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ABSTRACT 

 

The tremendous increase in medical images in the healthcare sector has given rise to 

the term CBMIR(Content-Based Medical Image Retrieval). CBMIR is said to ease the 

job of a physician in searching and retrieving similar images for a given query image. 

This helps in the detection and diagnosis of diseases in human body parts at the early 

stage. Due to the rapid increase in medical image databases searching and retrieving 

images similar to that of the query image from a huge database is a challenging task. 

A Survey on various CBMIR techniques that are used for retrieving biomedical 

images is given in this paper. This includes a literature survey of over more than 100 

contributions to the field of content based medical image retrieval techniques. The 

major focus is on the techniques based on the representation of images visually in the 

medical field rather than annotated images.  

Keywords: Content-Based Medical Image Retrieval, Medical image technologies 

 

I. INTRODUCTION 

 

Medical image technologies are in wide use due to the 

large collection of medical image databases getting 

generated across every corner of the world. From the 

traditional handcrafted way of retrieval techniques to 

the automatically learning models, CBMIR has 

evolved rapidly. Classic Medical imaging focused on 

the retrieval of annotated information about a 

patient’s body parts. This gave rise to a significant 

advantage in the diagnosis of diseases in humans, 

detection, classification and segmentation [1]. X-ray 

medical imaging techniques started in 1895 [2], and 

then in 1950, nuclear medicine was possible. Later in 

the 1960s, ultrasound and diagnostic imaging came 

into existence, which gained popularity. Thereafter 

various medical imaging techniques such as CT, MRI, 

DICOM, and radiotherapy images were adopted. This 

collection of medical images increased rapidly and 

there was a need for storing and retrieving images 

efficiently. The time taken to extract useful 

information from the medical data was the most 

important field to many researchers. Image retrieval 

systems were either text-based or content-based. 

Content-based Image Retrieval became the widely 

used technique for medical image retrieval systems as 

it was more reliable.   

 

One CBIR is a technique of searching images that are 

similar to the given query image and retrieving those 

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT228147
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.wnxf7ax89741
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images from a large database of images as shown in 

Fig. 1. CBIR uses visual features of an image such as 

shape, color, texture, and spatial arrangement of 

regions of interest (ROIs) features to extract useful 

information to match and retrieve similar 

images.  Image retrieval is of two types: text-based 

and content-based, text-based retrieval analyzes 

content based on keywords, tags, annotations of 

images [3]. It is time-consuming to manually assign 

keywords and annotations to large repositories for 

text-based image retrieval. With CBIR it is eventually 

possible to show similar images by retrieval method. 

The main task in CBIR includes extracting features 

relevant to the specific application and finding similar 

images specific to the definition and grouping them 

for fast and efficient retrieval of images from a huge 

database of images [4-7]. The features selection in the 

CBIR system plays a major role in finding the 

similarity in the images [8, 9]. Features are of 

different types. For example, color features may not 

be sufficient to identify the content in an image 

specific to the application as in the case of medical 

images. Since medical images like x-ray, ultrasound, 

MRI are all grayscale images and require appropriate 

feature selection techniques to match the content of 

the query image with the database images. Domain-

specific features are required to describe unique 

features specific to the application. Global features 

identify the entire image characteristics and fail to 

capture small portions of an image. whereas local 

features give the details of a small portion of pixels in 

an image. Local features are used in most of the 

investigations as it gives a detailed description of the 

specific region in an image [12]. The recent 

development is the use of deep learning models for 

CBIR tasks [10]. Image retrieval has also found its 

application in social media where real-time content 

sharing and publishing reports are increasing rapidly 

[11]. Due to the large storage space required to store 

the images as compared to text, the thought of 

moving the data to the cloud and then using it for 

their task was found in late 2016. Image encryption 

and watermarking techniques were used to provide 

privacy to sensitive data  [13]. 

A. Content Based Medical Image Retrieval (CBMIR) 

The huge collection of digital images generated in 

hospitals has led to the collection of a large database 

of medical images. Image retrieval system aims to 

provide efficient means to retrieve useful information 

from these large repositories. In the beginning, 

several text-based image retrieval systems were 

proposed [14-17]. Text-based retrieval was prone to 

error and required annotation of a large database 

which was a laborious task [18]. To overcome this 

drawback, CBIR was introduced. Query by image 

content(QBY) later known to be Content-based image 

retrieval was a topic of investigation for most 

researchers. With this CBIR found its application in 

medical image retrieval systems. CBMIR is a 

technique for extracting useful information from a 

huge database of medical images and recognizing 

similar case studies. This helps doctors in the 

diagnosis and treatment of different diseases [19, 20]. 

