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ABSTRACT 

 

Deep Reinforcement Learning has become a commonly adopted method to enable agents to hunt out complex 

control policies in various video games. Deep-Mind used this technique to play Atari games.  However, similar 

approaches should get to be improved when applied to tougher scenarios, where reward signals are sparse and 

delayed. This paper illustrates a refined Deep Reinforcement Learning model to enable an autonomous agent to 

play the classical Snake Game, whose constraints get stricter as the game progresses further. Specifically, to 

train this model we have used Deep Neural Network (DNN) with a variant of Q-learning where agent will 

learn from its past experiences. Moreover, we have proposed a designed reward mechanism to properly train 

the network, adopt a training gap strategy to temporarily bypass training after the situation of the target 

changes, and also introduces dual experience replay method through which different experiences for better 

training can be categorized. The final results show that our agent in an environment outperforms the baseline 

model and surpasses the human-level performance in terms of playing the Snake Game. 

Keywords: Deep reinforcement learning, Q-Learning, Deep Neural Network, Deep Learning, Experience 

replay. 

I. INTRODUCTION 

 

Neural Networks when combined along with the 

reinforcement algorithms can beat human experts 

playing various Atari video games. Deep-mind’s 

AlphaGo, an algorithm that had beaten the world 

champions of the Go board game. At DeepMind they 

pioneered the mixture of these approaches i.e. deep 

reinforcement learning - to form the first artificial 

agents to understand human-level performance across 

many challenging domains.  

 

Reinforcement learning is an area of Machine 

Learning. It is about taking suitable action to 

maximize reward during a particular situation. It is 

employed by various software and machines to seek 

out the simplest possible behaviour or path it should 

absorb a selected situation. Reinforcement learning 

differs from the supervised learning during a way that 

in supervised learning the training data has the 

solution key with it therefore the model is trained 

with the correct answer itself whereas in 

reinforcement learning, there's no answer but the 
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reinforcement agent decides what to try to perform 

the given task. It is bound to learn from its experience.  

Reinforcement learning also differs from the 

unsupervised learning. Where unsupervised learning 

deals with associative rule mining and clustering and 

on the other hand Reinforcement learning deals with 

exploration, decision process of Markov, Value 

learning, deep learning and Policy learning. 

Unsupervised learning deals with the data which is 

unlabelled where output is based on some perception 

or collection of perception. As name suggests 

unsupervised learning is not supervised and 

reinforcement learning is less supervised which is 

totally dependent on the agent identifying the output. 

To summarize in supervised learning, we generate 

formula based on input and output we provide. In 

unsupervised learning we find the relation or 

association between input and output values. In 

Reinforcement learning agent learns using delayed 

feedback by communicating with the environment. In 

this paper, our agent learns how to play the snake 

Game by interacting with the environment. Agent 

choose some action get feedback from environment. 

The feedback is in the form of states or rewards. This 

cycle is continued till our agent end up in the terminal 

state. Then learning of new episode starts.  

Episode is the length of simulation. At the end of 

simulation system end up in terminal state. We have 

used Deep Q-Network (DQN). DQN is known to be 

first step of Reinforcement learning. DQN is 

reinforcement learning algorithm that combines deep 

learning neural networks with Q-learning to let 

Reinforcement learning work for high dimensional, 

complex environments like video games, or robotics. 

So,  we rely specifically on deep Q-learning network 

(DQN) that chooses the best action based on both the 

observations i.e. from the environment & prior 

learned knowledge to train an agent, In order to 

successfully learn to play this Snake Game is quite 

challenging because the restrictions of this AI Snake 

Game gets stricter & stricter as the snake grows in 

length & the game gets going. Also, to add, an apple 

once it is eaten by the snake, using random function a 

new one is immediately spawned at a random 

location.  

This is changing target issue. We have studied various 

techniques & used the best ones to handle this issue. 

You can see the results between the DQN model and 

human level performance. this performance can be 

viewed in terms of time or score. After that total 

reward can be calculated by network.  The way 

humans learn by using their memory from past 

experiences, similarly DQN uses this technique too. 

