
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Conference - Innovation-2021-Innovation-2021

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology ISSN : 2456-3307 (www.ijsrcseit.com)

Volume 8, Issue 3, May-June-2021

 279

Training an Agent using Deep Reinforcement Learning: Snake Game
Kartik Kaushik1, Reetej Chindarkar1, Rutuja Vetal1, Ronak Thusoo1, Prof. Pallavi Shimpi2

1Student, Department of Computer Engineering, Dr. D. Y. Patil School of Engineering, Pune, Maharashtra,

India
2Assistant professor, Department of Computer Engineering, Dr. D. Y. Patil School of Engineering, Lohegaon,

Pune, Maharashtra, India

ABSTRACT

Deep Reinforcement Learning has become a commonly adopted method to enable agents to hunt out complex

control policies in various video games. Deep-Mind used this technique to play Atari games. However, similar

approaches should get to be improved when applied to tougher scenarios, where reward signals are sparse and

delayed. This paper illustrates a refined Deep Reinforcement Learning model to enable an autonomous agent to

play the classical Snake Game, whose constraints get stricter as the game progresses further. Specifically, to

train this model we have used Deep Neural Network (DNN) with a variant of Q-learning where agent will

learn from its past experiences. Moreover, we have proposed a designed reward mechanism to properly train

the network, adopt a training gap strategy to temporarily bypass training after the situation of the target

changes, and also introduces dual experience replay method through which different experiences for better

training can be categorized. The final results show that our agent in an environment outperforms the baseline

model and surpasses the human-level performance in terms of playing the Snake Game.

Keywords: Deep reinforcement learning, Q-Learning, Deep Neural Network, Deep Learning, Experience

replay.

I. INTRODUCTION

Neural Networks when combined along with the

reinforcement algorithms can beat human experts

playing various Atari video games. Deep-mind’s

AlphaGo, an algorithm that had beaten the world

champions of the Go board game. At DeepMind they

pioneered the mixture of these approaches i.e. deep

reinforcement learning - to form the first artificial

agents to understand human-level performance across

many challenging domains.

Reinforcement learning is an area of Machine

Learning. It is about taking suitable action to

maximize reward during a particular situation. It is

employed by various software and machines to seek

out the simplest possible behaviour or path it should

absorb a selected situation. Reinforcement learning

differs from the supervised learning during a way that

in supervised learning the training data has the

solution key with it therefore the model is trained

with the correct answer itself whereas in

reinforcement learning, there's no answer but the

http://ijsrcseit.com/

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

280

reinforcement agent decides what to try to perform

the given task. It is bound to learn from its experience.

Reinforcement learning also differs from the

unsupervised learning. Where unsupervised learning

deals with associative rule mining and clustering and

on the other hand Reinforcement learning deals with

exploration, decision process of Markov, Value

learning, deep learning and Policy learning.

Unsupervised learning deals with the data which is

unlabelled where output is based on some perception

or collection of perception. As name suggests

unsupervised learning is not supervised and

reinforcement learning is less supervised which is

totally dependent on the agent identifying the output.

To summarize in supervised learning, we generate

formula based on input and output we provide. In

unsupervised learning we find the relation or

association between input and output values. In

Reinforcement learning agent learns using delayed

feedback by communicating with the environment. In

this paper, our agent learns how to play the snake

Game by interacting with the environment. Agent

choose some action get feedback from environment.

The feedback is in the form of states or rewards. This

cycle is continued till our agent end up in the terminal

state. Then learning of new episode starts.

Episode is the length of simulation. At the end of

simulation system end up in terminal state. We have

used Deep Q-Network (DQN). DQN is known to be

first step of Reinforcement learning. DQN is

reinforcement learning algorithm that combines deep

learning neural networks with Q-learning to let

Reinforcement learning work for high dimensional,

complex environments like video games, or robotics.

So, we rely specifically on deep Q-learning network

(DQN) that chooses the best action based on both the

observations i.e. from the environment & prior

learned knowledge to train an agent, In order to

successfully learn to play this Snake Game is quite

challenging because the restrictions of this AI Snake

Game gets stricter & stricter as the snake grows in

length & the game gets going. Also, to add, an apple

once it is eaten by the snake, using random function a

new one is immediately spawned at a random

location.

This is changing target issue. We have studied various

techniques & used the best ones to handle this issue.

