

International Conference on Artificial Intelligence and Machine Learning In association with International Journal of Scientific Research in Computer Science, Engineering and Information Technology ISSN : 2456-3307 (www.ijsrcseit.com) | Volume 8, Issue 5, July-August-2021

Plant Leaf Diseases Detection and Classification Using Image Processing and Deep Learning Techniques

Shanta Patil¹, S R Vinay¹, Kartik Kulkarni¹, Mehboobi Mulla¹, Amruta Naveen², Sahana Beelagi²

¹B.E. Students, Final Year B.E, Department of Computer Science, VTU/Secab Institute of Engineering and Technology/ Vijayapura, Karnataka, India

²Professor, Final Year B.E, Department of Computer Science, VTU/Secab Institute of Engineering and Technology/ Vijayapura, Karnataka, India

ABSTRACT

Plant diseases affect the growth of their respective species, therefore their early identification is veryimportant. Many Machine Learning (ML) models have been employed for the detection and classification of plant diseases but, after the advancements in a subset of ML, that is, Deep Learning (DL), this area of research appears to have great potential in terms of increased accuracy. Many developed/modified DL architectures are implemented along with several visualization techniques todetect and classify the symptoms of plant diseases. Moreover, several performance metrics are used for the evaluation of these architectures/techniques. This review provides a comprehensive explanation of DL models used to visualize various plant diseases. In addition, some research gaps are identified from which to obtain greater transparency for detecting diseases in plants, even beforetheir symptoms appear clearly.

Keywords : plant disease detection, classification of diseases, image processing, Deep learning, disease of plant leaf

I. INTRODUCTION

Plant disease is defined as the state of local or systemic abnormal physiological functioning of a plant, resulting from the continuous, prolonged 'irritation' caused by phytopathogenic organisms.pests and diseases pose a threat to food security because they can damage crops, thus reducing the availability and access to food, increasing the cost of food. Plant pests and diseases may also negatively affect the palatability of foods resulting in changes to the traditional food preferences of populations.

In general, pathogens that infect plants do not specialize in infecting people. You are not likely to catch a disease from working with diseased plants in your garden, but it is a potential risk (depending on the infection), and consideration should be taken. The most direct economic impact of a transboundary pest or disease is the loss or reduced efficiency of agricultural production - whether it be of crops or animals - which reduces farm income. The severity of the economic effect will depend on the specific circumstances.

Insects can vector or infect a plant with a pathogen when they feed on an infected host plant, and then move and feed on an uninfected plant. Pathogens can also spread through infected seeds, transplants, or

contaminated equipment, irrigation water, and humans.Plant diseases can affect plants by interfering with several processes such as the absorbance and translocation of water and nutrients, photosynthesis, flower and fruit development, plant growth and development and cell division and enlargement.

Plant diseases are caused by different micro-organisms such as viruses, bacteria and fungi. In addition, various soil-borne and above ground insect pests also affect crop production It causes the reduction of available resources for plants, which fail to produce enough biomass, seeds, and thus yield.Common methods for the diagnosis and detection of plant diseases include visual plant disease estimation by human raters, microscopic evaluation of morphology features to identify pathogens, as well as molecular, serological, and microbiological diagnostic techniques.

Inconsistency and delay in the identification of plant diseases cause a reduction in the quantity and quality of yield. Losses due to plant diseases or other pest accounts for 20 to 40% of global annual productivity. Studies have been carried out to assess the estimated loss caused by different diseases. Yield loss also contributes toward increased consumer prices and a drop in the earnings for crop producers. Accurate and timely identification of plant diseases is crucial for ensuring maximum yield and is beneficial for farmlands in remote areas.

The agricultural land mass is more than just being a feeding sourcing in today's world. Indian economy is highly dependent of agricultural productivity[9]. Therefore in field of agriculture, detection of disease in plants plays an important role. The existing method for plant disease detection is simply naked eye observation by experts through which identification and detection of plant diseases is done. For doing so, a large team of experts as well as continuous monitoring of plant is required, which costs very high when we do with large farms. At the same time, in some countries, farmers do not have proper facilities or even idea that they can contact to experts. Due to which consulting experts even cost high as well as time consuming too. In such conditions, the suggested technique proves to be beneficial in monitoring large fields of crops.

Plant disease identification by visual way is more laborious task and at the same time, less accurate and can be done only in limited areas[1][2]. Whereas if automatic detection technique is used it will take less efforts, less time and become more accurate. In plants, some general diseases seen are brown and yellow spots, early and late scorch, and others are fungal, viral and bacterial diseases. Image processing is used for measuring affected area of disease and to determine the difference in the color of the affected area.Deep learning techniques used to detect plant diseases are more accurate and less time consuming compared to the traditional image processing techniques. Researchers are facing major issues in the field of plant disease like unavailability of data set for each and every disease, background noise in captured images, sometimes texture property of plant leaf varies during the change of environment[4].