The application of CBMIR includes decision-making, 

education in the field of medicine, and research [21]. 

Visual features of medical images have a deep impact 

on diagnosis as seen in the clinical analysis [22]. 

Hence, decisions are made by looking into the case 

history and comparing them with current and past 

medical images [23]. This helps in finding images of 

the same category or detection of diseases of a similar 

kind [21]. CBMIR can be used to assist physicians 

who after finding abnormalities in the report can 

query the image and check the database to retrieve 

similar cases. This enables physicians to be more 

convinced with the diagnosis and may include 

pathological records which were not considered 

before. CBMIR provides evidence of case histories 

that are similar to his/ her decision along with the 

accurate class labels. Beginners with less experience 

can serve as an expert with the use of the CBMIR 

system and can diagnose better [24–26]. CBMIR can 

not only be used to retrieve similar images with the 

https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.hxhnbsrwxvv8
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.pjdxc4k81cbd
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.uco7fl6aue7
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.g5hswffppcqp
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.x5bislfrwsbe
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.k0yv10l0o9bd
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.v5cvtpdcaudm
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.c6wvpngpesmd
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.jjowyfu7f7jk
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.ylft719ugu8c
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.8eyrgq216cdu
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.jxrfkark1lrk
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.xncerenbozn2
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.8eyrgq216cdu
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.lqx90vuy8hwm
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same diagnosis but also retrieves images that are 

visually similar but different diagnoses. 

 
Figure 1: Architecture diagram of Content Based 

Image Retrieval system 

 

II.  TECHNIQUES 

A. Descriptors 

In Medical imaging, local texture features descriptors 

play a major role in differentiating visual features. 

Local binary pattern(LBP) was introduced for the first 

time and successful use of texture measures for 

various applications was proposed [27], and then, a 

generalized version of LBP was presented called a 

local ternary pattern(LTP) local texture descriptor for 

face recognition which was insensitive to noise and 

discriminate [28]. Representation of LBP is with 2-

values ‘0’ and ‘1’ whereas LTP which is the extension 

of LBP is represented with 3-values ‘0’, ‘1’, and ‘-1’. 

Using the idea of a local quantized pattern(LQP) [29] 

and directional local extrema pattern (DLEP) [30], 

Rao and Rao [31] proposed a new feature descriptor 

called local quantized extrema patterns (LQEPs) for 

image indexing and retrieval, which first collects the 

direction quantized information from an image and 

then direction extrema is collected from the 

quantized data to integrate RGB color histogram with 

LQEP. Focusing on color features, local mesh 

quantized extrema patterns (LMeQEPs) was 

introduced again by Rao and Rao to improve the 

performance of the image retrieval system [32]. A 

novel descriptor called directional local ternary 

quantized extrema pattern (DLTerQEP) was proposed 

[33] for biomedical image indexing and retrieval. The 

results were measured by calculating the average 

precision and retrieval rate for this method and 

comparing it with the existing techniques: LBP, LQP, 

Binary Gabor pattern (BGP) for texture classification 

[34], and Weber law descriptor (WLD) [35]. 

 

A new binary wavelet decomposition technique was 

introduced in 1996 which presents the use of this 

method in lossless image coding [36-38]. For Image 

indexing and retrieval of medical images, a novel 

method of getting 8 binary bit planes by dividing the 

8-bit grayscale image is carried out on each bit plane 

to extract binary images with multiple resolutions [39] 

and feature extraction using LBP [40]. Another 

method was proposed by murala using LTrPs(Local 

Ternary Patterns) [41] that calculated the first order 

derivative in the both(horizontal and vertical) 

directions to encrypt the association of the reference 

pixel with the neighborhood pixel. The proposed 

method was compared with LBP, local derivative 

pattern, and LTP and was found to have an 

improvement in the performance. A Local ternary co-

occurrence pattern(LTrCoP) feature descriptor was 

presented by murala and Wu [42] that encodes the 

co-occurrence of similar ternary edges which were 

determined by the gray values of the center pixel and 

it’s neighbor gray value pixels. They again proposed 

an algorithm using a local mesh pattern(LMeP) for 

medical image indexing and retrieval. This method 

https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.5qg7a9lxr5ur
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.206dmuoisvuy
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.b88mcqyzf8nj
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.xj6lj5asus1l
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.tsbtjemcovbj
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.5m8nnhbupqna
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.fktm7bt5j3xj
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.4mj23saxavtl
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.qq4u2bt9zd7z
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.sh80b62i0vb9
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.jx536onvf0gy
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.adrg8nrw0xt6
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.9678d1tbi742
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.vj3xbt5nr5lh
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encodes the relationship among the surrounding 

neighbor pixels with the given referenced pixel. 

