
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

Second National Conference on Internet of Things : Solution for Societal Needs

In association with International Journal of Scientific Research in Computer Science,

Engineering and Information Technology | ISSN : 2456-3307 (www.ijsrcseit.com)

110

Using Azure Kubernetes Services to Deploy a Micro Service Based Application

Dr. L. Srinivasan1, Junaid Ahmed Nadaf2
1Associate Professor, ISE Department, New Horizon College of Engineering, Bengaluru, Karnataka, India
2M. Tech. Scholar, Cyber Forensics and Information Security, ISE Department, New Horizon College of

Engineering, Bengaluru, Karnataka, India

ABSTRACT

Micro services are an Independent Services which works perfectly on the architectural approach. Micro

services helps in building the applications with its independent behaviour which is well known and also known

as small services. This also helps in deploying and managing a service in the form of tiny services where each

service is coded separately. The Micro service Architecture is designed in such a way that, if one component

fails it won’t effect on other running services and ensure that the application services are hosting normally. This

Micro service architecture is designed in such a way that the components are loosely coupled and the API’s are

in well-defined contracts. These benefits in reducing the stress-overhead in the Business Markets. This Micro

service feature is offered in one of the open source domain called Kubernetes. This Kubernetes along with

Containers and pods helps in deploying, managing and scaling applications called containerized applications.

Kubernetes also helps in providing support during any service failure and helps in recovering by improving the

situation. In this paper we are going to experiment the Micro services performance with the help of Kubernetes

along in its default configuration by enabling High Availability (HA). We had intentionally stopped many

services which has helped us to get to know and understand the working mechanism of the same.

Index Terms—Micro services, Containers; Pods, Kubernetes, Failure

I. INTRODUCTION

The Micro services support polyglot programming.

And these services communicate with each other by

using well- defined APIs. These services are

implemented in such a way that they are hidden to

each other. The Micro service architecture has

management (orchestration) component, which helps

in identifying failures, recovering the services across

the nodes and deploying the nodes as well. And the

API Gateway allows clients to enter inside instead of

calling the services, this client when requests for an

service, the API redirects to back end and serves the

client’s request.

The Benefits of Micro services are agility, small teams,

and focused teams, small code camp, cross platform

technologies, isolating the faults, scalability and data

isolation. Some of the Identify applicable funding

agency here. If none, delete this.

Major challenges of Micro services are complexity,

develop- ment and testing, lack of governance,

network congestion and latency, data integrity,

management, versioning, and skill set.

Micro services addresses the monolithic approach,

which is a drawback. Micro services helps in increase

the standard and speed. Micro services always stay

low, so that they can easily restart, recover whenever

there is service failure. Micro services are known for

http://www.ijsrcseit.com/

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

111

reducing the Application downtime value because

the services are loosely attached and they don’t

communicate with each other at all. In order to avail

these benefits, there should be technology configured

with the existing architecture style.

Containers are known for airy weight and they turn

on very quickly than those of Virtual Machines(VMs).

Whenever there is a Service Failure, upgrading or in

failure cases the containerization of micro services

would do its job. Here, we have used Docker, which

is mind-blowing container platform. There would be

requirement of orchestration platform as well, which

helps in deployment of the containers. Kubernetes is

an open source technology platform. Apart from

healing and restarting the failed containers,

Kubernetes has been designed in an automated

manner, which identifies the failed states and

recovers them automatically. Hence, this feature

helps in improvement of application’s availability.

The Micro service Architecture style is generic and

the practitioners and investigators refers this style as

a Model. And with the help of this Architecture style

the investigators comes out with different

perspectives. After assessment the effectiveness of the

High Availability mechanism with the help of

Kubernetes, the result logs have been captured. And

unfortunately, the results didn’t meet the

requirement. And the HA effectiveness has been

investigated in the Kubernetes in its default

configuration mode.

The remaining portion in this paper has been

explained in the organized manner as follows. Section

II helps us to familiarize Architecture about

deploying containerized applications with

Kubernetes. Section III explains the experiments

which are present. Section IV helps in analysis of the

results. And the Conclusion parts have been

commented on Section V.

II. IN A PRIVATE CLOUD ENVIRONMENT THE

CONTAINERIZED APPLICATION IS DEPLOYED

WITH KUBERNETES CLUSTER

It is much needed to know the difference between

the Private Cloud and Public Cloud Environment.