Experience reply and reply memory are part of this 

technique. Experience reply allows our agent to store 

or memorize along with reusing the past experiences 

just as humans tend to replay crucial experiences and 

generalize them to the situation at hand. Replay 

Memory is like a stack which stores the agent’s 

experiences and it is mainly used to train the DQN. 

We will be more focusing on the learning and training 

the agent rather than the game. 

 

II. METHODS AND MATERIAL 

 

A. Deep Reinforcement Learning 

Deep reinforcement learning combines artificial 

neural networks with a reinforcement learning 

architecture that permits software-defined agents to 

learn the best actions possible in a virtual 

environment to realize their goals. It unites function 

approximation & target optimization and it maps 

state-action pairs to get expected rewards. 

The network exists of layers with nodes, the primary 

layer is that the input layer. Then the hidden layers 

will rework with all the information along with 

weights and activation functions. The last layer is the 

output layer, where the target is expected. Adjusting 

the weights will help the network to learn patterns 

and improve its predictions. 

 

B. Q-Learning 
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Q-learning is a model-free reinforcement learning 

algorithm [1]. Q-learning is a values-based learning 

algorithm. Value based algorithms updates the value 

function based on an equation (particularly Bellman 

equation) [1]. Whereas the other type, greedy policy 

obtained from the last policy improvement is 

estimated by policy-based value function [1].  

Here are some definitions which are used in Q-

Learning: 

• Q*(s,a) is the expected value (cumulative 

discounted reward) of doing a in state s and then 

following the optimal policy[1].  

• Temporal Differences (TD) is used by Q-learning 

uses to estimate the value of Q*(s,a). Temporal 

difference is an agent learning from an 

environment through episodes with no prior 

knowledge of the environment [1].  

• The agent maintains a table of Q [S, A], where S 

is the set of states and A is the set of actions [1].  

• Q [s, a] represents its current estimate of Q*(s,a) 

[1]. 

  

Q-Table is a data structure that guides us to the best 

action at each state. Q-Learning algorithm is used to 

learn each value of the Q-table.  

Bellman Equation is used for Q-function and it takes 

two inputs i.e. State (s) & Action (a). 

 

 
Fig 1. General Bellman Equation 

 
Fig 2. Q-learning Algorithm Process 

 

The steps that Q-Learning Algorithm follows are: 

 

Step 1: Initialising the Q-Table 

First the Q-table has to be built. The table is divided 

into ‘n’ columns & ‘m’ rows, where ‘n’ is the number 

of actions and ‘m’ is the number of states. 

 

Step 2: Choosing an action  

In this stage, the agent will choose an action to 

perform 

 

Step 3: Performing an action 

During this stage, steps 2 & 3 will be performed for an 

undefined amount of time. Initially, an Action (a) in 

State (s) is chosen according to the Q-Table. Every Q-

value is zero when the episode initially starts. The Q-

values are then updated according to the Bellman 

Equation.  

Epsilon greedy strategy concept is used here. Initially, 

the epsilon rates are higher & the agent explores the 

environment and randomly chooses actions to 

perform. This happens logically, since the agent does 

not know anything about the environment. As the 
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agent starts to explore the environment, the epsilon 

rate will decrease and the agent will then start to 

exploit the environment. The agent becomes more 

confident in estimating the Q-values, as the level of 

exploration done by the agent increases. [5] 

 

Step 4: Measure Reward  

In this stage, we measure the reward by observing the 

outcome based on the action taken. 

 

Step 5: Evaluate 

In this stage, the function Q(s,a) is updated. This 

process will be repeated till the learning process is 

completed. In this way, the Q-table keeps getting 

updated & the value function Q will get maximised. 

Here, Q(s,a) returns the expected future reward of the 

action performed in that state.  

Initially, to update the Q-table we will explore the 

environment using the agent. After the Q-table has 

been finished updating, the agent will start exploiting 

the environment & will start taking better actions.   

 

C. Deep Q-Network (DQN) 

A DQN, or Deep Q-Network, approximates a state-

value function in a Q-Learning framework with a 

neural network [2]. 

