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ABSTRACT 

 

Partial Differential Equations has many physical applications in various fields such as Hydraulics, Mechanics and 

Theory of elasticity and so on. They have much wider range of application than Ordinary Differential equations 

which can model only the simplest physical system. Laplace equation, Navier-Stokes, Wave& Heat equations 

play a vital role in Fluid Dynamics & Electromagnetism. Schrodinger’s equation constitutes a fundamental part 

of Quantum Physics. In Partial Differential Equations, one dimensional wave equation is one of the major 

mathematical problems whose governing equation signifies transverse vibrations of an elastic string. To get the 

solution of wave equation, various analytical as well as numerical methods are available..In the present article, 

we take an overview of some of the analytical methods. Separation of Variables is most commonly used method 

for wave equations. In which, given function is expressed as a product of two single variable functions which 

reduces the partial differential equation to two ordinary differential equations. Determining the solution of these 

ordinary differential equations with boundary conditions defines the general solution of wave equation. 

D’Alembert’s method is transforming the partial differential equation by introducing two new independent 

variables corresponding to an explicit solution of wave equation along with boundary conditions. In Laplace 

transform method, the transform is used with respect to one of the variables. This converts to an ordinary 

differential equation, which gives the solution by boundary conditions. Another approach to find the solution 

using finite Fourier sine transform is also cited here. 

Keywords : Wave equation, Laplace Transform, Partial Differential equation, Computational Mathematics. 

 

I. INTRODUCTION 

 

In the present paper, we take an overview of various 

analytical methods of solving one dimensional wave 

equation. One dimensional wave equation along with 

initial and boundary condition constitutes initial 

boundary value problem (IBVP), which occurs 

frequently in many physical phenomena. We obtain 

an analytical solution of IBVP by separation of 

variable method, D’ Alembert’s method , Laplace 

transform method and Finite Fourier sine transform[5]. 

The vibration of string problem was first solved by 

John Bernoulli, a Swiss Mathematician. He has 

assumed the string as a flexible thread which has a 

finite number of equally distanced beads or weights 

placed along it. This was time independent equation. 
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But Jean Le Rond D’Alembert, a French 

Mathematician, introduced time variable and derived 

one dimensional wave equation in 1746. In 1750, Swiss 

Mathematician, Leonard Euler gave a solution of the 

Wave equation using Fourier series. Pierre-Simon de 

Laplace has given the solution to potential equation in 

the study of Gravitational pull. Joseph Fourier has 

derived heat equation and Solution by separation of 

variables in 1807 [1]. The rest of this article is 

systematized as follows. Section 2 talks about 

mathematical formulation of the IBVP. Section 3 

describes solution of Wave equation using method of 

separation of variables, D’ Alembert’s method , 

Laplace transform method and Finite Fourier sine 

transform method. Section 4 summarizes the article. 

 

II. MATHEMATICAL FORMULATION OF THE 

PROBLEM: 

 

Consider a uniformly stretched elastic string with 

length   𝑎 , which is fixed at two points O & A.  

Constant tension 𝜏 is applied on it. The tension 𝜏  is to 

be considered large than the weight of the string so 

that the gravitational pull becomes negligible. 

Let the string be released from rest and allowed to 

vibrate [1, 2]. 

The problem is to study the motion of the string with 

no external forces acting on it. Assume that each point 

of the string makes a small vibration at right angle to 

the equilibrium position of the string in one place. 

 
Figure No-1   vibrating string 

Let the motion of the string takes place in XY plane. 

String is fixed at O & A on the X-axis. Let the string be 

in a position OPA at time t. Consider motion element 

P(x, y) & Q (𝑥 + ∆𝑥, 𝑦 + ∆𝑦)  where tangents make 

angle 𝜃 & 𝜃 + ∆𝜃 with X axis respectively. The 

element is moving upward with acceleration  
𝜕2𝑦

𝜕𝑡2  . The 

vertical component of force is acting on it is given as  

 

𝐹 = 𝜏 sin(𝜃 + ∆𝜃) − 𝜏 sin(𝜃) 

= 𝜏(sin(𝜃 + ∆𝜃) − sin 𝜃) 

= 𝜏(tan(𝜃 + ∆𝜃) − tan 𝜃) 

