
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Conference - Innovation-2021-Innovation-2021

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology ISSN : 2456-3307 (www.ijsrcseit.com)

Volume 8, Issue 3, May-June-2021

 1

Development of Symbolic Music Generation Technique

Based on Deep Learning and AI
Vincy Kaushik1, Pravin Kumar Mishra2

1Bharat Institute of Technology, Meerut, Uttar Pradesh, India
2Assistant Professor, Bharat Institute of Technology, Meerut, Uttar Pradesh, India

ABSTRACT

In this work we propose MusPy, a Python open source toolkit for the creation of symbolic music. MusPy provides

easy to use tools for key music generating components like dataset administration, data I/O, data preparation, and

model assessment. We offer the statistical analysis of the eleven presently supported MusPy datasets to

demonstrate their potential. Moreover, by training an autoregressive model on each dataset, we undertake a

cross-data generalisation experience and measure the likelihood of the rest — a process made easy by a MusPy

dataset management system. The results reveal a domain map that overlaps different frequently used data sets

with more cross-gender examples in some data sets than in other. These results might serve as a reference for

selecting data sets in future study, alongside the examination of data sets.

Keywords : Symbolic Music Generation, AI, Deep Learning, MIDI

I. INTRODUCTION

As shown in Fig. 1, a pipeline for music creation

typically consists of the following steps: data collection,

data preprocessing, model building, model training,

and model evaluation. While certain components must

be customised for each model, others may be shared

across many systems. Numerous data sets,

representations, and metrics have been given in the

literature, most notably for the creation of symbolic

music[1]. This may save much time and effort and may

result in increased repeatability when a basic toolkit

implementing standard versions of such processes is

used. However, such tools are challenging to develop

for a number of reasons.

To begin, although a large number of symbolic music

datasets are publicly available, organising these

collections and preserving the many formats used to

capture them is difficult. These formats are often used

for a variety of reasons. Some are developed for replay

capabilities (e.g., MIDI), while others are developed to

support the Music Encoding Initiative (MEI)[4]. Others

are developed to support research-oriented formats

aimed at simplicity and readability (e.g., MuseData [5]

and Humdrum [6]), such as Music XML[2] and

LilyPond[3], as well as the Music Encoding Initiative.

Often, researchers must write their own code for each

preprocessing format. Frequently, researchers must

write their own preparation code for each format.

While researchers may develop their own data access

and processing methods, issues of repeatability have

http://ijsrcseit.com/

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

2

been highlighted in [7] for audio datasets because to a

lack of coherence in the raw data.

Fig. 1. An example of a method for learning music

Second, the structure and hierarchy of music can lead

to diverse depictions of abstraction[8]. Further, in the

context of a previous art, certain music performances

were also offered as a sequence of pitch [9-12], events

[13-16], notes [17] or a matrix of time pitch (i.e. a piano

rollen).

Finally, attempts were undertaken to make objective

assessment measurements for music production

systems more robust[17], since these measurements

give an objective approach to compare various models

but also to monitor development of training on

machine-based learning systems. Due to mireval

effectiveness in evaluating typical MIR tasks, a library

that implements frequently used assessment

measurement methods for systems generating music

might assist enhance productiveness.

We find a toolset for generating music that contributes

to the MIR community in due course to meet these

problems. So in this paper we offer a new Python

library, MusPy, for the creation of symbolic music. It

offers fundamental instruments for building a system

for generating music, including data set management,

I/O data, preprocessing and model assessment.

We do a statistical analysis of the 11 presently

supported data sets with MusPy, in order to detect

statistical discrepancies. Furthermore, we perform

three experiments to assess their relative diversity and

the compatibility of different data sets with each other.

Together with the statistical analysis, these results give

a guidance for selecting correct data sets for future

study. Finally, we also show that combining multiple

heterogeneous datasets could help improve

generalizability of a music generation system.

Fig. 2. MusPy Music object at the center is the core

element of MusPy.

II. RELATED WORK

A specialised library for music generation has been

developed with little effort, to the best of our

knowledge. The most remarkable example is the

Magenta project[5]. While MusPy seeks to offer core

data collecting, pre-processing, and analysis

procedures, Magenta has several model instances, but

it is very closely linked with TensorFlow[23]. We at

MusPy allow specialised machine learning libraries to

design the model generation and training and to make

MusPy adaptable in the work with multiple machine

learning frameworks.