Here are some definitions that are used in DQN: 

 

Agent: An agent is something that takes actions. 

Action (a): ‘a’, it is the set of all the possible moves 

that an agent can make. An action is something that 

the agent chooses from a discrete list of possible 

actions. In our case, the agent can choose from the 

moment set of left, right, up and down. 

 

Discount Factor: The discount factor is multiplied by 

future rewards as discovered by the agent in order to 

dampen these rewards’ effect on the agent’s choice of 

action [3]. Discount factor is designed to make 

immediate rewards more significant than future 

rewards. It is expressed with the lower-case Greek 

character, gamma: γ. 

 

Environment: Environment can be described as the 

world that the agent belongs in and the world that 

responds according to what the agent does. The 

environment will take the agent’s current state and 

action as input, while giving the agent’s reward and its 

next state as the output. 

 

State (s): A state can be described as the current and 

the immediate situation of the agent i.e. a specific 

place or moment, any configuration that puts our 

agent in relation to obstacles and prizes.  

 

Reward (r): A reward is the feedback by which we 

measure the success or failure of an agent’s actions in a 

given state [3]. It is the measurement of whether the 

agent’s action in that given state were successful or 

not. Rewards can be immediate or delayed.  

 

Policy (π): The policy is defined as the strategy that 

the agent employs to determine the next action based 

on the current state. It maps states to actions that 

promise the highest reward. 

 

Value (v): Value is the expected long-term return with 

discount, when compared to the short-term reward ‘r’. 

‘vπ(s)’ is defined as the expected return of the current 

state & the policy ‘π’. 

 

Q-value (Q): Q-value is almost similar to Value but it 

takes an extra parameter i.e. action ‘a’. Qπ (s, a) refers 

to the expected return which includes the action ‘a’, 

policy ‘π’ & the current state ‘s’. Q-value maps state-

action pairs to rewards. 

 

DQN overcomes unstable learning by mainly using 

four techniques: 

 

Experience Replay:  
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It is hard to produce various experiences, once DNN is 

overfitted. In order to overcome this problem, 

Experience Replay stores experiences including state 

transitions, rewards and actions, which are necessary 

data to perform Q learning. It also makes mini-batches 

to update the neural network [4]. This technique has 

the following advantages: 

❖ It will reduce the correlation between 

experiences when updating the DNN. 

❖ It will also increase the learning speed with the 

help of mini-batches. 

❖ It will reuse past transitions to avoid catastrophic 

forgetting. 

 

Target Network: 

Target function is changed frequently with DNN 

while calculating TD error. Training data could be 

difficult when using unstable target function. Target 

Network technique is used to fix the parameters of 

target function and replace them with the latest 

network every thousand steps. 

 
Fig 3. Target Q-function in the red box shown is fixed 

 

Clipping Rewards: 

Clipping Rewards technique is used to clips scores, 

according to which all positive rewards are set +1 and 

all negative rewards are set -1 [6, 7]. 

 

Skipping Frames: 

Skipping Frames technique is defined such that the 

DQN calculates the Q-value every four frames and 

uses the past four frames as input which in return 

reduces the computational cost and helps in gathering 

more experience [6, 8]. 

 
Algorithm: Deep Q-learning with Dual Experience 

Replay 

 

Requirements:  

❖ MP1 and MP2 = replay memory functions. 

❖ N = Memory Pool for storing the experience 

replay. 

❖ at = Action done at time t. 

❖ st = State at time t. 

❖ rt = Reward at time t. 

❖ et = Experience at time t. 

❖ η (eta) = sampling proportion. 