 

=𝜏 [  [
𝜕𝑦

𝜕𝑥
]𝑥+∆𝑥 −[

𝜕𝑦

𝜕𝑥
]𝑥],  

where last equation is due to the fact that 𝜃 is very 

small 

If   𝜇 is the mass of the string per unit length then by 

using Newton’s 2nd law of motion 

 

𝜇𝛿𝑥
𝜕2𝑦

𝜕𝑡2 =  𝜏 ([
𝜕𝑦

𝜕𝑥
]𝑥+∆𝑥 −[

𝜕𝑦

𝜕𝑥
]𝑥), 

 

⇒
𝜕2𝑦

𝜕𝑡2 =  
𝜏

𝜇
[

[
𝜕𝑦

𝜕𝑥
]𝑥+∆𝑥 −[

𝜕𝑦

𝜕𝑥
]𝑥

∆𝑥
]   

  (1)    

   

Taking limits Q→ 𝑃 in equation (1) we get    ∆𝑥 → 0,  

𝜕2𝑦

𝜕𝑡2
=  

𝜏

𝜇

𝜕

𝜕𝑥
[
𝜕𝑦

𝜕𝑥
], 

 

𝜕2𝑦

𝜕𝑡2
=  

𝜏

𝜇

𝜕2𝑦

𝜕𝑥2
 . 

 

Let   
𝜏

𝜇
= 𝑐2 ⇒

𝜕2𝑦

𝜕𝑡2 =  𝑐2 𝜕2𝑦

𝜕𝑥2   is the classical one 

dimensional wave equation. 

 

 

 

 

 

III. ANALYTICAL METHODS FOR WAVE 

EQUATIONS 

 

3.1 Method of Separation of Variables[1,2] 

Consider one dimensional wave equation 
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𝜕2𝜂

𝜕𝑡2 = 𝑐2 𝜕2𝜂

𝜕𝑥2   -------------- (I) 

along with boundary conditions 𝜂(0, 𝑡) = 0, 𝜂(𝑎, 𝑡) =

0 

Let  𝜂(𝑥, 𝑡) = 𝐹(𝑥)𝐺(𝑡)  , where 𝐹  is a function of 

𝑥 & 𝐺 is a function of 𝑡 only. Then  
𝜕𝜂

𝜕𝑡
= 𝐹 

𝑑𝐺

𝑑𝑡
  &   

𝜕𝜂

𝜕𝑥
= 𝐺 

𝑑𝐹

𝑑𝑥
, 

𝜕2𝜂

𝜕𝑡2 = 𝐹 
𝑑2𝐺

𝑑𝑡2   &  
𝜕2𝜂

𝜕𝑥2 = 𝐺 
𝑑2𝐹

𝑑𝑥2. 

And equation (I) becomes 

𝐹 
𝑑2𝐺

𝑑𝑡2 = 𝑐2 𝐺 
𝑑2𝐹

𝑑𝑥2 . 

Separating variables, 
𝑑2𝐺

𝑑𝑡2

𝑐2𝐺
=  

𝑑2𝐹

𝑑𝑥2

𝐹
= 𝑘 or    

𝐺′′

𝑐2𝐺
=

𝐹′′

𝐹
= 𝑘 

𝑑2𝐺

𝑑𝑡2 − 𝑘𝑐2𝐺 = 0   and  

  
𝑑2𝐹

𝑑𝑥2 − 𝑘𝐹 = 0 , with boundary conditions   𝜂(0, 𝑡) =

0,   𝜂(𝑎, 𝑡) = 0   ∀𝑡 

However     𝜂(𝑥, 𝑡) = 𝐹(𝑥) 𝐺(𝑡) , thus 𝜂(0, 𝑡) = 0 ⇒

𝐹(0)  𝐺(𝑡) = 0    & 

 𝜂(𝑎, 𝑡) = 0 ⇒ 𝐹(𝑎)  𝐺(𝑡) = 0   

If   𝐺(𝑡) = 0 ⇒ 𝑘 = 0 ⇒ 𝑇𝑟𝑖𝑣𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , hence 