You can see the results between the DQN model and

human level performance. this performance can be

viewed in terms of time or score. After that total

reward can be calculated by network. The way

humans learn by using their memory from past

experiences, similarly DQN uses this technique too.

Experience reply and reply memory are part of this

technique. Experience reply allows our agent to store

or memorize along with reusing the past experiences

just as humans tend to replay crucial experiences and

generalize them to the situation at hand. Replay

Memory is like a stack which stores the agent’s

experiences and it is mainly used to train the DQN.

We will be more focusing on the learning and training

the agent rather than the game.

II. METHODS AND MATERIAL

A. Deep Reinforcement Learning

Deep reinforcement learning combines artificial

neural networks with a reinforcement learning

architecture that permits software-defined agents to

learn the best actions possible in a virtual

environment to realize their goals. It unites function

approximation & target optimization and it maps

state-action pairs to get expected rewards.

The network exists of layers with nodes, the primary

layer is that the input layer. Then the hidden layers

will rework with all the information along with

weights and activation functions. The last layer is the

output layer, where the target is expected. Adjusting

the weights will help the network to learn patterns

and improve its predictions.

B. Q-Learning

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

281

Q-learning is a model-free reinforcement learning

algorithm [1]. Q-learning is a values-based learning

algorithm. Value based algorithms updates the value

function based on an equation (particularly Bellman

equation) [1]. Whereas the other type, greedy policy

obtained from the last policy improvement is

estimated by policy-based value function [1].

Here are some definitions which are used in Q-

Learning:

• Q*(s,a) is the expected value (cumulative

discounted reward) of doing a in state s and then

following the optimal policy[1].

• Temporal Differences (TD) is used by Q-learning

uses to estimate the value of Q*(s,a). Temporal

difference is an agent learning from an

environment through episodes with no prior

knowledge of the environment [1].

• The agent maintains a table of Q [S, A], where S

is the set of states and A is the set of actions [1].

• Q [s, a] represents its current estimate of Q*(s,a)

[1].

Q-Table is a data structure that guides us to the best

action at each state. Q-Learning algorithm is used to

learn each value of the Q-table.

Bellman Equation is used for Q-function and it takes

two inputs i.e. State (s) & Action (a).

Fig 1. General Bellman Equation

Fig 2. Q-learning Algorithm Process

The steps that Q-Learning Algorithm follows are:

Step 1: Initialising the Q-Table

First the Q-table has to be built. The table is divided

into ‘n’ columns & ‘m’ rows, where ‘n’ is the number

of actions and ‘m’ is the number of states.

Step 2: Choosing an action

In this stage, the agent will choose an action to

perform

Step 3: Performing an action

During this stage, steps 2 & 3 will be performed for an

undefined amount of time. Initially, an Action (a) in

State (s) is chosen according to the Q-Table. Every Q-

value is zero when the episode initially starts. The Q-

values are then updated according to the Bellman

Equation.

Epsilon greedy strategy concept is used here. Initially,

the epsilon rates are higher & the agent explores the

environment and randomly chooses actions to

perform. This happens logically, since the agent does

not know anything about the environment. As the

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

282

agent starts to explore the environment, the epsilon

rate will decrease and the agent will then start to

exploit the environment. The agent becomes more

confident in estimating the Q-values, as the level of

exploration done by the agent increases. [5]

Step 4: Measure Reward

In this stage, we measure the reward by observing the

outcome based on the action taken.

Step 5: Evaluate

In this stage, the function Q(s,a) is updated. This

process will be repeated till the learning process is

completed. In this way, the Q-table keeps getting

updated & the value function Q will get maximised.

Here, Q(s,a) returns the expected future reward of the

action performed in that state.

Initially, to update the Q-table we will explore the

environment using the agent. After the Q-table has

been finished updating, the agent will start exploiting

the environment & will start taking better actions.

C. Deep Q-Network (DQN)

A DQN, or Deep Q-Network, approximates a state-

value function in a Q-Learning framework with a

neural network [2].

Here are some definitions that are used in DQN:

Agent: An agent is something that takes actions.

Action (a): ‘a’, it is the set of all the possible moves

that an agent can make. An action is something that

the agent chooses from a discrete list of possible

actions. In our case, the agent can choose from the

moment set of left, right, up and down.