Kubernetes cluster should be implemented in a

public cloud as it requires less effort. Whereas it will

take more effort when deploying in Private Cloud.

Here the main difference is exposing the Application

in a better way externally. We will get to know in

details about exposing the applications which is

deployed in Kubernetes cluster running in a private

cloud. Kubernetes also has the ability to run the

Virtual Machines and helps in creating a Single

Cluster view. And here the application has been

composed of single micro service.

Kubernetes Ingress is a kind of resource which is

designed in a structured way to showcase the services.

Fig. 1 represents a architecture which is generic

design of Ingress which ex- poses the service in a

cluster running in a private cloud. A Cluster IP gets

generated and helps in redirection of requests to the

pods and this Ingress resource is used completely in

back end. The Ingress controller always helps in

redirecting the incoming requests to the ingress

resource, and maps to the appropriate back end

service. Only One Pod is used here and Ingress

Controller have been deployed here. The rules have

to be defined prior on the deployment controller and

ensure that the ingress controller has been scheduled

on a specific node. The Kubernetes has the possibility

to connect to a pod directly to a port on the node

which is hosting the pod. We know that we have

defined a rule where Ingress controller pod has to be

on the same node, and it is safe method where it can

always receive the requests from outside of the

cluster and that cluster has public IP of that node.

Deploying the Ingress Controller and Kubernetes

Cluster which is running in the Private Cloud is little

tricky and there is no proper documentation available

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

112

yet. Understanding and deploying a Ingress

Controller needs a lot of trial and errors to

understand the working mechanism of the same. The

previously described architecture is designed based

on our own understanding.

III. EVALUATION RESULTS OF THE MICRO

SERVICE BASED APPLICATIONS WHICH IS

DEPLOYED WITH KUBERNETES

The nonfunctional requirement which is nothing but

Avail- ability is measured usually when there is

power outage time from the given period of time.

And the Value of High Availability should be

calculated when there is a up-time of 99.999 per cent,

and we also need to ensure that there should be no

power issue more than 5 minutes overall per year.

The improvement of the availability of micro services

and containers helps in Kubernetes healing capability

because they are small and lightweight by natural. So

here we are going to describe the experiments which

we have conducted to evaluate from an availability

perspective and the deployment of the micro service

based application in a Kubernetes cluster which is

running in a private cloud (Please refer Fig.1).

Whenever there is a Pod Failure, Kubernetes delivers

the new pod automatically and therefore this ensures

that the improvement of availability of the service is

provided by the pod. The evaluation of Kubernetes

service failure or pods failure helps in identifying the

administrative operations (e.g. pod deletion, node

deletion) with the help of Kubernetes command line

interface (CLI) and also evaluates how fast

Kubernetes delivers the new pods when there is a

pod failure. And when there is more usage of

Kubernetes administrative operations, where ”failure”

is only not to be screened by Kubernetes. Instead, the

Kubernetes administrative operations performs it

tasks in a graceful manner. Therefore, there won’t be

any common execution failure scenarios, because

there will be a perfect steps followed and these

happen spontaneously which is the outcome of

Events such as External failure events (e.g. physical

node crash). Evaluating the conclusions based on the

administrative operations is not accurate. And this is

important to know that how to identify and measure

the external execution failure and also measuring the

availability of the above simulation results before

making any decisions.

A. Measuring Availability

From the Availability Perspective, Measuring the

Availability helps in evaluating the Kubernetes and

some have been defined below.

a) Reaction Time: When there is a failure event

detected the time calculated between the

introduced failure event and the first reaction of

Kubernetes.

b) Repair Time: The time calculated between the

repair of the failed pod and the first reaction of

Kubernetes.

c) Recovery Time: The time calculated between

when the service comes online and the first

reaction of Kubernetes.

d) Outage Time / No Power Issue: The time

duration in which the service was offline. And

hence this Outage Time represents the sum of

reaction time and recovery time.

B. The Experiments

The Architecture Diagram can be referred in Fig.1.

Here we have deployed three VMs in our Cluster.