𝐺(𝑡) ≠ 0 

∴ 𝐹(0) = 0   &   𝐹(𝑎) = 0  

i. If 𝑘 = 0 ⇒ 

𝐹′′ = 0 ⇒ 𝐹(𝑥) = 𝐶1𝑥 + 𝐶2  

𝐹(0) = 0 ⇒ 𝐶2 = 0  & 𝐹(𝑎) = 0 ⇒ 𝐶1 = 0    

∴ 𝐹(𝑥) = 0 

We get trivial solution in this case. 

ii. If  𝑘 > 0 𝑠𝑎𝑦 𝑘 = 𝑚2 
𝐹′′

𝐹
= 𝑚2 ⇒ 𝐷2 − 𝑚2 = 0 is 

corresponding auxiliary equation  

𝐹(𝑥) = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥  

𝐹(0) = 0 ⇒ 𝐶1 + 𝐶2 = 0 &  

𝐹(𝑎) = 0 ⇒ 𝐶1𝑒𝑚𝑎 + 𝐶2𝑒−𝑚𝑎=0 

⇒  𝐶1 = 0 &𝐶2 = 0 ∴ 𝐹(𝑥) = 0  

We get trivial solution in this case. 

iii. If  𝑘 < 0 𝑠𝑎𝑦 𝑘 = −𝑚2 , 𝑚 > 0 
𝐹′′

𝐹
= −𝑚2 ⇒ 𝐷2 + 𝑚2 = 0 is 

corresponding auxiliary equation  

𝐹(𝑥) = 𝐶1 cos 𝑚𝑥 + 𝐶2 sin 𝑚𝑥, 

𝐹(0) = 0 ⇒ 𝐶1 = 0 &  𝐹(𝑎) = 0 ⇒

𝐶2 sin 𝑚𝑎 = 0 ⇒ sin 𝑚𝑎 = 0  

where  𝑚𝑎 = 𝑛𝜋 ⇒ 𝑚 = 𝑛𝜋
𝑎⁄  , 𝑛 = 1,2,3, …. 

Also, 
𝐺′′

𝑐2𝐺
= −𝑚2 ⇒ 

𝐷2 + 𝑐2𝑚2 = 0 ⇒  

𝐺(𝑡) =  𝐶3 cos 𝑐𝑚𝑡 + 𝐶4 sin 𝑐𝑚𝑡  

𝐺𝑛(𝑡) =  𝐶3 cos (
𝑛𝜋𝑐𝑡

𝑎
) + 𝐶4 sin (

𝑛𝜋𝑐𝑡

𝑎
)  

The solution  

𝜂(𝑥, 𝑡) = (𝐶2 sin (
𝑛𝜋𝑥

𝑎
)) (𝐶3 cos (

𝑛𝜋𝑐𝑡

𝑎
) +

𝐶4 sin (
𝑛𝜋𝑐𝑡

𝑎
))  

Or 𝜂(𝑥, 𝑡) = (𝐴𝑛 cos (
𝑛𝜋𝑐𝑡

𝑎
) +

𝐵𝑛 sin (
𝑛𝜋𝑐𝑡

𝑎
)) (sin (

𝑛𝜋𝑥

𝑎
)) 

𝜂(𝑥, 𝑡) = ∑ (𝐴𝑛 cos (
𝑛𝜋𝑐𝑡

𝑎
) +∞

𝑛=1

𝐵𝑛 sin (
𝑛𝜋𝑐𝑡

𝑎
)) (sin (

𝑛𝜋𝑥

𝑎
))  

This is the general solution of one dimensional wave 

equation (1) along with boundary conditions. 

 

3.2 D’ Alembert’s Method[1,2] 

Consider 
𝜕2𝜂

𝜕𝑡2 = 𝑐2 𝜕2𝜂

𝜕𝑥2    

   (1) 

𝑤ℎ𝑒𝑟𝑒   𝑐2 = 𝜏
𝜇⁄   

Let 𝛼 = 𝑥 + 𝑐𝑡  &   𝛽 = 𝑥 − 𝑐𝑡  then 𝜂 = 𝑓(𝛼, 𝛽) 

∴  𝜂𝑥 = 𝜂𝛼𝛼𝑥 + 𝜂𝛽𝛽𝑥 ⇒ 𝜂𝑥 = 𝜂𝛼 + 𝜂𝛽  

   (2) 

