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ABSTRACT 

In this work we propose MusPy, a Python open source toolkit for the creation of symbolic music. MusPy provides 

easy to use tools for key music generating components like dataset administration, data I/O, data preparation, and 

model assessment. We offer the statistical analysis of the eleven presently supported MusPy datasets to 

demonstrate their potential. Moreover, by training an autoregressive model on each dataset, we undertake a 

cross-data generalisation experience and measure the likelihood of the rest — a process made easy by a MusPy 

dataset management system. The results reveal a domain map that overlaps different frequently used data sets 

with more cross-gender examples in some data sets than in other. These results might serve as a reference for 

selecting data sets in future study, alongside the examination of data sets. 
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I. INTRODUCTION 

As shown in Fig. 1, a pipeline for music creation 

typically consists of the following steps: data collection, 

data preprocessing, model building, model training, 

and model evaluation. While certain components must 

be customised for each model, others may be shared 

across many systems. Numerous data sets, 

representations, and metrics have been given in the 

literature, most notably for the creation of symbolic 

music[1]. This may save much time and effort and may 

result in increased repeatability when a basic toolkit 

implementing standard versions of such processes is 

used. However, such tools are challenging to develop 

for a number of reasons. 

To begin, although a large number of symbolic music 

datasets are publicly available, organising these 

collections and preserving the many formats used to 

capture them is difficult. These formats are often used 

for a variety of reasons. Some are developed for replay 

capabilities (e.g., MIDI), while others are developed to 

support the Music Encoding Initiative (MEI)[4]. Others 

are developed to support research-oriented formats 

aimed at simplicity and readability (e.g., MuseData [5] 

and Humdrum [6]), such as Music XML[2] and 

LilyPond[3], as well as the Music Encoding Initiative. 

Often, researchers must write their own code for each 

preprocessing format. Frequently, researchers must 

write their own preparation code for each format. 

While researchers may develop their own data access 

and processing methods, issues of repeatability have 
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been highlighted in [7] for audio datasets because to a 

lack of coherence in the raw data. 

 
Fig. 1. An example of a method for learning music 

Second, the structure and hierarchy of music can lead 

to diverse depictions of abstraction[8]. Further, in the 

context of a previous art, certain music performances 

were also offered as a sequence of pitch [9-12], events 

[13-16], notes [17] or a matrix of time pitch (i.e. a piano 

rollen). 

Finally, attempts were undertaken to make objective 

assessment measurements for music production 

systems more robust[17], since these measurements 

give an objective approach to compare various models 

but also to monitor development of training on 

machine-based learning systems. Due to mireval 

effectiveness in evaluating typical MIR tasks, a library 

that implements frequently used assessment 

measurement methods for systems generating music 

might assist enhance productiveness. 

We find a toolset for generating music that contributes 

to the MIR community in due course to meet these 

problems. So in this paper we offer a new Python 

library, MusPy, for the creation of symbolic music. It 

offers fundamental instruments for building a system 

for generating music, including data set management, 

I/O data, preprocessing and model assessment. 

We do a statistical analysis of the 11 presently 

supported data sets with MusPy, in order to detect 

statistical discrepancies. Furthermore, we perform 

three experiments to assess their relative diversity and 

the compatibility of different data sets with each other. 

Together with the statistical analysis, these results give 

a guidance for selecting correct data sets for future 

study. Finally, we also show that combining multiple 

heterogeneous datasets could help improve 

generalizability of a music generation system. 

 
Fig. 2. MusPy Music object at the center is the core 

element of MusPy. 

  

II. RELATED WORK 

A specialised library for music generation has been 

developed with little effort, to the best of our 

knowledge. The most remarkable example is the 

Magenta project[5]. While MusPy seeks to offer core 

data collecting, pre-processing, and analysis 

procedures, Magenta has several model instances, but 

it is very closely linked with TensorFlow[23]. We at 

MusPy allow specialised machine learning libraries to 

design the model generation and training and to make 

MusPy adaptable in the work with multiple machine 

learning frameworks. 

Many libraries are available to deal with symbolic 

music. Music21[4] is one of the most representative 

instruments of computer musicology research and 

objectives. Music21 has its own corpus, while MusPy 

has no dataset. Instead, MusPy provides online 

downloading data sets with tools to manage distinct 

collections, so that new datasets may be extended in 

future easily. jSymbolic [5] is focusing on extracting 

symbolic music statistical information. While 

jSymbolic may serve as a powerful feature extractor for 

the training of classification models supervised, MusPy 

concentrates on generative music modelling and 

promotes many common representations in the 

production of music. 