And this same is hosted in Open Stack Cloud. We

have used Open Source OS i.e Ubuntu 16.04 and all

the VMs have been deployed here. Container Engine

has been introduced by Docker 17.09. And the Main

Engine i.e Kubernetes 1.8.2 is providing the nodes

which are completely running. Network Time

Protocol (NTP) which runs on Port Number 123 is

used for time synchronization between the nodes.

The Micro service that is officially used here for

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

113

experimentation is VLC Video Streaming. The

Template used in Pods helps in the deployment

controller and this Pod Template also contains the

Image of the Containers of the streaming server. And

this Container Image when deployed will start to

refer the streaming file. And in our Experiment, the

main task of deployment controller to maintain only

one pod properly amongst all other pods. This also

helps in achieving the availability of the Kubernetes

Healing Services. And the Video Streaming micro

service is emigrant and when there is such a failure,

the video streaming service will start to read from the

beginning of the file.

Fig. 1. Private Cloud - Exposing services via Ingress

After successfully passing one round of test, we have

identified that there are two sets of Failure Scenarios.

The First set is an Application Failure, and this occurs

when there is a Pod Failure. The Second set of Failure

is known due to Node Failure. In each of these, we

will identify and differentiate between these two

failure scenarios. Scenario I identifies a Failure

reproduced in parallel to an administrative operation

which is related to Kubernetes. And this Scenario II

is in parallel to external of the Kubernetes. And

below we are going to see the Failure scenario of the

same in details. And the results of the experiments

have been displayed here which represents the

failure scenarios and those results can be viewed in

Table (I) and Table (II). And all these experiments

have been performed say 10 times to get the accurate

results. And the results have been filled in the table

rows and columns with an average output results

taken of those 10 repeated times. And all these

Measurements of this experiment have been

considered in seconds only.

a) Summary of Pod Failure:

• Plan-I - Pod Failure: With the help of

Administrative commands in the CLI the failure

pods can be deleted and hence this can also be a

showcase to Kubernetes. As explained above that

with administrative mode in CLI the failure pods

can be removed from the endpoints. And, pods

have been given 30 seconds of refined

termination period. And at this scenario, the

pods won’t receive any new requests, and this

will also keep serving the requests which was

assigned previously. And this also gives an

sufficient time to Kubernetes which can be

scheduled to a new pod and this also helps in

dealing of incoming requests. And the

responsible person for maintaining only one

replica of pod is deployment controller, and this

will bring up the events which always marks the

reaction time. And when there is a repair time

then the new pod comes up. And this new pod as

soon as its landed it starts executing and it starts

streaming the video, and this wont be published

to users unless and until it has been registered in

Endpoints list of the service. And hence, this

scenario makes us understand that streaming

services are recovered whenever there is a new

pod registered on the endpoint list of the service.

And the outcome value of this same is presented

in Table I.

• Plan-II - Pod Process Failure: Whenever there is

a pod which contains some containers i.e

Application Con- tainers and when these have

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

114

been deployed, parallel to that another container

is created which is also the Pod’s Container. And

these pods are the processes which are running

in the OS, may get expelled which ends up

resulting in failure of the whole pod. And, to

overcome from the pods failure we need to kill

the OS Process of the pod container. And the

main agent who identifies the failure of Pods

process is Kubelet. This Kubelet helps in the

reaction time. Similarly, the Kube-proxy helps in

removing the pod from the endpoints service

list. And when there is a crash in the process, a

refined termination signal comes into existence.

And this Signal is sent to the application

container and the Docker will wait for 30

seconds before being kicked out. And as we have

observed in the experiments that whenever

there is a Pod Failure and there is Crash over of

the pods, the streaming service won’t be

available. Kubernetes also waits for new pod to

start until there will be a termination of the

Application Container. simultaneously, the

deployment controller will re initiate the pod

this is also known as repair time. And the

recovery time is calculated when there is a new

pod added in the endpoints list of the service.

And the measurement of this is represented in

Table I.