Similarly, 𝜂𝑥𝑥 = (𝜂𝛼 + 𝜂𝛽)
𝑥
 

= (𝜂𝛼 + 𝜂)𝛼𝛼𝑥 + (𝜂𝛼 + 𝜂𝛽)
𝛽

𝛽𝑥  

𝜂𝑥𝑥 = 𝜂𝛼𝛼 + 2𝜂𝛼𝛽 + 𝜂𝛽𝛽 (3) 

Assuming all the partial derivatives are continuous, we 

get   𝜂𝛼𝛽 = 𝜂𝛽𝛼 

Now differentiating with respect to t,  𝜂 = 𝜂𝛼𝛼𝑡 +

𝜂𝛽𝛽𝑡 ⇒ 𝜂𝑡 = 𝑐𝜂𝛼 + ( −𝑐 )𝜂𝛽 

⇒ 𝜂𝑡 = 𝑐(𝜂𝛼 − 𝜂𝛽)    (4)  

&𝜂𝑡𝑡 = 𝑐(𝜂𝛼 − 𝜂𝛽)
𝑡
 

= 𝑐(𝜂𝛼 − 𝜂𝛽)
𝛼

𝛼𝑡 + 𝑐(𝜂𝛼 − 𝜂𝛽)
𝛽

𝛽𝑡 

𝜂𝑡𝑡 = 𝑐2(𝜂𝛼𝛼 − 2𝜂𝛼𝛽 + 𝜂𝛽𝛽)  (5) 
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Substituting in equation (1) 

𝑐2(𝜂𝛼𝛼 − 2𝜂𝛼𝛽 + 𝜂𝛽𝛽) = 𝑐2(𝜂𝛼𝛼 + 2𝜂𝛼𝛽 + 𝜂𝛽𝛽) 

⇒ 𝜂𝛼𝛽 = 0    (6) 

Integrating (6) with respect to 𝛽   & then w. r. t  𝛼 ⇒

 
𝜕𝜂

𝜕𝛼
= 𝑓(𝛼)      

&  𝜂 = ∫ 𝑓(𝛼)𝑑𝛼 + 𝑔(𝛽) 

here  𝑓(𝛼)&  𝑔(𝛽) are arbitrary functions of 𝛼 & 𝛽. 

∴ 𝜂 = ∅(𝛼) + 𝑔(𝛽)  ⇒ 𝜂(𝑥, 𝑡) = ∅(𝑥 + 𝑐𝑡) + 𝑔(𝑥 −

𝑐𝑡)   (7) 

is the solution of wave equation by D’ Alembert’s 

method. 

Now we determine    ∅ & 𝑔  with initial condition 

𝜂(𝑥, 0) = 𝑓(𝑥)  

 &         
𝜕𝜂

𝜕𝑡
= 0 𝑎𝑡 𝑡 = 0 . 

 Differentiating (7) with respect to t, 
𝜕𝜂

𝜕𝑡
= 𝑐 ∅′(𝑥 + 𝑐𝑡) − 𝑐 𝑔′(𝑥 − 𝑐𝑡),  

Put    
𝜕𝜂

𝜕𝑡
= 0 𝑎𝑡 𝑡 = 0 ⇒ ∅′(𝑥) = 𝑔′(𝑥) ⇒ ∅(𝑥) =

𝑔(𝑥) + 𝐾 

Now put 𝜂 = 𝑓(𝑥)   𝑎𝑡  𝑡 = 0 in (7) 

⇒ 𝜂(𝑥, 0) = 𝑓(𝑥) = ∅(𝑥) + 𝑔(𝑥) 

⇒ 𝑓(𝑥) = 2𝑔(𝑥) + 𝐾, 

⇒ 𝑔(𝑥) =
1

2
(𝑓(𝑥) − 𝐾)&  ∅(𝑥) =

1

2
(𝑓(𝑥) + 𝐾) . 