Furthermore, MusPy offers numerous objective 

measurements for assessing systems for music 

production. Connected generalisation studies using 

cross-datasets[5] indicate that cross-domain 
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pretraining can both qualitatively and quantitatively 

improve results of music creation. MusPy's data set 

management mechanism facilitates us in analysing the 

generalizability of different datasets in pairs to properly 

check this hypothesis. 

  
(a) 

 
(b) 

Fig. 3. Examples of (a) training data preparation and (b) 

result writing pipelines using MusPy. 

  

III. ABOUT THE LIBRARY MUSPY 

MusPy is a Python package open source for the creation 

of symbolic music. The system diagram of MusPy is 

shown in Fig. 2. It offers a core class, MusPy Music 

class, as a universal symbolic container. This core 

container is then incorporated into the data set 

management system, I/O interfaces and model 

assessment tools. In Fig. 3, we offer examples of data 

preparation and pipelines with MusPy. 

 

A. Muspy Music Class And I/O Interfaces 

Our goal is to establish a medium ground between 

existing symbolic music forms, and to build a unified 

music generating format. MIDI employs speeds for the 

transfer of dynamics, bpm for tempo markings and 

control messages for articulation as part of the protocol 

for communication between musical instruments. The 

notions of notes, measurements, and symbolic musical 

markings are missing, however. MusicXML instead 

incorporates the notion of notes, measures, and 

symbolic musical markers as a sheet music exchange 

format and provides layout information, but it does not 

include the reproduction data. It also has visual layout 

information. But symbolic and playback data are 

crucial for a music generating system. Thus, we follow 

the playback data standard of MIDI and MusicXML's 

symbolic music marking standard. 

Table 1. Currently supported comparisons of MusPy 

datasets. The markings of triangle show partial backing. 

Note that just MusicXML and MIDI files for music21 

Corpus have been provided in this version. 

 
Table 2. Comparisons of MIDI, MusicXML and the 

proposed MusPy formats. Triangle marks indicate 

optional or limited support. 

 
In reality, a universal format for symbolic music that 

we call MusPy is automatically defined in the MusPy 

Music Class and can be transformed into a JSON/YAML 
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human-reading file. Table 2 outlines the significant 

variations between MIDI, MusicXML and the MusPy 

formats suggested. We will offer an interface to existing 

symbolic music libraries, e.g. music21(24), mido[23], 

pretty midi[33] and Pypianoroll[35], using the 

proposed MusPy Music Class as the internal 

representation for music data. The result pipeline 

utilising MusPy is shown in Fig. 3(b). 

 
(a) on-the-fly mode 

 
(b) preconverted mode 

Fig. 4. Two internal processing modes for iterating over 

a MusPy Dataset object. 

B. Dataset Management 

Similar to Torchvision datasets[36] and TensorFlow 

data set[37], MusPy provides an easy-to-use framework 

for data set management. Table 1 lists and compares of 

the datasets that MusPy presently supports. An 

inherited class from the MusPy Dataset base is provided 

with each supported dataset. The modular and flexible 

architecture of the dataset management system 

simplifies the maintenance of local data collections or 

the future extension of support for additional datasets. 

In the iteration via MusPy data object, Fig. 4 shows two 

internal processing modes. MusPy also has 

PyTorch[38] and TensorFlow[23] interface APIs for 

the creation of machine-learning input pipelines. 

C. Representations 

Music has several abstract levels, and may thus be 

stated in several forms. Several representations have 

been suggested and utilised in literature for the 

production of Music in particular, intended for the 

generative modelling of symbolic music[1]. These 

portrays may be roughly classified into four kinds — 

pitch-based representations [9-12], event-based 

representations [13-016], note-based representations 

[17] and piano-rolls [18,19]. 

Table 3. T and N indicate number of timescales and 

notes, respectively. Comparisons supporting MusPy. 

Note that you can modify settings to comply with 

unique needs and use scenarios. 

 
A comparison of them is provided in Table 3. We 

develop these representations in MusPy and integrate 

them into the dataset management system. Fig. 3(a) 

shows an example of how training data are prepared in 

the NES Music Database piano-roll format using 

MusPy. 

