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ABSTRACT 

Social network event prediction is much more important task in many of the 

applications like medical, security, etc. With fast-growing technology, People spent 

most of the time in Social Networks. They can express their views and opinions in 

social network community. The main reason behind this phenomenon happens to be 

the ability of online community. It can provide a platform for users to connect with 

their family, friends, and colleagues. The information shared in social network and 

media spreads very fast, which makes it attractive for attackers to gain information. 

However, event prediction is a more complex task because it is challenging to 

classify, contains temporally changing the concept of discussion and heavy topic 

drifts learning. In this research, we present to addresses the challenge of accurately 

representing relational features is observed from complex social communication 

network behavior for the event prediction task. In this, graph learning 

methodologies are more complex to implement. Here the concept gives, to learn the 

complex statistical patterns of relational state transitions between actors preceding an 

event and then, to evaluate these profile findings temporally. The event prediction 

model which leverages on the RFT framework discovers, identifies and adaptively 

ranks relational occurrence as most likelihood predictions of event in social network 

communities. Most extensive experiments on large-scale social datasets across 

important indicator tests for validation. It shows that the RFT framework performs 

comparably better by Hybrid Probabilistic Markovian (HPM) predictive method. 

Deep learning relational models appear to have considerable potential, especially in 

the fast growing area of social network communities. This study opens the door to 

precise prediction events in spatio-temporal phenomena, adding a new tool to the 

data science revolution. Also, Social network analysis software has many algorithms 

for graph features data has been collected. 

Keywords : Event Prediction, Artificial Intelligence, Deep leaning, Fractal Neural 

Networks 
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I. INTRODUCTION 

 

Now-a-days, Predicting the Event in social network 

communities is really difficult. It gives some 

combinations of multiple disciplines across world 

wide applications. Some of them include 

recommender systems, marketing and advertising, 

governance and rule etc. Some main examples of 

emerging event prediction applications include 

predicting disease in various medical applications and 

medical condition prevention, patient-drug matching 

pair diagnosis and administration, cyber security, data 

privacy in social network communities etc. The social 

pre-cursors of a large majority of real life events are 

often staged through popular online social media like 

facebook, twitter, google, etc. These social pre-cursors 

are mainly identified as activity through online social 

medium as information transactions. Although it may 

be identified to think of a similarity based approach 

on how an actor incites other members within a 

community through matching attributes, such a 

culmination of affective sentiments. Modeling rare 

events is challenging with analytical solution from 

first principle equations, even when known, are 

seldom tractable, and uncertainties from unresolved 

scales makes long-range models of the average 

dynamical behavior incompatible with reliable 

prediction of low frequency events.  

 

II. CHALLENGES  

 

Although number of approaches has been developed 

to address certain field of spatial-temporal event 

tracking and prediction, their methods have been 

very limited in applications to identify the events has 

been critically addressed. Furthermore, techniques to 

focuses on the application of batch processing 

learning methods which can only be used at static 

instances in time. These approaches are known to be 

unsalable to continuous data streams and changing 

environment contexts. In the same vein, many 

relational learning approaches used in trending 

studies, also lack depth and representative power. For 

example, some referenced methods developed to date 

which can primarily on learning how the spatial-

temporal dependencies based on word-feature 

changes. These semantic patterns are used for 

precursors. They are modeled to predict eventful 

occurrences by using fractal net in a future timeframe. 

Furthermore, some of the critical key questions are 

difficult, that may still remain unanswered. Here, 

address the solution as to develop a Fractal framework 

for tracking rare events in the online social network 

environment within the discrete time. 

 

III. SOME DATA MODELS  

 

To address these issues, this Research paper adopts the 

Fractal Net (FN) model which was developed and 

extends its efficiency by adapting the dynamic growth 

of the fractal network into a robust adversarial 

framework. FNs, translates ground truths of the 

Relational Turbulence Theory (RTT) framework into 

the lowest evidence principle decompositions of our 

model. It is able to self-evolve from a meta-learning 

perspective in this regard we response to random 

“anytime-sequenced” data streams of fluctuating 

information sophistication. Then, define what 

relational turbulence is explained for our motivation.  

The main motivation of this approach is to, 

characterize Relational Turbulence by probabilistic 

measures of Relational Intensity, Relational 

Interference and Relational Uncertainty is found. 