From equation (7) 

𝜂(𝑥, 𝑡) =
1

2
[𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] 

 

3.3 Laplace Transform Method[2] 

Consider one dimensional wave equation 
𝜕2𝜂

𝜕𝑡2 = 𝑐2 𝜕2𝜂

𝜕𝑥2     ,     𝑥 > 0, 𝑡 > 0 (1) 

With boundary conditions  

𝜂(0, 𝑡) = 𝑓(𝑡),    

𝜂(𝑥, 0) = 0, lim
𝑥→∞

 𝜂(𝑥, 𝑡) = 0      & (
𝜕𝜂

𝜕𝑡
)

𝑡=0
= 0. 

For semi-infinite string 

For 𝑡 > 0, string is in sine wave form [1,2]  

Take Laplace transform of (1), 

⇒ 𝐿[𝜂𝑡𝑡] = 𝑐2𝐿[𝜂𝑥𝑥], 

⇒ 𝑠2𝐿[𝜂] − 𝑠𝜂(𝑥, 0) − 𝜂𝑡(𝑥, 0) = 𝑐2𝐿[𝜂𝑥𝑥], 

⇒ 𝑠2𝑈(𝑥, 𝑠) = 𝑐2𝐿[𝜂𝑥𝑥]            (2) 

Since   𝜂(𝑥, 0) = 0 &  𝜂𝑡(𝑥, 0) = 0 , 

Now 𝐿[𝜂𝑥𝑥] = ∫ 𝑒−𝑠𝑡 𝜕2𝜂

𝜕𝑥2   𝑑𝑡
∞

0
, 

=
𝜕2

𝜕𝑥2 ∫ 𝑒−𝑠𝑡 𝜂(𝑥, 𝑡) 𝑑𝑡
∞

0
 , 

                        =
𝜕2

𝜕𝑥2  𝐿[𝜂(𝑥, 𝑡)]  

𝐿[𝜂𝑥𝑥] =
𝜕2

𝜕𝑥2  𝑈(𝑥, 𝑠)   (3) 

Put (3) in (2) 

𝑠2𝑈(𝑥, 𝑠) = 𝑐2
𝜕2

𝜕𝑥2
 𝑈(𝑥, 𝑠) 

𝜕2𝑈

𝜕𝑥2 −
𝑠2

𝑐2  𝑈 = 0   (4) 

Equation (4) is an ordinary differential equation for 

𝑈(𝑥, 𝑠) and hence its solution is given as  

𝑈(𝑥, 𝑠) = 𝑃 𝑒
𝑠𝑥

𝑐⁄ +  𝑄 𝑒
−𝑠𝑥

𝑐⁄      (5) 

Where 𝑃 & 𝑄 are arbitrary constants of s. 

From boundary conditions, 

𝜂(0, 𝑡) = 𝑓(𝑡), 

Let 𝐿[𝑓(𝑡)] = 𝐹(𝑠), 

∴ 𝑈(0, 𝑠) = 𝐿[𝜂(0, 𝑡)] = 𝐿[𝑓(𝑡)] = 𝐹(𝑠). 

Now  

lim
𝑥→∞

𝑈(𝑥, 𝑠) =  lim
𝑥→∞

∫ 𝑒−𝑠𝑡𝜂(𝑥, 𝑡)𝑑𝑡
∞

0
, 

lim
𝑥→∞

𝑈(𝑥, 𝑠) = ∫ 𝑒−𝑠𝑡 lim
𝑥→∞

𝜂(𝑥, 𝑡)𝑑𝑡
∞

0
, 

= 0  given boundary condition. 

And interchanging integration with limit  

𝑃(𝑠) = 0  in (5)  since 𝑐 > 0 ⟹  for every positive 

s ,𝑒
𝑠𝑥

𝑐⁄  increases as x increases  

Assume 𝑠 > 0  

∴ 𝑈(0, 𝑠) = 𝑄(𝑠) = 𝐹(𝑠)  

∴ (5)  ⟹ 𝑈(𝑥, 𝑠) = 𝐹(𝑠)𝑒−𝑠𝑥/𝑐  

Taking inverse Laplace transform, we obtain 

𝜂(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑐
) 𝜂 (𝑡 −

𝑥

𝑐
) . 

