbers. Later on, during

training, the model updates them. These vectors are

called word embeddings. In the transformer model

presented in the paper, “Attention is All you Need”,

the embedding size or the length of these vectors are

512.

Example of a word embedding

Each element of the vector or in other words, each

“dimension” of the word embedding tries to capture a

unique linguistic feature for that word. These could

be things like whether it is a verb or a pronoun or

something else. Now, n-dimensional (here it's 5-

dimensional) word embeddings can be represented on

a n-dimensional hyperspace, where words sharing

similar linguistic features are plotted closer to each

other while dissimilar word embeddings are plotted

farther apart from each other.

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

377

Word Embeddings and their representation

Hence, the main purpose of the embedding layer is to

select the proper embedding of the input words and

pass them on to the positional encoding module.

V.2 Positional Encoding

Position and order of words in a sentence is an

essential part of any language. They define the

grammar and thus the actual semantics of a sentence.

Recurrent Neural Networks (RNNs) inherently take

the order of word into account i.e. they parse a

sentence word by word in a sequential manner, but

the Transformer architecture ditched the recurrence

mechanism in favor of multi-head self-attention

mechanism (discussed later). Avoiding the RNNs’

method of recurrence will result in massive speed-up

in the training time and theoretically, it can capture

longer dependencies in a sentence[20].

As each word in a sentence simultaneously flows

through the Transformer’s encoder or decoder stack

(layers of encoder or decoder), the model by itself

does not have any sense of the position or order for

each word. Consequently, there’s still the need for a

way to add some information about the positions into

the input embeddings.

So a new set of vectors called the position embeddings

are introduced, one for each word embedding. Thay

have the same embedding size (vector length) as that

of the word embeddings. Generally, the position

embeddings and the word embeddings are simply

added to generate a new set of embeddings; only this

time these embeddings also contain the position as

well as the linguistic information of the words in the

sentence.

Positional Embeddings

The tricky part here is to set the values of the various

position embeddings. The authors of the paper

“Attention is All you Need” came up with a clever

trick to use wave functions (sine and cosine) to

capture position information. Here,

• pos is the position index of the word in the input

sequence.

• dmodel is the embedding size (which is 512).

• i represents the indices of each of the position

embedding dimensions

So, basically, for every odd value of pos on the

position vector, create a vector using the cosine

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

378

function. For every even value of pos, create a vector

using the sine function

Visualization of Positional Embeddings when plotted

using sine and cosine functions [20]

Here is how the position embedding curves looks like

when plotted in full scale against the embedding size

(i). The above plot is a great way to visualise the

position embedding dimensions (or values) for a

particular embedding size. Finally, the position

embeddings are added to their corresponding word

embeddings.

From now on, the final embeddings of the words will

be referred to as the position embeddings for easier

understanding.

V.3 Encoder Stack

This module consists of a stack of N Encoder Layers.

These encoder layers, each of which has two

sublayers – the Multi-Head Attention Layer and the

Position-wise Full Connected Feed-Forward Network

layer. Finally each encoder layer has an Add-Norm

(Addition and Normalization) layer component.

Encoder Layer[20]

All the operations inside each encoder stack are

implemented to encode the input embeddings to a

continuous representation with attention information.

This will help the decoder focus on the appropriate

words in the input during the decoding process. The

encoder can be stacked on top of each other N times

to further encode the information, where each stack

has the opportunity to learn different attention

representations therefore potentially boosting the

predictive power of the transformer network and

offer more parallelization.

V.3.1 Multi Head Attention Layer

The Multi-Head Attention layer in the encoder

applies a specific attention mechanism called the self-

attention. The task of self attention is to find out the

relationship of each word in a sequence with all the

other words in that sequence.

The input to the attention layer, in the case of

encoders, is the position embedding matrix. Three

identical copies of the input embeddings are made –

Query (Q), Key (K) and Value (V). The concept of

query, key and value comes from retrieval systems

like search engines.

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

379

Scaled Dot Product Attention[18]

After feeding the query, key and value matrices

through a linear layer, the queries and keys undergo a

dot-product matrix multiplication operation to

produce a score matrix. The score matrix determines

how much focus should a particular word put on

other words. So each word will have a score that

corresponds to other words in the time-step. The

higher the score the more focus. This is how the

queries are mapped to the keys.

Example of a Score Matrix[20]

Then these scores are scaled down by dividing each

score by the square root of the dimension of the query

and key (which is dk). The scaling is done in order to

achieve more stable and normalized gradients since

multiplication can have exploding effects.

Softmax operation on the scaled scores to get

attention weights[20]

A softmax of the scaled scores is performed to get the

attention weights, which outputs probability values

between 0 and 1. By doing a softmax the higher scores

get elevated, and lower scores are depressed. This

allows the model to be more confident about which

words to attend too.