D. Model Evaluation Tools 

Another important component of creating music 

generating systems is model assessment. As a result, we 

incorporate MusPy's audio rendering and score and 

piano-roll visualisation capabilities. Additionally, these 

tools may be beneficial for evaluating training progress 

and presenting final outcomes. Additionally, MusPy 

implements a number of objective measures described 

in the literature [17]. As described in [14], these 

objective metrics may be used to assess a music 

generating system by analysing the statistical 

difference between the training and produced samples. 

Polyphony, polyphony rate, pitch-in-scale rate, scale 

consistency, pitch entropy, and pitch class entropy are 

all pitch-related measures. Empty-beat rate, drum 

inpattern rate, drum pattern consistency, and groove 

consistency are all rhythm-related measures. 

E. Summary 

To summarize, MusPy features the following: 

Using PyTorch and TensorFlow interfaces, this data 

management solution manages commonly used 

datasets. Interfaces to a variety of symbolic music 

libraries (for example, music21, mido, beautiful midi, 
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and Pypianoroll) as well as data I/O for popular 

symbolic music formats (e.g., MIDI, MusicXML, and 

ABC). Implementations of commonly used musical 

notation systems, including pitch-based, event-based, 

piano-roll, and note-based notation. Instruments for 

assessing music generation models, including audio 

rendering, score and piano-roll visualisations, and 

objective metrics.. 

 

 
Fig. 5. Length distributions for different datasets. 

 

IV. DATASET ANALYSIS 

Analyzing datasets is important for creating systems for 

musical composition. We can simply deal with various 

music datasets using MusPy's dataset management 

framework. We use MusPy to calculate statistics for 

three critical aspects of a song—length, tempo, and 

key—with the goal of revealing statistical disparities 

across these datasets. To begin, Fig. 5 illustrates the 

distributions of song durations for various datasets. As 

we can see, their ranges, medians, and variances are 

very different. 

Second, we show in Fig. 6 the initial tempo 

distributions for datasets that have tempo information. 

As can be seen, they are all essentially bell-shaped, 

although with varying ranges and variations. 

Additionally, we see two peaks in the Lakh MIDI 

Dataset (LMD), at 100 and 120 quarter notes per minute 

(qpm), which may be due to the fact that these two 

numbers are often selected as the default tempo settings 

in music notation applications and MIDI 

editors/sequencers. Additionally, only about ten 

percent of songs in the Hymnal Tune Dataset begin 

with a tempo other than 100 qpm. 

Finally, Fig. 7 depicts the important histograms for 

various datasets. As may be seen, the key distributions 

are rather asymmetric. Furthermore, with the 

exception of the music21 Corpus, fewer than 3% of 

songs are in minor keys. LMD has the most skewed key 

distributions, which may be because C major is often 

selected as the default key in music notation 

applications and MIDI editors/sequencers. These 

statistics may serve as a reference for future researchers 

in terms of selecting appropriate datasets. 

 
Fig. 6. Initial-tempo distributions for different datasets 

(those without tempo information are not presented). 
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 Fig. 7. Key distributions for different datasets. The keys 

are sorted w.r.t. their frequencies in Lakh MIDI 

Dataset. 

V. EXPERIMENTS AND RESULTS 

In this section, we conduct three experiments to 

analyze the relative complexities and the cross-dataset 

generalizabilities of the eleven datasets currently 

supported by MusPy (see Table 1). We implement four 

autoregressive models—a recurrent neural network 

(RNN), a long shortterm memory (LSTM) network a 

gated recurrent unit (GRU) network [4] and a 

Transformer network. 

For the data, we use the event representation as 

specified in Table 3 and discard velocity events as some 

datasets have no velocity information (e.g., datasets 

using ABC format). Moreover, we also include an end-

of-sequence event, leading to in total 357 possible 

events. For simplicity, we downsample each song into 

four time steps per quarter note and fix the sequence 

length to 64, which is equivalent to four measures in 

4/4 time. In addition, we discard repeat information in 

MusicXML data and use only melodies in Wikifonia 

dataset. We split each dataset into train–test– 

validation sets with a ratio of 8 : 1 : 1. For the training, 

the models are trained to predict the next event given 

the previous events.    