TABLE I POD FAILURE

Failure Plan

(unit: seconds)

Reaction

Time

Repair

Time

Recovery

Time

Outage

Time

Plan-I 0.031 0.843 1.422 1.343

Plan-II 0.431 32.443 31.242 32.333

b) Summary of Node Failure:

• Plan-I - Administrative deletion of the Node: A

node which gets deleted without draining

performed by admin- istrative deletion is one of

the method of simulating the node failure. And

this node failure is managed by Kuber- netes CLI

which is similar to the the Spontaneous Node

Failure, and we are going to determine the

behaviour of Kubernetes reactions. Here, A node

when hosted a pod gets deleted from the

Kubernetes CLI Command. And this results in

removing the containers and processes which are

related to Kubernetes on the active node gets

triggered. And the unknown pod which is

running on the node which was about to get

deleted enters into a state where there wont be

any new requests. Therefore the pod failure

situation occurs. And we can see lots of different

behaviour between this situation and the

previous pod failure behaviour(PLAN-1). Also,

the pod will serve the requests which were

assigned previously just for one second

(excluding default 30 seconds). Quickly, the pod

is going to be deleted completely and the

deployment controller tries to attempt to add a

new pod on different node. Here, the repair time

gets activated when there is a new born pod.

And the recovery time is also taken into

consideration when there will be a new pod and

this will be added in the endpoint security list.

And the calculations for this scenario are

represented on Table II.

• Plan II - Externally Triggered Node Failure: As

discussed previously, the Kubelet has the

responsibility to report the status of the node

actively to the master. And in the default

configuration of the Kubernetes, the Kubelet

gives an update about the Node’s Status to the

Master Node in every 10 seconds. And this

allows the node to be un- responsive for about 4

consecutive status updates before it is confirmed

as failed. And after getting confirmed as failed,

the master node waits for another 4 minutes and

20 seconds before selecting the pods which are

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

115

running on the failed node and which are

terminated and those pods are going to be

rescheduled on another node. This also means

that with the help of default configuration of the

Kubernetes, this Kubernetes takes around 5

minutes to be recovered from the node failure.

And in order to perform this task, the VM which

is hosting the pod is going to be shutdown with

the help of Linux Reboot Command.The Master

node acknowledges itself that the node is not

ready and when there is a missed node status

update on the fourth attempt then that would be

marked as the reaction time. After 5 minutes,

there would be a new pod arrived by the

deployment controller, and this pod would be

considered and concluded as Repaired.

Simultaneously, this new Pod’s IP address is

added on the endpoints list, and hence the

service will be recovered. The assessment value

of the same has been represented on the Table II.

IV. ANALYSIS

A. Pod Failure Summary

In the Plan-I case, the reaction time was 0.031

seconds which is very much better than the 0.431

seconds of the failure of pod process(Plan-II). The

main reason is that the termination gets activated

within the Kubernetes itself, and when there would

be a reply appropriately to the termination procedure.

And after observing the current state, the Kubelet’s

health determines that the pod is no longer available

and also this helps in predicting how close the next

health check failure happens.

TABLE II NODE FAILURE

Failure Plan

(unit:

seconds)

Reaction

Time

Repair

Time

Recovery

Time

Outage

Time

Plan-I 0.031 1.003 1.532 1.513

Plan-II 38.133 25.343 26.432 32.442

The keen observation on the experiments of the same

is shown in Fig. 2. The Pod Process gets failed to

perform forcefully even after applying the external

force which can be read in Plan-II(Fig. 2(b)), and

there will be a graceful termination signal when

there will be a container of the pod.And hence, the

pod process failure gets detected by the Kubelet, and

until and unless the Docker gets confirmation from

the application container stating that the pod has

been terminated. And this leads to the impacts and

delays of the SRT(Service Recovery Time) and until

the Docker gets new configuration there will be a

delay in servicing. And this also ensures that the fault

has been occurred due to Bug or might be due to Real

Fault. The principles which are required in the Fault

isolation has to be responded with proper forceful

cleanup of the application containers as soon as there

is a confirmation stating that pod’s process failure

gets detected. And this Grace period gets increased i.e

Plan-II is 38.133 seconds. And this is much more

significantly longer when there is Plan-I which has

Reaction time of 0.031 seconds. Previously, we have

observed that in Fig. 2 (a)), Kubernetes always helps

in performing the graceful termination and this helps

in parallel to repair procedures. For the certain

actions of procedures the ordering value is

guaranteed for these kinds of procedures. Let’s take

an example, the terminating pods gets removed from

the end points list which helps in recitation of the

start of the repair procedures, and the pod gets

terminated when there will be a completion and this

follows the new pod to be added. This

parallelization can be possible only when there will

be an assumption that there wont be any fault in the

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

116

execution system. This also helps in refreshing that

the points that were made earlier about the

simulation of the failures which helps on the

availability of metrics. And as observed, Plan-I

reports an Loss or Outage time of 1.513 seconds and

same in Plan-II it reports an loss of 32.44 seconds.