Many libraries are available to deal with symbolic

music. Music21[4] is one of the most representative

instruments of computer musicology research and

objectives. Music21 has its own corpus, while MusPy

has no dataset. Instead, MusPy provides online

downloading data sets with tools to manage distinct

collections, so that new datasets may be extended in

future easily. jSymbolic [5] is focusing on extracting

symbolic music statistical information. While

jSymbolic may serve as a powerful feature extractor for

the training of classification models supervised, MusPy

concentrates on generative music modelling and

promotes many common representations in the

production of music.

Furthermore, MusPy offers numerous objective

measurements for assessing systems for music

production. Connected generalisation studies using

cross-datasets[5] indicate that cross-domain

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

3

pretraining can both qualitatively and quantitatively

improve results of music creation. MusPy's data set

management mechanism facilitates us in analysing the

generalizability of different datasets in pairs to properly

check this hypothesis.

(a)

(b)

Fig. 3. Examples of (a) training data preparation and (b)

result writing pipelines using MusPy.

III. ABOUT THE LIBRARY MUSPY

MusPy is a Python package open source for the creation

of symbolic music. The system diagram of MusPy is

shown in Fig. 2. It offers a core class, MusPy Music

class, as a universal symbolic container. This core

container is then incorporated into the data set

management system, I/O interfaces and model

assessment tools. In Fig. 3, we offer examples of data

preparation and pipelines with MusPy.

A. Muspy Music Class And I/O Interfaces

Our goal is to establish a medium ground between

existing symbolic music forms, and to build a unified

music generating format. MIDI employs speeds for the

transfer of dynamics, bpm for tempo markings and

control messages for articulation as part of the protocol

for communication between musical instruments. The

notions of notes, measurements, and symbolic musical

markings are missing, however. MusicXML instead

incorporates the notion of notes, measures, and

symbolic musical markers as a sheet music exchange

format and provides layout information, but it does not

include the reproduction data. It also has visual layout

information. But symbolic and playback data are

crucial for a music generating system. Thus, we follow

the playback data standard of MIDI and MusicXML's

symbolic music marking standard.

Table 1. Currently supported comparisons of MusPy

datasets. The markings of triangle show partial backing.

Note that just MusicXML and MIDI files for music21

Corpus have been provided in this version.

Table 2. Comparisons of MIDI, MusicXML and the

proposed MusPy formats. Triangle marks indicate

optional or limited support.

In reality, a universal format for symbolic music that

we call MusPy is automatically defined in the MusPy

Music Class and can be transformed into a JSON/YAML

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

4

human-reading file. Table 2 outlines the significant

variations between MIDI, MusicXML and the MusPy

formats suggested. We will offer an interface to existing

symbolic music libraries, e.g. music21(24), mido[23],

pretty midi[33] and Pypianoroll[35], using the

proposed MusPy Music Class as the internal

representation for music data. The result pipeline

utilising MusPy is shown in Fig. 3(b).

(a) on-the-fly mode

(b) preconverted mode

Fig. 4. Two internal processing modes for iterating over

a MusPy Dataset object.

B. Dataset Management

Similar to Torchvision datasets[36] and TensorFlow

data set[37], MusPy provides an easy-to-use framework

for data set management. Table 1 lists and compares of

the datasets that MusPy presently supports. An

inherited class from the MusPy Dataset base is provided

with each supported dataset. The modular and flexible

architecture of the dataset management system

simplifies the maintenance of local data collections or

the future extension of support for additional datasets.

In the iteration via MusPy data object, Fig. 4 shows two

internal processing modes. MusPy also has

PyTorch[38] and TensorFlow[23] interface APIs for

the creation of machine-learning input pipelines.

C. Representations

Music has several abstract levels, and may thus be

stated in several forms. Several representations have

been suggested and utilised in literature for the

production of Music in particular, intended for the

generative modelling of symbolic music[1]. These

portrays may be roughly classified into four kinds —

pitch-based representations [9-12], event-based

representations [13-016], note-based representations

[17] and piano-rolls [18,19].