Finally, the attention weights are multiplied to the

value matrix to get an output matrix. The higher

softmax scores will keep the value of words the model

learns is more important. The lower scores will

drown out the irrelevant words. The following

equation summarizes the whole process,

The query, key and value matrices go through the

self-attention process individually. Each self-attention

process is called a head. Each head produces an output

vector that gets concatenated into a single vector

before going through the final linear layer. In theory,

each head would learn something different therefore

giving the encoder model more representation power.

Multi-Head Attention Layer[18]

A critical and apparent disadvantage of this fixed-

length context vector design as used in sequence to

sequence models has the incapability of the system to

remember longer sequences. It often forgets the

earlier parts of the sequence once it has processed the

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

380

entire sequence. The attention mechanism was born

to resolve this problem. [18]

The multi-headed attention output vector is added to

the original positional input embedding. This is called

a residual connection. The output of the residual

connection goes through a layer normalization.

V.3.2 Feed Forward Network and Normalization

The normalized residual output gets projected

through a pointwise feed-forward network for further

processing. The pointwise feed-forward network is a

couple of linear layers with a ReLU (Rectified Linear

Unit) activation function in between. The output of

that is then again added to the input of the Add and

Normalize layer and further normalized.

Rectified Linear Unit activation function

The residual connections help the network train, by

allowing gradients to flow through the networks

directly. The layer normalizations are used to stabilize

the network which results in substantially reducing

the training time necessary. The pointwise

feedforward layer is used to project the attention

outputs potentially giving it a richer representation.

V.4 The Decoder Stack

The main purpose of the decoder is to generate text

sequences. The decoder stack also comprises multiple

decoder layers. Each decoder layer has similar sub-

layers as the encoder layers – it has two multi-head

attention layers (one is masked, discussed later), a

pointwise feed-forward layer, and layer normalization

(add and normalization) layers after each sub-layer.

These sub-layers behave similarly to the layers in the

encoder but each multi-headed attention layer has a

different job. The decoder is autoregressive, it begins

with a start token, and it takes in a list of previous

outputs as inputs, as well as the encoder outputs that

contain the attention information from the input[20].

The beginning of the decoder is pretty much the same

as the encoder. The input goes through an embedding

layer and positional encoding layer to get positional

embeddings. The positional embeddings get fed into

the first multi-head attention layer which computes

the attention scores for the decoder’s input only.

V.4.1 Masked Multi-head Attention Layer

This multi-headed attention layer operates slightly

differently. Since the decoder is autoregressive and

generates the sequence word by word, the model

needs to prevent it from taking future words from the

encoder into account[20]. This is true for all other

words, where they can only attend to previous words.

Therefore, the model needs to prevent computing

attention scores for future word embeddings. This

method is called masking and hence this attention

layer is called Masked Multi-Head Attention Layer.

To prevent the decoder from taking future words into

account, a look-ahead mask is applied to the scaled

score matrix. The look-ahead mask is a matrix with

the same size as the score matrix with values of zeros

and negative infinities only. The mask is simply added

to the scales score matrix, and a masked score matrix

is obtained.

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

381

Using Look-Ahead Mask to generate Masked Score

Matrix[20]

The reason for the mask is because once the model

calculates the softmax of the masked scores, the

negative infinities get zeroed out, leaving zero

attention scores for future tokens. This essentially

tells the model to put no focus on those words whose

attention scores are zero. This masking is the only

difference in how the attention scores are calculated

in the first multi-headed attention layer.

This layer still has multiple heads that the mask is

being applied to, before getting concatenated and fed

through a linear layer for further processing. The

output of the first multi-headed attention is a masked

output vector with information on how the model

should attend to the decoder’s input.

Softmax Operation on the Masked Score Matrix[20]

For the second multi-headed attention layer, the

encoder’s outputs are the queries and the keys, and

the first multi-headed attention layer outputs act as

the values. This process matches the encoder’s input

to the decoder’s input, allowing the decoder to decide

which encoder input is relevant to put a focus on. The

output of the second multi-headed attention goes

through a pointwise feedforward layer for further

processing.

The Transformer, a model architecture eschewing

recurrence and instead relying entirely on an

attention mechanism to draw global dependencies

between input and output allows for significantly

more parallelization [15] and can reach a new state of

the art in translation quality.

VI. Switch Transformers

Large scale training has been an effective path

towards flexible and powerful neural language models.

Simple architectures – backed by a generous

computational budget, dataset size and parameter

count – surpass more complicated algorithms.