Then extending the concepts that use the principle of 

Relational Turbulence Theory (RTT) the framework 

can be established in theoretical processes. It can 

linked with some relational features learned over the 

past event occurrences. The main novelty of our 

model focuses firstly, consider the relational profile 

on discovering relational intelligence through three 

popular social Knowledge Graphs (KGs): Twitter, 

Google and Email datasets. Then, leveraging on this 

discovery to generalize the event occurrences for 

these three major social streaming platforms such as 
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Twitter, Google Feed and Live Journal. Instead of the 

number of layers of neurons, depth in FNs is reflected 

by average number of states in the inferred SSC 

models. Instead of assuming fixed memory less non-

linear activation functions. 

 

IV. RESEARCH OBJECTIVES 

 

This  Research addresses the following important 

research objectives for event prediction tasks:  

 

• To determine the Proper identification and 

representations of complex online social 

communities with highly indexed   correctness in 

social network for generalized the event 

prediction.  

• To determine prediction, the Classification of 

relational profile attributes to dynamic social 

communication patterns. 

• To find the dynamic Quantification of errors 

arising from social disruptions can be identified in 

event predictive representations.  

• To demonstrate FN applicability in diverse spatial-

temporal phenomena. 

 

V. LITERATURE SURVEY  

 

Relational Turbulence Model 

Relational Turbulence was typically summarized as a 

resultant state in conflict of interests from competing 

goals between two or more actors in question. 

Although some of the conflicts does provide the basis 

of stimulation for communication within a network 

relationship that is centered in a flux, it also correlates 

to negative consequences in the form of detrimental 

event occurrences if left undetected and unchecked. 

An important discriminator of detecting conflict and 

hence the resulting turbulence in any relationship 

model between networks of actors is the observation 

and management of relational altering events. As 

reciprocated negative expectancy violations grow 

larger over time, instability in a cumulative relational 

flux of an Online Social Network increases . 

Excluding the relational expectation management, 

some detrimental relational altering events include: 

geographic displacements (or low proximity 

measures), conflict escalation (high frequencies of 

friction), environmental changes (expectation 

disparities), etc.. Relational Turbulence is defined as 

modifications which occur within a relationship that 

may cause friction between actors and their local 

online community. These modifications are mostly 

studied as a series of transitions between actor-

environmental states that inadvertently influences 

relational characteristics by altering communication 

flux patterns  of a given relationship in an Online 

Social Network. These shifting of data in relational 

characteristics during difficult state transitions which 

means altering events may lead to volatile 

consequences. The Relational Turbulence Model 

(RTM)  defines an artificial building which enables 

very high intelligent predictions of communication 

behaviors during relationship transitions, in an 

environment of continuous online social disruptions. 

Turbulent relationship development shifts between 

continuous framework and affective communicative 

states of flux which are affected by the polarization of 

sentiments. The extent of such polarizations is 

characterized by actor interferences and relational 

uncertainty as state transition probabilities that can 

cause conflict. These two prime relational features in 

online social communities enable the effective 

detection and prediction of conflict and event 

occurrences in sentimental and affective computing 

 

VI. EXISTING SYSTEM 

 

While RTM explains and predicts relational conflicts 

through communicative behaviors between actors, 

Relational Turbulence Theory (RTT)  correlates 

uncertainty and interference to specific behaviors, 

actions and sentiments (either hidden or expressed). 
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Table 1- Event Prediction in Online Social Networks 

Study the related subjects; they include Features 

Relational Turbulence Theory, Disclosures to social 

Relational Interference, Collaborative Planning, 

Supportiveness, Intensity and Uncertainty, 

Expectancy Violation, Engagement, Valance. 

Expectancy Violation Sentiment polarity, triadic 

closure, Emotion Gradient, Relational State 

Aberrations. Relational Turbulence Model Relational 

disruptions, Relational state altering events, 

Uncertainty, Associative irritations, longitudinal 

analysis.  Relational characteristics Reciprocity, 

Directed information transfer, latent semantics.  

Relational state transitions Relational disruptions, 

Gradient turning points.  Relationship Parameter, 

Experiences of Specific Episodes and Cumulative 

effects and Intelligence Relational Turbulence profile, 

State transition.  Relational Fractals Sentiment, 

Confidence and Mentions. 