B. Node Failure Summary

And in the node Failure segments, there has been

observed that there is an similar differences in all the

framed availability output. And for Plan-I, the failure

has been triggered from the Shell of Kubernetes,

there will be a Reaction time of 0.031 seconds and it

is much faster than that of the Reaction time

captured in Plan-II i.e 38.133 seconds. As explained

in the previously section that, the period of Kubelet’s

status depends on the period which gets updated by

default in 10 seconds and the same is allowed in the

number of Missed status by default in 4 seconds.

Fig. 2. Analysis of Pod Failures Plans. (a) Plan-I (b)

Plan-II

And another important point which was observed in

Plan-I is that, though the pod has failed to perform

from the Kubernetes, the new pod is going to be

initiated and the old pod is going to be terminated.

And hence this was expected to behave properly

similarly to that of the termination of the pods by

administrative method(Plan-I), and hence the new

pod will be procured prior to the old one which gets

terminated.

V. CONCLUSION

Kubernetes helps in enabling the healing service

whenever there is a recovery failure. And this is

evaluated through internal operations. Hence, for

these kinds of operations, Kubernetes helps to react

will in comparison with its reaction to failures which

results in performing the external triggers. And

according to the survey experiment, the downtime of

the Kubernetes service is significantly higher. And it

is much important to know that the default

configuration of the Ku- bernetes leads to trigger the

node failure forcefully. And the output tables

explains that these types of failures leads to

downtime for 5 minutes, and this in results helps in

the amount of downtime calculation for one-

complete year and for the high availability

requirements are not differentiated and these do not

gets satisfied automatically even if an application or a

micro service gets deployed in Kubernetes.

As we know that the default configuration can be

altered in Kubernetes, analyzing how to reconfigure

the Kubernetes and how the reaction would be when

there is node failure. This helps in avoiding the

network overhead and there would be fake reports

which makes it complicated and which requires a

better effort.

VI. ACKNOWLEDGMENT

This complete work has been demonstrated and

implemented from the NSERC and Ericsson.

VII. REFERENCES

Volume 8, Issue 4, May-June-2021 | http://ijsrcseit.com

Volume 8 - Issue 4 - Published : June 30, 2021 Page No : 110-117

117

[1]. G. Eason, B. Noble, and I. N. Sneddon, “On

certain integrals of Lipschitz-Hankel type

involving products of Bessel functions,” Phil.

Trans. Roy. Soc. London, vol. A247, pp. 529–551,

April 1955.

[2]. J. Clerk Maxwell, A Treatise on Electricity and

Magnetism, 3rd ed., vol.2. Oxford: Clarendon,

1892, pp.68–73.

[3]. I. S. Jacobs and C. P. Bean, “Fine particles, thin

films and exchange anisotropy,” in Magnetism,

vol. III, G. T. Rado and H. Suhl, Eds. New York:

Academic, 1963, pp. 271–350.

[4]. K. Elissa, “Title of paper if known,” unpublished.

[5]. R. Nicole, “Title of paper with only first word

capitalized,” J. Name Stand. Abbrev., in press.

[6]. Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa,

“Electron spectroscopy studies on magneto-

optical media and plastic substrate interface,”

IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741,

August 1987 [Digests 9th Annual Conf.

Magnetics Japan, p. 301, 1982].

[7]. M. Young, The Technical Writer’s Handbook.

Mill Valley, CA: Univer- sity Science, 1989.

[8]. S. Newman, “Building Microservices: Designing

Fine-Grained Sys- tems,” O’Reilly Media, Inc.,

2015.

[9]. N. Dragoni et al., “Microservices: Yesterday,

Today, and Tomorrow,”in Present and Ulterior

Software Engineering, Springer, Cham, 2017, pp.

195–216.

[10]. D. Jaramillo, D. V. Nguyen, and R. Smart,

“Leveraging microservices architecture by using

Docker technology,” in SoutheastCon 2016,

2016, pp. 1–5.