Effectiveness is achieved by combining the algorithm 

with Gabor transform.Lumini A. Nanni introduced a 

new method to enhance the performance of a 2D 

descriptor [43]. An n-layer image was constructed 

using different preprocessing techniques to obtain 

multilayer descriptors as feature vectors and feed 

them for training with a support vector 

machine(SVM). Local binary pattern and local phase 

quantization were applied on both Color and gray-

level images [44], and different variants of n-layer 

image. This method has shown that the combination 

of multilayer and texture descriptors outperforms the 

standard approaches. Murala and Wu [45] proposed a 

new algorithm for natural, texture, and medical image 

retrieval applications using a spherical, symmetric 3D 

local ternary pattern, which computed the 

relationship between the center pixel with the 

neighbor pixel in a 3D plan with five selected 

directions. This was generated using a multi-

resolution Gaussian filter bank from a  2D image. 

Another feature descriptor called local peak valley co-

occurrence patterns(LPVCoP) was proposed for 

medical image retrieval [46]. This method retrieves 

similar grayscale images by finding the relationship 

between the reference pixel and the neighbor pixel 

using the peak valley edges that were computed using 

directional derivatives. Amita and amol [47] proposed 

a new feature descriptor called the local 

neighborhood-based wavelet feature descriptor 

(LNWFD) for retrieving medical images based on the 

content of the image. Four sub-bands are acquired 

using a triplet half-band filter bank for single-level 

wavelet decomposition. In the next phase, the 

LNWEFD pattern is obtained using the relationship 

among wavelet coefficients on each of this sub-band 

from the 3x3 neighborhood window.  

B. Barcodes 

In recent days medical image indexing and retrieval 

are mainly using binary descriptors by most 

researchers. Annotation of barcode was first 

introduced by Tizhoosh for CBMIR [47,48]. He also 

proposed radon barcode (RBC) that produced a binary 

vector called “barcode” by projecting the image at 

different angles and binarizing the projections. 

Barcodes were also introduced on local binary 

patterns and local radon binary patterns (LRBPs) for 

CBMIR. Later a new radon barcode method called 

MinMax radon barcodes [49] was introduced since 

the previous method could lose a lot of useful 

information. In this algorithm, the smoothing 

function applies a moving average to separate small 

peaks (maximums)/valleys (minimums). Later, they 

found all the values that are on the way from min to 

max or vice versa. Then the corresponding values of 

zeros or ones were allocated to encode the projections. 

 

As we now know radon barcodes are produced by 

binarization of radon projections, a new radon 

barcode [50] method called autoencoded radon bar-

codes (ARBC) was proposed. Binarization is applied 

on the output of the hidden layer to autoencode 

radon projections on training images. Mina 

Nouredanesh et al. [51] introduced radon and Gabor 

transforms that were considered to be the most 

powerful techniques for shape-texture-based feature 

extraction. This combination of both radon and gabor 

features may be more powerful against variation in 

scaling or rotation, noise, and illumination. Gabor-of-

Radon-Image Barcodes(GRIBCs) and Guided-Radon-

of-Gabor Barcodes (GRGBCs) were two techniques 

proposed. Morteza Babauie et al. [52] proposed an 

image retrieval approach for a large dataset using 

radon barcodes. This technique called single 

projection radon barcode (SP-RBC) takes only a few 

radon single projections for all the images as global 

features.  

C. Deep Learning 

Deep learning is part of artificial intelligence and 

machine learning that has made advances in the field 

of medicine for the past few years. Deep learning 

https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.2izmj55k2dxy
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.2vgfxc5nkm1p
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.1pm67h8wffg1
https://docs.google.com/document/d/1FcNsWDyvCpkeDvp7VfDBzAJSLEbDri6s/edit#bookmark=id.66ytpe1wc87t
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methods have seen wide application in the field of 

image searching and retrieval tasks. [53–55]. 