Table 3. T and N indicate number of timescales and

notes, respectively. Comparisons supporting MusPy.

Note that you can modify settings to comply with

unique needs and use scenarios.

A comparison of them is provided in Table 3. We

develop these representations in MusPy and integrate

them into the dataset management system. Fig. 3(a)

shows an example of how training data are prepared in

the NES Music Database piano-roll format using

MusPy.

D. Model Evaluation Tools

Another important component of creating music

generating systems is model assessment. As a result, we

incorporate MusPy's audio rendering and score and

piano-roll visualisation capabilities. Additionally, these

tools may be beneficial for evaluating training progress

and presenting final outcomes. Additionally, MusPy

implements a number of objective measures described

in the literature [17]. As described in [14], these

objective metrics may be used to assess a music

generating system by analysing the statistical

difference between the training and produced samples.

Polyphony, polyphony rate, pitch-in-scale rate, scale

consistency, pitch entropy, and pitch class entropy are

all pitch-related measures. Empty-beat rate, drum

inpattern rate, drum pattern consistency, and groove

consistency are all rhythm-related measures.

E. Summary

To summarize, MusPy features the following:

Using PyTorch and TensorFlow interfaces, this data

management solution manages commonly used

datasets. Interfaces to a variety of symbolic music

libraries (for example, music21, mido, beautiful midi,

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

5

and Pypianoroll) as well as data I/O for popular

symbolic music formats (e.g., MIDI, MusicXML, and

ABC). Implementations of commonly used musical

notation systems, including pitch-based, event-based,

piano-roll, and note-based notation. Instruments for

assessing music generation models, including audio

rendering, score and piano-roll visualisations, and

objective metrics..

Fig. 5. Length distributions for different datasets.

IV. DATASET ANALYSIS

Analyzing datasets is important for creating systems for

musical composition. We can simply deal with various

music datasets using MusPy's dataset management

framework. We use MusPy to calculate statistics for

three critical aspects of a song—length, tempo, and

key—with the goal of revealing statistical disparities

across these datasets. To begin, Fig. 5 illustrates the

distributions of song durations for various datasets. As

we can see, their ranges, medians, and variances are

very different.

Second, we show in Fig. 6 the initial tempo

distributions for datasets that have tempo information.

As can be seen, they are all essentially bell-shaped,

although with varying ranges and variations.

Additionally, we see two peaks in the Lakh MIDI

Dataset (LMD), at 100 and 120 quarter notes per minute

(qpm), which may be due to the fact that these two

numbers are often selected as the default tempo settings

in music notation applications and MIDI

editors/sequencers. Additionally, only about ten

percent of songs in the Hymnal Tune Dataset begin

with a tempo other than 100 qpm.

Finally, Fig. 7 depicts the important histograms for

various datasets. As may be seen, the key distributions

are rather asymmetric. Furthermore, with the

exception of the music21 Corpus, fewer than 3% of

songs are in minor keys. LMD has the most skewed key

distributions, which may be because C major is often

selected as the default key in music notation

applications and MIDI editors/sequencers. These

statistics may serve as a reference for future researchers

in terms of selecting appropriate datasets.

Fig. 6. Initial-tempo distributions for different datasets

(those without tempo information are not presented).

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

6

 Fig. 7. Key distributions for different datasets. The keys

are sorted w.r.t. their frequencies in Lakh MIDI

Dataset.

V. EXPERIMENTS AND RESULTS

In this section, we conduct three experiments to

analyze the relative complexities and the cross-dataset

generalizabilities of the eleven datasets currently

supported by MusPy (see Table 1). We implement four

autoregressive models—a recurrent neural network

(RNN), a long shortterm memory (LSTM) network a

gated recurrent unit (GRU) network [4] and a

Transformer network.

For the data, we use the event representation as

specified in Table 3 and discard velocity events as some

datasets have no velocity information (e.g., datasets

using ABC format). Moreover, we also include an end-

of-sequence event, leading to in total 357 possible

events. For simplicity, we downsample each song into

four time steps per quarter note and fix the sequence

length to 64, which is equivalent to four measures in

4/4 time. In addition, we discard repeat information in

MusicXML data and use only melodies in Wikifonia

dataset. We split each dataset into train–test–

validation sets with a ratio of 8 : 1 : 1. For the training,

the models are trained to predict the next event given

the previous events.