 

Initialize replay memory MP1 & MP2 to N/2 

Initialize Q with random weights 

 

for all training steps do 

Initialize state s1 for the new episode 

Pre-process φ1 = φ(s1) 

repeat 

Using Exploration probability ε select a random action 

at 

otherwise select at = argmaxa AQ(φ(st), a) 

Decay exploration probability ε   

Execute at in game then observe rt and st+1 

Pre-process φt+1 = φ(st+1) 

if |rt| ≥ 0.5 then 

Store et = (φt, at, rt, φt+1) in MP1 

else 

Store et = (φt, at, rt, φt+1) in MP2 

Sample mini-batch of ek from MP1 & MP2 

In segments of η and (1 − η) respectively 

Decrease sampling proportion η 

if episode terminated at φk+1 

Target value Q*k = rk 

else 

Q*k = rk + γmaxa∈AQ (φk+1, a) 

Define loss function loss = (Q*k – Q (φk, ak))2 

Update neural network parameters by performing 

optimization algorithm Adam on loss 

until episode terminates 

end for 
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Fig 4. Action, Reward State as we have defined. 

 

Different types of state space that we have used: 

Maybe it’s possible to change the state space and 

achieve similar or better performance than when the 

agent learns to play snake using experience reply. The 

following four state spaces were tried: 

❖ State space ‘no direction’: The agent was not given 

the direction the snake was going in. 

❖ State space ‘coordinates’: We replaced the location 

of the apple (up, right, down and/or left) with 

coordinates like apple (x, y) and the snake (x, y). 

The coordinates can be scaled between 1 and 0. 

❖ State space ‘direction 0 or 1’: This is the original 

state space. 

❖ State space ‘only walls’: We did not give the agent 

the direction of the body, only tell it if there’s a 

wall. 

 
Fig 5. Parameters Defined for DQN 

 

Epsilon (ε) defines the probability of exploration & it 

will decrease as the agent explores the environment 

more & more.   

Gamma is also known as the discount factor. It is 

designed to make future rewards less than the 

immediate rewards. 

 
Fig 6. Bellman Equation 

 

III. EXPERTIMENTAL RESULTS 

 

Firstly, we decided to use different parameters for our 

AI Snake Game by creating two different versions i.e. 

v1.0 & v1.1. In these versions, the basic difference was 

only of the parameter ‘Epsilon Decay’ & ‘Learning 

Rate’. We used the values ‘.995’ & ‘1/100’ for Epsilon 

Decay respectively. According to our observation, the 

epsilon decay with value ‘1/100’ had better results 

when compared to epsilon decay with value ‘.995’. 

We also used the values ‘0.00025’ & ‘0.00013629’ for 

the learning rate in our Neural Network. 
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(a) Version 1.0 

 
(b) Version 1.1 

Fig 7. High Score of 50 Episodes 

 

According to our observation, version 1.1 of the AI 

Snake Game which has the values of 1/100 & 

0.00013629 for Epsilon Decay & Learning Rate 

respectively performed better when compared to 

version 1.0 of AI Snake Game. The highest score 

observed in version 1.0 was 40 for 50 Episodes (E), 

similarly for 50 Episodes v1.1 observed 43 as the 

highest score. 

 

 
(a) Version 1.0 

 
(b) Version 1.1 

Fig 8. High Score of 100 Episodes 
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After observing that 50 Episodes were not enough to 

train our agent, so the number of episodes were 

increased to 100. As can be seen in the figures above, 

version 1.0 only had an increase of four points in the 

highest score while version 1.1 had an increase of six 

points. 

 

IV. CONCLUSION 

 

In this paper, we have tried to implement the classical 

snake game using Deep Reinforcement Learning & 

DQN (Deep Q-Network), while also using python 

libraries like turtle, seaborn, TensorFlow, NumPy, 

Keras, etc. We have used Adam optimization for our 

deep learning model, as it helps in faster convergence. 

Improper training experiences have been eliminated 

and proper function of agent has been done which 

helps in better performance with increase in levels. It 

will provide relatively better results as when 

compared to the existing techniques.  

As we have observed our model still has some issues 

like enclosing problem where the Snake cannot see 

the whole environment and the agent will enclose 

itself and die. This issue was observed especially when 

the Snake was of larger length.  

To solve the issue of enclosing we can use pixels and 

CNN (Convolutional Neural Network) in State Space. 

Also, we can assign regulated weights for a better 

model. We can also use Double Deep Q-Learning 

Algorithm instead of the normal Deep Q-Learning 

Algorithm to get a more precise convergence. 

Bayesian Optimization can also be used to further 

improve the network.  
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