S.N	Title of the paper	Algorithm	Methodology	Result
	Year			
1.	Plant leaf	Deep learning	Involves 3 key stages:	A 96.5% accuracy rate
	detection and	convolutional neural	acquisition of data,	was achieved using 75
	disease	network model.	preprocessing of data and	epochs during the
	recognition		imageclassification	training of the model.
	usingdeep			The model also achieved
	learning			a maximum accuracy rate

II. LITERATURE REVIEW

	IFFF 2010			of 100% when tosting
	IEEE 2019			of 100% whentesting
	D:			varieties and diseases.
2.	Disease	One of the most used	Deep learning is used to	Accuracy results are the
	detection on	optimization	detect diseases from the	results from the Caffe
	the leaves of	algorithm is	leaves of the tomato plants.	tests.AlexNet performed
	the tomato	Stochastic	Two different deep learning	slightly better than
	plantsby using	Gradient Descent	network architectures	SqueezeNet.
	deep learning	(SGD) algorithm.	AlexNet [9] and SqueezeNet	Accuracy on Test
		Briefly, SGD	[10] are trained and tested	Set:AlexNet: 0.9565
		minimizes the loss	on the tomato images of the	SqueezeNet: 0.943
		through iterations	Plantvillage dataset. Both	
		by updating means	training and testing are done	
		according to	on the mobile	
		gradient.	supercomputer NvidiaJetson	
		0	Tx1.	
3.	Tomato	A convolutional	This has been implemented	The proposed method is
	Leaf	Neural Network	effectively using image	achieved an accuracy level
	Disease	algorithm used in	processing technique	of 98%. The proposed
	Detection	this proposed method	Feature extraction	method is used as a CNN
	Liging Doop	is a biorarchical	reature extraction,	algorithm for biorarchical
	Using Deep			
	Techning	that many the mind	convolutional neuaral and	reature extraction that
	Techniques	that maps the pixel	the latest filthe algorithms	map input image pixel
	ICCES 2020	values and evaluates	and using the open source	intensities and compare
		the same with the	programming language	the same with the trained
		trained dataset	Python.	dataset image.
		image.		
4.	Sugarcane	This paper provides	1. Image Dataset	The highest recorded
	Disease	an idea of helping	Acquisition	validation accuracy
	Recognition	farmers with the aid	2. Pre-processing of	duringthe training was
	using Deep	of deep learning	Images	95% with 60 epochs.
	Learning.	algorithm in	3. Feature Extraction	shows of detection and
	IEEE 2019	detecting and	4. Classification	recognition of a
		classifying sugarcane		sugarcane plant with
		diseases.		35.52% accuracy that it
				is infected with smut
				diseaseshow an
				accuracy rate of 98.98%
				infected with grassy
				shoot disease. infected
				with a yellow leaf

					disease on the right
					image
5.	Plant Leaf	SVM is used as an	[1]	Image acquisition	The accuracy of SVM
	Disease	algorithm to	[2]	Noise removal	classifier was 80% and
	Classificat	develop a plant	[3]	Image segmentation	whenapplied with Grid
	ion Using	disease	[4]	Feature extraction	Search hyper parameter
	Grid	identification and	[5]	Classification(SVM	tuning accuracy increased
	Search	classification		and grid search	to 84%.
	Based	system.		basedSVM)	
	SVM.			detection	
	IEEE 2020				

III. PROPOSED METHODOLOGY

Diseases in Plants are a major concern to the farmers these days. Many a times, the farmers are not sure which pesticide or insecticide is needed to treat a particular diseased plant because they are not sure of the type of disease. This results in spraying wrong pesticides, damaging the plants which affect the plant yield. To overcome with this problem, we have come up with a solution of developing a system that easily identifies some common diseases that occur in the plants.

Through image processing and Deep learning algorithms, we aim to classify diseases and generate a model that would provide an easy and accurate way of determining the plant disease through on click of an image of the affected plant leaf. This system is not only beneficial to the farmers in saving the crops, but also in saving money by buying only right kind of pesticides suitable to treat the particular disease. As the system does not involve any heavy machineries and electricity, the system proves to not only be a cost-effective solution, but also an environment-friendly one.

Fig 3.1: Flowchart diagram

Image Database: The next point in the project is creation of the image database with all the images that would be used for training and testing. The construction of an image database is clearly dependent on the application. The image database in the proposed approach consists of 28 different classes of image samples. The image database itself is responsible for the better efficiency of the classifier as it is that which decides the algorithm.