 

VII. EVENTS PREDICTION 

 

As an in-depth overview, there are two categories of 

methods used for predicting events in social 

networking. The first category is the Markova 

sequenced model. Another name which is known as 

association rule-based prediction. In this category, 

future event occurrences are predicted based on past 

event association patterns. While this approach can 

be able to capture temporal features relative to key 

events, it assumes that events are correlated to each 

other in a fixed sequence. The second category is the 

stochastic word distribution model. It is also known 

as narrative generation. In this category, future event 

occurrences are predicted based on the topic-context 

word distributions surrounding key actors in question. 

For example, when the name suggested ”Donald 

Trump” and the topic-context may become ”President 

of the United States” is mentioned, there will be main 

focus events notified which are stochastically related 

(e.g. trade wars, tax tarrifs, mexico border, grade tax 

etc.). While this approach is able to represent a co-

reference resolution between word-topic to events, it 

overlooks the temporal aspects of such occurrences. 

 

 
Fig. 1: Social Networking Community  

Initially, this research can analyses some tweets for 

finding more complex topic detection, classification of 

Prediction and tracking the events. Existing methods 

such as bias events towards certain topics in question 

such as terrorist attacks, floods, etc. Secondly, this 

research introduces a new RTT framework as a 

structured theoretical process that quantifies the 

evolution of learned relational features over past 

casuals in the event prediction task. To the best of our 

knowledge, there are no existing approaches which 

have used a socially relational approach to address the 

problem of event prediction. Thirdly, this research 

introduces a new practical extended architecture that 

is capable of leveraging on the design developed in 

unsupervised event prediction in a continuous stream 

of social transactions. Regarding this, there is no one 
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similar architecture developed in mainstream 

approaches which leverages on the efficient adaptive 

effects of fractal structures toward representing 

dynamic complexities of observed communicative 

relational behaviors in Online Social Networks for 

event prediction tasks. 

 

 

Fig 2: Sample event prediction Diagrammatic 

Representation 

 

VIII. PROPOSED SYSTEM  

 

Fractal Neural Network 

At the main concept, it can be extended to RFT 

structural design, this study adopts the Fractal Neural 

Network (FNN) in [1]. This FNN is used in both 

discriminator and generator networks of our 

architecture to determine the  accurate likelihoods of 

event predictions from ranked likelihoods of 

relational turbulence profiles. If we collect the sample 

paths are synchronizing the inputs. We show that this 

condition is equivalent to a finite set of causal states, 

which is the precise criterion for deep neural 

networks to model stochastic phenomena. Thus, it is 

now easy to construct counter examples where Neural 

Networks inference fails irrespective of the number of 

samples or the number and complexity of layers. 

Beyond predictive performance, FNs can provide 

insight into dynamical properties, which is generally 

difficult with NNs.  

 

 

Neural Network Learning  

Initially, implements a generative neural network 

(NN) architecture which is used to create false 

positives (posteriors) from a set of input training 

samples. This stage is processed in synchronization 

with calculations of actual truth values shared from 

the same set at the input. The second stage involves 

the use of a discriminative Neural Network design 

which will then estimate an actual output based on a 

risk / reward mechanism. The discriminative model 

estimates outputs based on concatenations of inputs 

which are derived from both generative and real-

valued model outputs.  

 

The Model Problem 

 From a real time point of view, wavelet signal 

structures of an event can be used to match 

information with real time exchanges in an active 

stream efficiently. However, when we used to predict 

events, it is highly inaccurate but we are going to 

correct with relevant details. Furthermore, a main 

key assumption we make in this paper is that the 

order of events are randomly distributed over the 

sentiments expressed in any given online social 

networks. This focus derives from the main fact that 

most real-life events are not strongly dependent on 

each other from any sequential occurrence events. 

Instead, they are highly correlated through key 

reciprocated relational sentiments to their common 

topic supersets of interest. Furthermore, the high 

costs of mainstream turing learning designs may used 

to generate the strong relations. Some examples 

makes training impractical on large scale problems 

like Twitter, GoogleFeed or LiveJournal.  