Inspired by the success of model scale, but seeking

greater computational efficiency, a sparsely-activated

expert model was proposed: the Switch Transformer

[20]

Switch Transformer Encoder Block (arXiv:2101.03961)

The guiding design principle for Switch Transformers

is to maximize the parameter count of a Transformer

model in a simple and computationally efficient way.

Importantly, this work advocates training large

models on relatively small amounts of data as the

computationally optimal approach.

In a Switch Transformer feed-forward neural network

(FFN) layer, each token passes through a router

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

382

function which sends it to a single FNN, known as an

‘expert.’ While each token passes through a single

FFN, thecomputation does not increase with the

number of experts. “We replace the dense feed-

forward network (FFN) layer present in the

Transformer with a sparse Switch FFN layer. The

layer operates independently on the tokens in the

sequence. We diagram two tokens (x1 = “More” and

x2 = ‘Parameters’ in the figure) being routed across

four FFN experts, where the router independently

routes each token. The switch FFN layer returns the

output of the selected FFN multiplied by the router

gate value,” wrote Google researchers [20].

VII. Result and Discussion

Transformer based self-supervised pre-trained models

have transformed the concept of Transfer learning in

Natural language processing (NLP) using Deep

learning approach. Self-attention mechanism made

transformers more popular in transfer learning across

a broad range of NLP tasks [21].

An experiment as carried out and published in the

paper by Xiaoyu Yin, Dagmar Gromann and Sebastian

Rudolph [23], which used different datasets to train

RNNs based models, CNN based models and

Transformer models and compare their performance,

accuracy and BLEU scores. BLEU (bilingual

evaluation understudy) is an algorithm for evaluating

the quality of text which has been machine-translated

from one natural language to another. Although the

models were not trained on large sequences of data, it

is still an interesting experiment.

Table 1 - BLEU scores for all models[22]

Table 2 - Accuracy (in %) | F1 score[22]

In the above tables, T represents training scores and V

refers to validation scores. The rows represent the

scores of different RNN based and ConS2S models and

finally, the transformer model. While the columns

refer to the different datasets on which these models

were trained and validated.

In Table 1, BLEU scores are reported on the

validation V and test T set for each dataset for the best

performing version of each model. ConvS2S

outperforms all other models on most datasets.

Similarily in Table 2, there are some cases where

Transformer outperforms ConS2S in terms of

Accuracy. It is evident that, although Transformer is

proved as the best model to handle really long

sequences, the RNN and CNN based model could still

work very well or even better than Transformer in

the short-sequences task.

Another experiment in Machine Translation

presented in the paper “Attention is all you Need”

[15], the participating models were trained on the

standard WMT 2014 English-German dataset

consisting of about 4.5 million sentence pairs. For

English-French, a significantly larger WMT 2014

English-French dataset consisting of 36M sentences

and split tokens into a 32000 word-piece vocabulary

was used. Sentence pairs were batched together by

approximate sequence length. Each training batch

contained a set of sentence pairs containing

approximately 25000 source tokens and 25000 target

tokens.

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

383

BLEU scores on the English-to-German and English-

to-French newstest2014 tests [15]

On the WMT 2014 English-to-German translation

task, the big transformer model (Transformer (big))

outperforms the best previously reported models

(including ensembles) by more than 2.0 BLEU,

establishing a new state-of-the-art BLEU score of 28.4.

Even the base model surpasses all previously

published models and ensembles, at a fraction of the

training cost of any of the competitive models. On the

WMT 2014 English-to-French translation task, the

big model achieves a BLEU score of 41.0,

outperforming all of the previously published single

models, at less than 1/4 the training cost of the

previous state-of-the-art model.

This is to be noted that the experiments conducted

are all based on the base transformer model. Since

then, based on the basic architecture, researchers

have introduced BERT, RoBERTa, ALBERT,

Transformer XL, and many more state-of-the-art

models. These models further improve upon the

underlying transformer architecture in many aspects

providing higher accuracy and better performance.

VIII. Conclusion and Future Scope

The recent developments in language modeling offer

a lot of improvements in the field of Natural

Language Processing. The transformer architecture

has become the preferred deep-learning model for

conversational AI research. Many efforts have been

towards increasing the size of these models, primarily

measured in the number of parameters. For

translation tasks, the Transformer can be trained

significantly faster than architectures based on

recurrent or convolutional layers [17]. While these

models provide excellent results, further efforts can

make them adapt better to a specific domain.

BAAI’s 1.75 trillion parameters, Wu Dao 2.0 and

OpenAI’s GPT-3 175 billion parameters, alongside

HuggingFace DistilBERT and Google GShard, are

other popular language models. Compared to Google’s

T5 NLP model, the baseline version of the Switch

Transformer achieved a target pre-training perplexity

metrics in 1/7 the training time. It also outperformed

a T5-XXL on the perplexity metric, with comparable

or better performance on downstream NLP tasks,

despite training on half of the data.