We use the cross entropy loss and the Adam optimizer

[3]. For evaluation, we randomly sample 1000

sequences of length 64 from the test split, and compute

the perplexity of these sequences. We implement the

models in Python using PyTorch. For reproducibility,

source code and hyperparmeters are available at.

A. Autoregressive Models On Different Datasets

We train the model on a dataset and then test it on the

same dataset in this experiment. Fig. 8 illustrates the

perplexities associated with various models on various

datasets. As can be seen, all models exhibit similar

characteristics. They attain lower perplexities when

dealing with small, homogenous datasets, but result in

higher perplexities when dealing with bigger, more

varied datasets. That is, the test perplexity may serve as

a proxy for the dataset's variety. Additionally, Fig. 9

illustrates perplexities as a function of dataset size (in

hours). By classifying datasets as multi-pitch (i.e.,

capable of taking any number of concurrent notes) or

monophonic, we can observe that perplexity is

positively linked with dataset size within each

category.

Fig. 8. Log-perplexities for different models on

different datasets, sorted by the values for the LSTM

model.

In this experiment, we train a model on a dataset and

then test it on many other datasets ′. The perplexities

for each train–test dataset pair are shown in Fig. 10.

The following are some observations:

In general, generalizability across datasets is not

symmetric. For instance, although a model trained on

LMD generalises well to all other datasets, not all

models trained on other datasets generalise to LMD,

which may be owing to LMD's size and cross-genre

nature.

Multi-pitch models generalise effectively to

monophonic datasets, while monophonic models do

not transfer to multi-pitch datasets (see the red block

in Fig. 10).

The model developed using the JSBach Chorale Dataset

is not generalizable to any of the other datasets (see the

orange block in Fig. 10). This may be because its

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

7

samples are downsampled to a quarter note resolution,

resulting in an unique note duration distribution.

In comparison to other datasets, the majority of datasets

generalise poorly to the NES Music Database (see the

green block in Fig. 10). This may be because the NES

Music Database only includes game soundtracks.

Fig. 9. Log-perplexities for the LSTM model versus

dataset size in hours. Each point corresponds to a

dataset.

B. Effects Of Combining Heterogeneous Datasets

As shown in Fig. 10, LMD has the greatest

generalizability, perhaps due to its size, diversity, and

crossgenre nature. A model trained on LMD, on the

other hand, does not generalise well to the NES Music

Database (see the brown block in the close-up of Fig.

10). Thus, we are interested in determining if

combining several heterogeneous datasets may aid in

increasing generalizability.

All eleven datasets mentioned in Table 1 are combined

into a single big unified dataset. Given the size disparity

between both datasets, merely concatenating them

may result in a significant imbalance and bias toward

the larger dataset. As a result, we examine a variant that

employs stratified sampling throughout the training

process. To get a data sample from the stratified dataset,

we uniformly choose one of the eleven datasets and

then randomly select one sample from it. Take note

that during test time, stratified sampling is deactivated.

Additionally, we present the findings for these two

datasets in Figures 8, 9 and 10. As shown in Fig. 10,

integrating datasets from several sources enhances the

model's generalizability. This is consistent with the

result in [15] that models trained on specific cross-

domain datasets generalise more well to previously

unknown datasets. Additionally, stratified sampling

mitigates the source imbalance issue by decreasing

perplexities in the majority of datasets at the expense of

higher perplexity on LMD.

Fig. 10. Results on cross-dataset generalizability. The

numbers and colours indicate the log-perplexities of an

LSTM model trained on one dataset (row) and tested on

another (column). The datasets are ordered according

to their diagonal values, which means that they may be

trained and tested on the same dataset.

VI. CONCLUSION

We've introduced MusPy, a new toolset for building

music generating systems. We covered the library's

architecture and functionality, as well as examples of

data pipelines. We performed statistical research and

experimentation on the eleven presently supported

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

8

datasets using MusPy's dataset management system to

determine their relative diversity and cross-dataset

generalizability. These findings may aid researchers in

selecting suitable datasets for future study. Finally, we

demonstrated how integrating diverse datasets may

assist enhance a machine learning model's

generalizability.