Techniques on deep learning are applied to many 

medical-related diagnoses and monitoring[56,57]. A 

convolution neural network (CNN) is used by most 

researchers in image analysis. CNN based visual 

pattern recognition was done in the late 1980s [58–

65], and later in the 1990s CNN concept was o Deep 

learning techniques have outperformed in various 

computer vision problems. Ivakhnenko et al. [67] 

started the work on deep learning and after which 

several alternate techniques on deep learning were 

performed [68–70]. Nowadays deep learning methods 

are also applied on CBIR systems [71–73] and attained 

outstanding retrieval rates. In medical image analysis, 

the performance of deep learning was found effective. 

A convolutional neural network with five layers was 

designed for the classification of interstitial lung 

diseases by Anthimopoulos et al. [74]. A 

Convolutional restricted Boltzmann machine was 

introduced by Tulder [75] for lung texture 

classification and detection of airway in CT images 

was done using generative and discriminative 

learning objects for describing the training data and 

for classification. Segmentation of MR brain images 

using convolutional neural network was proposed, 

where the network uses multiple patch sizes and 

multiple convolution kernel sizes to obtain multi-

scale information [76]. Later, Esteva et al. [77] 

classified skin lesions using a deep convolutional 

neural network at the dermatologist level. A deep 

neural network method was presented by Havaei et al. 

[78] for brain tumor segmentation. Here the CNN 

architecture uses both local and global contextual 

features and a fully connected layer that provides 40 

fold speed up. This method involves a two-phase 

training procedure to resolve the imbalance of tumor 

labels. Singh et al. [79] presents a new fusion 

technique for CT and MR images. This method uses 

features of both nonsubsampled shearlet transform 

(NSST) and spiking neural network. Many works 

were carried out using deep learning in the field of 

medicine [80–84]. Later, deep learning techniques 

were applied for CBIR systems on medical images 

[85–87].  

 

Chung et al. [88] proposed a deep Siamese CNN 

(SCNN) architecture, where only binary image pair 

information is trained and evaluated for CBMIR task. 

A combination of CNN transfer learning and radon 

projection pool method for medical image retrieval 

was proposed [89], which consists of two stages. In 

the first stage transfer learning via a convolutional 

neural network is adopted and in the second stage 

creation of a selection pool using radon projection is 

used for further reduct]ion. J Ahmad et al. [90] 

presents an efficient technique to compress 

convolutional features which is identified using 

optimal subset selection algorithm into a sequence of 

bits using Fast Fourier Transform(FFT). For image 

retrieval a parallel deep solution approach was 

proposed [91] which was based on convolutional 

neural networks and later followed by a local search 

was done using LBP, HOG and Radon features on 

IRMA dataset. Y cai et al. [92] proposed a new 

framework for medical image retrieval using CNN for 

feature extraction followed by hash mapping for 

dimensionality reduction of feature vectors. A skin 

lesion image retrieval system was developed [93] 

using Resnet-50 based transfer learning for 

classification of skin lesions and generation of ground 

truth. 

Table I. Survey of Dataset and Techniques on CBMIR 

 

Sl. 

No. 

Medical Image Dataset  

Dataset Image 

Modality 

Technique 

(year) 

Image 

Format 

1 OASIS, 

ILD, 

VIA/ECL

AP-CT 

MRI, CT AIR-Net 

(2022) et al.  

[94] 

DICOM 

2 Kaggle 

Chest, 

Fundus, 

INbreast 

X-ray, Fundus 

photography 

CNN & 

Euclidean 

distance 

(2022) et al. 

[95] 

jpg 

https://www.sciencedirect.com/topics/engineering/convolutional-neural-networks
https://www.sciencedirect.com/topics/engineering/convolutional-neural-networks
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III. CONCLUSION 

 

Many techniques have been applied in Content based 

medical image retrieval system with promising results. 

We have provided the different state-of-art methods 

in the field of medical image retrieval. Also have 

surveyed different medical dataset and image formats 

available in public repositories provided by different 

institutes for research work. As we can see the 

techniques have advanced from handcrafted methods 

to deep learning. Recently, there is a lot of research 

happening in Content based medical image retrieval 

tasks. Challenges in this application could be lack of 

medical data in specific format and modality as 

mentioned in many papers. 
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