We use the cross entropy loss and the Adam optimizer 

[3]. For evaluation, we randomly sample 1000 

sequences of length 64 from the test split, and compute 

the perplexity of these sequences. We implement the 

models in Python using PyTorch. For reproducibility, 

source code and hyperparmeters are available at. 

A. Autoregressive Models On Different Datasets 

We train the model on a dataset and then test it on the 

same dataset in this experiment. Fig. 8 illustrates the 

perplexities associated with various models on various 

datasets. As can be seen, all models exhibit similar 

characteristics. They attain lower perplexities when 

dealing with small, homogenous datasets, but result in 

higher perplexities when dealing with bigger, more 

varied datasets. That is, the test perplexity may serve as 

a proxy for the dataset's variety. Additionally, Fig. 9 

illustrates perplexities as a function of dataset size (in 

hours). By classifying datasets as multi-pitch (i.e., 

capable of taking any number of concurrent notes) or 

monophonic, we can observe that perplexity is 

positively linked with dataset size within each 

category. 

 
Fig. 8. Log-perplexities for different models on 

different datasets, sorted by the values for the LSTM 

model. 

In this experiment, we train a model on a dataset and 

then test it on many other datasets ′. The perplexities 

for each train–test dataset pair are shown in Fig. 10. 

The following are some observations: 

In general, generalizability across datasets is not 

symmetric. For instance, although a model trained on 

LMD generalises well to all other datasets, not all 

models trained on other datasets generalise to LMD, 

which may be owing to LMD's size and cross-genre 

nature. 

Multi-pitch models generalise effectively to 

monophonic datasets, while monophonic models do 

not transfer to multi-pitch datasets (see the red block 

in Fig. 10). 

The model developed using the JSBach Chorale Dataset 

is not generalizable to any of the other datasets (see the 

orange block in Fig. 10). This may be because its 
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samples are downsampled to a quarter note resolution, 

resulting in an unique note duration distribution. 

In comparison to other datasets, the majority of datasets 

generalise poorly to the NES Music Database (see the 

green block in Fig. 10). This may be because the NES 

Music Database only includes game soundtracks. 

 
Fig. 9. Log-perplexities for the LSTM model versus 

dataset size in hours. Each point corresponds to a 

dataset. 

B. Effects Of Combining Heterogeneous Datasets 

As shown in Fig. 10, LMD has the greatest 

generalizability, perhaps due to its size, diversity, and 

crossgenre nature. A model trained on LMD, on the 

other hand, does not generalise well to the NES Music 

Database (see the brown block in the close-up of Fig. 

10). Thus, we are interested in determining if 

combining several heterogeneous datasets may aid in 

increasing generalizability. 

All eleven datasets mentioned in Table 1 are combined 

into a single big unified dataset. Given the size disparity 

between both datasets, merely concatenating them 

may result in a significant imbalance and bias toward 

the larger dataset. As a result, we examine a variant that 

employs stratified sampling throughout the training 

process. To get a data sample from the stratified dataset, 

we uniformly choose one of the eleven datasets and 

then randomly select one sample from it. Take note 

that during test time, stratified sampling is deactivated. 

Additionally, we present the findings for these two 

datasets in Figures 8, 9 and 10. As shown in Fig. 10, 

integrating datasets from several sources enhances the 

model's generalizability. This is consistent with the 

result in [15] that models trained on specific cross-

domain datasets generalise more well to previously 

unknown datasets. Additionally, stratified sampling 

mitigates the source imbalance issue by decreasing 

perplexities in the majority of datasets at the expense of 

higher perplexity on LMD. 

  
  

 
Fig. 10. Results on cross-dataset generalizability. The 

numbers and colours indicate the log-perplexities of an 

LSTM model trained on one dataset (row) and tested on 

another (column). The datasets are ordered according 

to their diagonal values, which means that they may be 

trained and tested on the same dataset. 

VI. CONCLUSION 

We've introduced MusPy, a new toolset for building 

music generating systems. We covered the library's 

architecture and functionality, as well as examples of 

data pipelines. We performed statistical research and 

experimentation on the eleven presently supported 
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datasets using MusPy's dataset management system to 

determine their relative diversity and cross-dataset 

generalizability. These findings may aid researchers in 

selecting suitable datasets for future study. Finally, we 

demonstrated how integrating diverse datasets may 

assist enhance a machine learning model's 

generalizability. 
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