VII. REFERENCES

[1]. J.P. Briot, G. Hadjeres, and F. Pachet, “Deep

learning techniques for music generation: A

survey,” arXiv preprint arXiv:1709.01620, 2017.

[2]. A. Hankinson, P. Roland, and I. Fujinaga, “The

music encoding initiative as a document-encoding

framework,” in Proc. of the 12th International

Society for Music Information Retrieval

Conference (ISMIR), 2011.

[3]. R. M. Bittner, M. Fuentes, D. Rubinstein, A.

Jansson, K. Choi, and T. Kell, “mirdata: Software

for reproducible usage of datasets,” in Proc. of the

20th International Society for Music Information

Retrieval Conference (ISMIR), 2019.

[4]. A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and

[5]. D. Eck, “A hierarchical latent vector model for

learning long-term structure in music,” in Proc. of

the 35th International Conference on Machine

Learning (ICML), 2018.

[6]. S. Oore, I. Simon, S. Dieleman, D. Eck, and K.

Simonyan, “This time with feeling: Learning

expressive musical performance,” Neural

Computing and Applications, vol. 32, 2018.

[7]. C. Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon,

C. Hawthorne, N. Shazeer, A. M. Dai, M. D.

Hoffman, M. Dinculescu, and D. Eck, “Music

transformer: Generating music with long-term

structure,” in Proc. of the 7th International

Conference for Learning Representations (ICLR),

2019.

[8]. C. Donahue, H. H. Mao, Y. E. Li, G. W. Cottrell,

and J. McAuley, “Lakhnes: Improving multi-

instrumental music generation with cross-domain

pre-training,” in Proc. of the 20th International

Society for Music Information Retrieval

Conference (ISMIR), 2019.

[9]. Y.S. Huang and Y.-H. Yang, “Pop music

transformer: Generating music with rhythm and

harmony,” arXiv preprint arXiv:2002.00212, 2020.

[10]. O. Mogren, “C-RNN-GAN: Continuous recurrent

neural networks with adversarial training,” in

NeuIPS Worshop on Constructive Machine

Learning, 2016.

[11]. L.C. Yang, S.-Y. Chou, and Y.-H. Yang, “Midinet:

A convolutional generative adversarial network

for symbolic-domain music generation,” in Proc.

of the 18th International Society for Music

Information Retrieval Conference (ISMIR), 2017.

[12]. H.W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H.

Yang, “MuseGAN: Multi-track sequential

generative adversarial networks for symbolic

music generation and accompaniment,” in Proc. of

the 32nd AAAI Conference on Artificial

Intelligence (AAAI), 2018.

[13]. L.C. Yang and A. Lerch, “On the evaluation of

generative models in music,” Neural Computing

and Applications, vol. 32, pp. 4773–4784, 2018.

[14]. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M.

Isard, M. Kudlur, J. Levenberg, R. Monga, S.

Moore, D. G. Murray, B. Steiner, P. Tucker, V.

Vasudevan, P. Warden, M. Wicke, Y. Yu, and X.

Zheng, “TensorFlow: A system for large-scale

machine learning,” in Proc. of the 12th USENIX

Symp. on Operating Systems Design and

Implementation (OSDI), 2016.

[15]. C. Mckay and I. Fujinaga, “JSymbolic: A feature

extractor for MIDI files, C. Raffel, “Learning-based

methods for comparing sequences, with

applications to audio-to-MIDI alignment and

Volume 8, Issue 3, May-June-2021 | http://ijsrcseit.com

 Volume 8 - Issue 3 - Published : June 26, 2021 – Page No : 01-09

9

matching,” Ph.D. dissertation, Columbia

University, 2016.

[16]. C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon,

C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel,

and D. Eck, “Enabling factorized piano music

modeling and generation with the MAESTRO

dataset,” in Proc. of the 7th International

Conference on Learning Representations (ICLR),

2019.

[17]. C. Donahue, H. H. Mao, and J. McAuley, “The NES

music database: A multi-instrumental dataset with

expressive performance attributes,” in Proc. of the

19th International Society for Music Information

Retrieval Conference (ISMIR), 2018.