IV. REFERENCES

[1]. IBM Cloud Education,“Conversational AI”, 31st

August 2020.

[2]. IBM Cloud Education,“Neural Networks”, 17th

August 2020.

[3]. Simon Haykin, “Neural Networks and Learning

Machines”, Pearson Education.

[4]. Denny Britz, “Recurrent Neural Network

Series”, 17th September 2015.

[5]. IBM Cloud, “Recurrent Neural Networks”, 14th

September 2020.

[6]. Cem Dilmegani,“In-Depth Guide to Recurrent

Neural Networks (RNNs) in 2021”, 16th

November 2021

[7]. Javaid Nabi, “Recurrent Neural Networks

(RNNs)”, 12th July 2019.

[8]. I. Goodfellow, Y. Bengio, and A. Courville,

“Deep Learning”. MIT Press, 2016.

[9]. Pranav Pillai, “Recurrent Neural Networks, the

Vanishing Gradient Problem, and Long Short-

Term Memory“, 17th July 2019.

[10]. Christopher Olah, “Understanding LSTM

Networks”, 27th August 2015.

Volume 7, Issue 6, November-December-2021 | http://ijsrcseit.com

Arighna Chakraborty et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, November-December-2021, 7 (6) : 372-384

384

[11]. Cho, K.; Merrienboer, B.; Gülçehre Ç.;

Bougares, F.; Schwenk, H.; Bengio, Y.,

“Learning Phrase Representations using RNN”.

In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language

Processing (EMNLP), Doha, Qatar, 25–29

October 2014.

[12]. Marc Moreno Lopez, Jugal Kalita, “Deep

Learning applied to NLP”, arXiv:1703.03091.

[13]. Ilya Sutskever, Oriol Vinyals, Quoc V.Le,

“Sequence to Sequence Learning with Neural

Networks”,10th September 2014.

[14]. Kyunghyun Cho, Bart vanMerrienboer, Caglar

Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, Yoshua Bengio, “Learning

Phrase Representations using RNN Encoder–

Decoder for Statistical Machine Translation”,

3rd June 2014.

[15]. Jonas Gehring Michael Auli David Grangier

Denis Yarats Yann N. Dauphin,“Convolutional

Sequence to Sequence Learning”,

arXiv:1705.03122, 25th July 2017

[16]. Suriyadeepan Ram, “Chatbots with Seq2Seq”,

28th June 2016.

[17]. MathsWorks.com,“Visualize Word Embeddings

Using Text Scatter Plots”

[18]. Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, Illia Polosukhin, “Attention is

All You Need”, 6th Dec 2017.

[19]. Maxime, “What is a Transformer ?”, Inside

Machine Learning, 4th January 2019.

[20]. Michael Phi, Illustrated Guide to Transformers-

Step by Step Explanation, 1st May 2020

[21]. Buomsoo Kim, “Attention in Neural Networks”,

11th November 2020.

[22]. Harshall Lamba,“Intuitive Understanding of

Attention Mechanism in Deep Learning”,

Towards Data Science, 20th March 2019.

[23]. Ketan Doshi, “Transformers Explained

Visually”, Towards Data Science, 17th January

2017.

[24]. Saurav Singla , Ramachandra N., “Comparative

Analysis of Transformer Based Pre-Trained

NLP Models”, 30th November 2020.

[25]. Xiaoyu Yin, Dagmar Gromann, Sebastian

Rudolph, “Neural Machine Translating from

Natural Language to SPARQL”, 21st June 2019.

Cite this article as :

Arighna Chakraborty, Asoke Nath, "Scope and

Challenges in Conversational AI using Transformer

Models", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 7

Issue 6, pp. 372-384, November-December 2021.

Available at

doi : https://doi.org/10.32628/CSEIT217696

Journal URL : https://ijsrcseit.com/CSEIT217696

Author’s Profile

Dr. Asoke Nath is working as

Associate Professor in the

Department of Computer

Science, St. Xavier’s College

(Autonomous), Kolkata. He is

engaged in research work in the

field of Cryptography and

Network Security, Steganography, Green Computing,

Big data analytics, Li-Fi Technology, Mathematical

modelling of Social Area Networks, MOOCs,

Quantum Computing etc. He has published more

than 257 research articles in different Journals and

conference proceedings.

Arighna Chakrborty is the

final year student of Masters

in Computer Science St.

Xaviers College (Autonomous),

Kolkata. Currently he is

involved in Web

Development, App

Development, Machine

Learning.

https://doi.org/10.32628/CSEIT217696
https://search.crossref.org/?q=10.32628/CSEIT217696&from_ui=yes
https://ijsrcseit.com/CSEIT217696