 

Effective Solution  

The overall model can be effectively identify the 

problem of topic drifts and over time it establishes 

soft event evidences. To achieve this, we may use the 

non-parametric mixture model. Additionally, we 

have adopted the Discrete Wavelet Transform (DWT) 

to overcome the problem of solving for an infinite 
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number of coefficients - which is computationally 

intensive. In our architecture, an adapted hybrid FNN 

is used to drive predictable, accurate and strong 

estimations from continuous input data streams. Our 

approach achieves this objective without the 

associated heavy computational costs by a dynamic 

true depth scaling technique. This mechanism is used 

to build and collapse affixing structures in the FNN 

design. 

 

IX. MODEL AND METHODS  

 

In our mechanim, data can be streamed from online 

social platform sources like Facebook, Twitter, 

GoogleFeed and LiveJournal. In an effective  

streaming, the data is  sequentially triggered from 

various server sources through a data hash key using 

their correponding Aplications (for Google, Twitter 

and LiveJournal). Incoming streams are filtered 

according to queries of interest and decoded at the 

pre-processing stage of our model. This procedure 

extracts key confidence ρij , salience ξij and sentiment 

λij scores in a social transaction using Googles NLP 

APIe . Firstly, all Information Retrieval (IR) in the 

first active stream before pre-processing are fed into 

the first phase of our model. our research provides 

new insights into event prediction from a relational 

intelligence perspective that results in more accurate 

predictions over time. Our results show that the FNN 

model is capable of learning adaptively to the 

complexity of information received in real-time. Our 

study uncovers three pivotal long-term objectives 

from a relational perspective. Firstly, relational 

features can be used to strengthen medical, cyber 

security and social applications where the constant 

challenges between detection, recommendation, 

prediction, data utility and privacy are being 

continually addressed. Secondly, in fintech 

applications, relational predicates (e.g. turbulence) are 

determinants to market movements - closely modeled 

after a system of constant shocks. Finally, in artificial 

intelligence applications like computer cognition, 

robotics and neuromorphs, learning relational 

features between social actors enables machines to 

recognize and evolve 

 

Fig 2 : Predicting the Events 

 

X. RESULTS AND DISCUSSION 

 

Analysis Based on Algorithm Time Complexity, Input 

File Formats and Graph Features IGraph and 

Networkx have algorithms for maximum number of 

features. Based on algorithms complexity we can say 

that IGraph is more useful software compare to other 

softwares. IGraph provide efficient algorithms for 

page rank, all types of centrality, density, MST and 

shortest path. 

Table 1 : Comparison Based on Algorithm Time 

Complexity, Input File Formats and Graph Features 

 

 

FEATURES NETWORKX  IGRAPH GEPHI  PAJEK 

ISOMORPHISM O(n2 ) EXP NA NA 

CORE m=no. of 

lines 

O(M) 
O(M) O(M) O(M) 

CLIQUES O(|V|/(log)2) O(3|V|/3)  O(N) 

SHORTEST 

PATH 
O(|V|.|E|) O(|V|+|E|) O(|V|+|E|) O(|V|+|E|) 

CLUSTRING O(V) NA O(V) NA 

ALL SIMPLE 

PATH 
O(|V|+|E|) O(|V|+|E|) NA NA 

CLOSENESS 

CENTRALITY 
O(n.|E|) O(n.|E|) NA NA 

DENSITY O(n3 ) O(1) NA NA 

MST NA O(|V|+|E|) NA NA 
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The above, Libraries (Networkx or IGraph) are more 

useful for tasks involving millions of nodes and for 

operations such as the union and the difference 

between sets of nodes or for the clustering. Stand 

alone software are easy to use and easy to learn so for 

beginner Pajek and Gephi is suitable software. For 

complex dataset and research purpose we can use 

Networkx and IGraph software. 

 

XI.  CONCLUSION 

 

A key limitation of FNs is the need for categorical 

data in self-similar compression. In systems with 

continuous valued observations, we can set a 

magnitude threshold effectively defining the events 

of interest. However more complex event definitions 

might be warranted elsewhere. Future research will 

investigate these issues, and attempt to address event 

frequencies significantly lower to what have been 

demonstrated here. Thus, in this study we have laid 

the groundwork to broaden the applicability of data 

driven analytics to rare event modeling in complex 

systems. We hope that this technology, integrated 

with existing tools, will push the boundaries on our 

current limits of predictive mitigation of natural 

disasters and catastrophic societal events. 
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