By using second shifting property  {𝐿−1[𝑒−𝑎𝑠𝐹(𝑠)] =

𝑓(𝑡 − 𝑎)𝜂(𝑡 − 𝑎)} we get the required solution 

⟹ 𝜂(𝑥, 𝑡) = {
𝑠𝑖𝑛 (𝑡 −

𝑥

𝑐
)       ,        𝑖𝑓

𝑥

𝑐
< 𝑡 <

x

c
+ 2π

0                  , otherwise
 

 

 

 

3.4 Using Finite Fourier Sine Transform[6] 

Consider one dimensional wave equation 
∂2𝜂

∂t2 = 𝑐2 𝜕2𝜂

𝜕𝑥2,  
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along with boundary condition  

  𝜂(0, 𝑡) = 0, 𝜂(𝑎, 𝑡) = 0  

𝐹𝑠 [
∂2𝜂

∂t2 ] = ∫
𝜕2𝜂

𝜕𝑥2  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑑𝑥  , 𝑛 ∈ 𝑍

𝑎

0
  

⇒ 𝐹𝑠 [
∂2𝜂

∂t2 ] = 𝐹𝑠 [𝑐2 ∂2𝜂

∂x2]  

⇒ ∫
𝜕2𝜂

𝜕𝑡2  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑑𝑥 = 𝑐2 ∫

𝜕2𝜂

𝜕𝑥2  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑑𝑥  

𝑎

0

𝑎

0
  

⇒
𝜕2

𝜕𝑡2 ∫  𝜂(𝑥, 𝑡)𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑑𝑥 = 𝑐2 {(

𝜕𝜂

𝜕𝑥
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑎
))

0

𝑎

−
𝑎

0

∫
𝜕𝜂

𝜕𝑥
 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑎
)

𝑛𝜋

𝑎
𝑑𝑥  

𝑎

0
}  

⇒
𝜕2

𝜕𝑡2
[𝐹𝑠 𝜂(𝑥, 𝑡)] = −

𝑐2𝑛𝜋

𝑎
[(𝜂(𝑥, 𝑡)𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑎
))

0

𝑎

−

∫ 𝜂(𝑥, 𝑡) 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
)

𝑛𝜋

𝑎
𝑑𝑥  

𝑎

0
]  

⇒
𝜕2

𝜕𝑡2
[𝐹𝑠 𝜂(𝑥, 𝑡)] = −

𝑐2𝑛𝜋

𝑎
[(𝜂(𝑎, 𝑡) cos 𝑛𝜋 −

𝜂(0, 𝑡)) − ∫ 𝜂(𝑥, 𝑡) 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
)

𝑛𝜋

𝑎
𝑑𝑥  

𝑎

0
]  

⇒
𝜕2

𝜕𝑡2
[𝐹𝑠 𝜂(𝑥, 𝑡)] +

𝑐2𝑛2𝜋2

𝑎2 𝐹𝑠 𝜂(𝑥, 𝑡) = 0  

This is second order ordinary differential equation. 

Let 𝐹𝑠 [𝜂(𝑥, 𝑡)] = 𝑒𝑚𝑡  be trivial solution of the 

equation then 𝑚 = ±
𝑖𝑛𝜋𝑐

𝑎
 

So the general solution is  

𝐹𝑠[𝜂(𝑥, 𝑡)] = 𝐴 cos (
𝑛𝜋𝑐𝑡

𝑎
) + 𝐵 sin (

𝑛𝜋𝑐𝑡

𝑎
)  

Taking inverse Finite Fourier sine transform,  

𝜂(𝑥, 𝑡) =
2

𝑎
∑ (𝐴 cos (

𝑛𝜋𝑐𝑡

𝑎
) +∞

𝑛=1

𝐵 sin (
𝑛𝜋𝑐𝑡

𝑎
)) sin (

𝑛𝜋𝑥

𝑎
)  

 

IV.  SUMMARY 

 

Partial Differential equations have great importance in 

our daily life. They are used in Meteorology, 

Oceanography, Solar System, Economics, Physics, 

Chemistry & various Engineering branches to 

represent the model of Physical problem. We have 

taken an overview of some of the analytical methods 

used for solving one dimensional wave equation with 

boundary conditions. The general solution is obtained 

in each case. Our article takes a bird’s eye view of 

various analytical methods of solving one dimensional 

wave equation where this equation is  used in elastic 

mediums for modeling air column of an organ pipe and 

vibrations of a metal rod . These solutions will be 

helpful to all researchers working in the domain of 

Engineering and Science. 
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