Discount Factor: The discount factor is multiplied by

future rewards as discovered by the agent in order to

dampen these rewards’ effect on the agent’s choice of

action [3]. Discount factor is designed to make

immediate rewards more significant than future

rewards. It is expressed with the lower-case Greek

character, gamma: γ.

Environment: Environment can be described as the

world that the agent belongs in and the world that

responds according to what the agent does. The

environment will take the agent’s current state and

action as input, while giving the agent’s reward and its

next state as the output.

State (s): A state can be described as the current and

the immediate situation of the agent i.e. a specific

place or moment, any configuration that puts our

agent in relation to obstacles and prizes.

Reward (r): A reward is the feedback by which we

measure the success or failure of an agent’s actions in a

given state [3]. It is the measurement of whether the

agent’s action in that given state were successful or

not. Rewards can be immediate or delayed.

Policy (π): The policy is defined as the strategy that

the agent employs to determine the next action based

on the current state. It maps states to actions that

promise the highest reward.

Value (v): Value is the expected long-term return with

discount, when compared to the short-term reward ‘r’.

‘vπ(s)’ is defined as the expected return of the current

state & the policy ‘π’.

Q-value (Q): Q-value is almost similar to Value but it

takes an extra parameter i.e. action ‘a’. Qπ (s, a) refers

to the expected return which includes the action ‘a’,

policy ‘π’ & the current state ‘s’. Q-value maps state-

action pairs to rewards.

DQN overcomes unstable learning by mainly using

four techniques:

Experience Replay:

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

283

It is hard to produce various experiences, once DNN is

overfitted. In order to overcome this problem,

Experience Replay stores experiences including state

transitions, rewards and actions, which are necessary

data to perform Q learning. It also makes mini-batches

to update the neural network [4]. This technique has

the following advantages:

❖ It will reduce the correlation between

experiences when updating the DNN.

❖ It will also increase the learning speed with the

help of mini-batches.

❖ It will reuse past transitions to avoid catastrophic

forgetting.

Target Network:

Target function is changed frequently with DNN

while calculating TD error. Training data could be

difficult when using unstable target function. Target

Network technique is used to fix the parameters of

target function and replace them with the latest

network every thousand steps.

Fig 3. Target Q-function in the red box shown is fixed

Clipping Rewards:

Clipping Rewards technique is used to clips scores,

according to which all positive rewards are set +1 and

all negative rewards are set -1 [6, 7].

Skipping Frames:

Skipping Frames technique is defined such that the

DQN calculates the Q-value every four frames and

uses the past four frames as input which in return

reduces the computational cost and helps in gathering

more experience [6, 8].

Algorithm: Deep Q-learning with Dual Experience

Replay

Requirements:

❖ MP1 and MP2 = replay memory functions.

❖ N = Memory Pool for storing the experience

replay.

❖ at = Action done at time t.

❖ st = State at time t.

❖ rt = Reward at time t.

❖ et = Experience at time t.

❖ η (eta) = sampling proportion.

Initialize replay memory MP1 & MP2 to N/2

Initialize Q with random weights

for all training steps do

Initialize state s1 for the new episode

Pre-process φ1 = φ(s1)

repeat

Using Exploration probability ε select a random action

at

otherwise select at = argmaxa AQ(φ(st), a)

Decay exploration probability ε

Execute at in game then observe rt and st+1

Pre-process φt+1 = φ(st+1)

if |rt| ≥ 0.5 then

Store et = (φt, at, rt, φt+1) in MP1

else

Store et = (φt, at, rt, φt+1) in MP2

Sample mini-batch of ek from MP1 & MP2

In segments of η and (1 − η) respectively

Decrease sampling proportion η

if episode terminated at φk+1

Target value Q*k = rk

else

Q*k = rk + γmaxa∈AQ (φk+1, a)

Define loss function loss = (Q*k – Q (φk, ak))2

Update neural network parameters by performing

optimization algorithm Adam on loss

until episode terminates

end for

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

284

Fig 4. Action, Reward State as we have defined.

Different types of state space that we have used:

Maybe it’s possible to change the state space and

achieve similar or better performance than when the

agent learns to play snake using experience reply. The

following four state spaces were tried:

❖ State space ‘no direction’: The agent was not given

the direction the snake was going in.

❖ State space ‘coordinates’: We replaced the location

of the apple (up, right, down and/or left) with

coordinates like apple (x, y) and the snake (x, y).

The coordinates can be scaled between 1 and 0.