Image Pre-processing: Image pre-processing is the name for operations on images at the lowest level of abstraction whose aim is an improvement of the image data that suppress undesired distortions or enhances some image features important for further processing and analysis task. It does not increase image information content. Its methods use the considerable redundancy in images. Neighbouring pixels corresponding to one real object have the same or similar brightness value. If a distorted pixel can be picked out from the image, it can be restored as an average value of neighbouring pixels. In the proposed approach image pre- processing methods are applied to the captured image which are stored in image database.

Augmentation: Image augmentation is a technique of altering the existing data to create some more data for the model training process. In other words, it is the process of artificially expanding the available dataset for training a deep learning model.

ORIGINAL IMAGE

ENHANCED IMAGE

Figure.4.1 Enhanced Image

Classification: Classification is a process of categorizing a given set of data into different types of classes. Classification of image is done using CNN (Convolutional Neural Network).

IV. RESULTS

All the experiments are performed in Deep Learning(DL). For input data disease, samples of plant leaves Apple leaf, Apple rust leaf Bell_pepper leaf, Bell_pepper leaf spot, Corn Gray leaf spot, Corn leaf blight, Squash Powdery mildew leaf, Tomato Early blight leaf, Tomato leaf late blight, Tomato mold leaf and so on are considered.

Figure 5.1: graph for epoch 50

Here in figure 5.1 for only 50 times training is happened for the dataset. In the figure 5.1 we can see that the line of training and validation are not a straight line so it says that the trained model is less accurate.

Figure 5.2 graph for epoch 400

Here in figure 5.2 for only 400 times training is happened for the dataset. In the figure 5.2 we can see that the line of training and validation are straight line so it says that the trained model is of more accurate than the first one.

The model was trained using images of disease leaves. The model could classify with approximate 90 percent accuracy. By comparing figure 5.1,5.2 we can say that accuracy can be increased when trained withmore number of epochs.

V. CONCLUSION

The objective of this project is to recognize abnormalities that occur on plants in their greenhouses or natural environment. The image captured is usually taken with a plain background to eliminate occlusion. The algorithm was contrasted with other machine learning models for accuracy. Using CNN classifier, the model was trained using images of disease leaves. The model could classify with approximate 90 percent accuracy. The accuracy can be increased when trained with vast number of images.

VI. REFERENCES

- Jasim, M. A., & AL-Tuwaijari, J. M. (2020, April). Plant leaf diseases detection and classification using image processing and deep learning techniques. In 2020 International Conference on Computer Science and Software Engineering (CSASE) (pp. 259-265). IEEE.
- [2]. Al Bashish, D., Braik, M., & Bani-Ahmad, S. (2010, December). A framework for detection and classification of plant leaf and stem diseases. In 2010 international conference on signal and image processing (pp. 113- 118). IEEE.
- [3]. Sardogan, M., Tuncer, A., & Ozen, Y. (2018, September). Plant leaf disease detection and classification based on CNN with LVQ algorithm. In 2018 3rd International Conference on Computer Science and Engineering (UBMK) (pp. 382-385). IEEE.
- [4]. Al Bashish, D., Braik, M., & Bani-Ahmad, S. (2011). Detection and classification of leaf diseases using Kmeans-based segmentation and. Information technology journal, 10(2), 267-275.
- [5]. Swain, S., Nayak, S. K., & Barik, S. S. (2020). A Review on Plant Leaf Diseases Detection and Classification Based on Machine Learning Models. Mukt shabd, 9(6), 5195-5205.
- [6]. Tripathi, G., & Save, J. (2015). An image processing and neural network based approach for detection and classification of plant leaf diseases. Journal Impact Factor, 6(4), 14-20.
- [7]. N. S. Sapare and S. M. Beelagi, "Comparison Study of Python in Scientific Computing Using Mathematical Problems", vol. 7, no. 9, pp. 1-10, 2020.
- [8]. Prajapati, B. S., Dabhi, V. K., & Prajapati, H. B. (2016, March). A survey on detection and classification of cotton leaf diseases. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 2499-2506). IEEE.
- [9]. Oo, Y. M., & Htun, N. C. (2018). Plant leaf disease detection and classification using image processing. International Journal of Research and Engineering, 5(9), 516-523.
- [10]. S. Sapare and S. M. Beelagi, "Comparison study of Regression Models for the prediction of post-Graduation admissions using Machine Learning Techniques," 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2021, pp. 822-828, doi: 10.1109/Confluence51648.2021.9377162.
- [11]. Singh, M. K., Chetia, S., & Singh, M. (2017). Detection and classification of plant leaf diseases in image processing using MATLAB. International journal of life sciences Research, 5(4), 120-124.
- [12]. Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M., & Alrahamneh, Z. (2011). Fast and accurate detection and classification of plant diseases. International Journal of Computer Applications, 17(1), 31-38.