❖ State space ‘direction 0 or 1’: This is the original

state space.

❖ State space ‘only walls’: We did not give the agent

the direction of the body, only tell it if there’s a

wall.

Fig 5. Parameters Defined for DQN

Epsilon (ε) defines the probability of exploration & it

will decrease as the agent explores the environment

more & more.

Gamma is also known as the discount factor. It is

designed to make future rewards less than the

immediate rewards.

Fig 6. Bellman Equation

III. EXPERTIMENTAL RESULTS

Firstly, we decided to use different parameters for our

AI Snake Game by creating two different versions i.e.

v1.0 & v1.1. In these versions, the basic difference was

only of the parameter ‘Epsilon Decay’ & ‘Learning

Rate’. We used the values ‘.995’ & ‘1/100’ for Epsilon

Decay respectively. According to our observation, the

epsilon decay with value ‘1/100’ had better results

when compared to epsilon decay with value ‘.995’.

We also used the values ‘0.00025’ & ‘0.00013629’ for

the learning rate in our Neural Network.

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

285

(a) Version 1.0

(b) Version 1.1

Fig 7. High Score of 50 Episodes

According to our observation, version 1.1 of the AI

Snake Game which has the values of 1/100 &

0.00013629 for Epsilon Decay & Learning Rate

respectively performed better when compared to

version 1.0 of AI Snake Game. The highest score

observed in version 1.0 was 40 for 50 Episodes (E),

similarly for 50 Episodes v1.1 observed 43 as the

highest score.

(a) Version 1.0

(b) Version 1.1

Fig 8. High Score of 100 Episodes

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 279-286

286

After observing that 50 Episodes were not enough to

train our agent, so the number of episodes were

increased to 100. As can be seen in the figures above,

version 1.0 only had an increase of four points in the

highest score while version 1.1 had an increase of six

points.

IV. CONCLUSION

In this paper, we have tried to implement the classical

snake game using Deep Reinforcement Learning &

DQN (Deep Q-Network), while also using python

libraries like turtle, seaborn, TensorFlow, NumPy,

Keras, etc. We have used Adam optimization for our

deep learning model, as it helps in faster convergence.

Improper training experiences have been eliminated

and proper function of agent has been done which

helps in better performance with increase in levels. It

will provide relatively better results as when

compared to the existing techniques.

As we have observed our model still has some issues

like enclosing problem where the Snake cannot see

the whole environment and the agent will enclose

itself and die. This issue was observed especially when

the Snake was of larger length.

To solve the issue of enclosing we can use pixels and

CNN (Convolutional Neural Network) in State Space.

Also, we can assign regulated weights for a better

model. We can also use Double Deep Q-Learning

Algorithm instead of the normal Deep Q-Learning

Algorithm to get a more precise convergence.

Bayesian Optimization can also be used to further

improve the network.

V. REFERENCES

[1]. Chathurangi Shyalika, “A Beginners Guide to Q-

Learning,” Towards Data Science, 15 Nov, 2019.

[2]. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing atari with deep reinforcement learning,”

ArXiv e-prints, 2013.

[3]. Chris Nicholson, “A Beginner's Guide to Deep

Reinforcement Learning,” Path Mind.

[4]. L.-J. Lin, “Reinforcement learning for robots

using neural networks,” Ph.D. dissertation,

Pittsburgh, PA, USA, 1992, UMI Order No.

GAX93-22750.

[5]. R. S. Sutton and A. G. Barto, “Reinforcement

learning: An introduction,” IEEE Transactions on

Neural Networks, vol. 9, no. 5, pp. 1054–1054,

1998.

[6]. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness,M. G. Bellemare, A. Graves, M. A.

Riedmiller, A. Fidjeland, G. Ostrovski, S.

Petersen, C. Beattie, A. Sadik, I. Antonoglou, H.

King, D. Kumaran, D. Wierstra, S. Legg, and D.

Hassabis, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no.

7540, pp. 529–533, 2015.

[7]. D. Wang and A.-H. Tan, “Creating autonomous

adaptive agents in a real-time first-person shooter

computer game,” IEEE Transactions on

Computational Intelligence and AI in Games, vol.

7, no. 2, pp. 123–138, 2015.

[8]. H. Y. Ong, K. Chavez, and A. Hong, “Distributed

deep Q-learning,” ArXiv e-prints, 2015.

