
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT22816

53

XSS and SQL Injection Detection and Prevention Techniques

(A Review)
1Bhanwarlal, 2Irfan Khan

1PG Scholar, Department of Computer Science and Engineering, Shekhawati Institute of Engineering and

Technology, Sikar, Rajasthan, India
2Assistant Professor, Department of Computer Science and Engineering, Shekhawati Institute of Engineering

and Technology, Sikar, Rajasthan, India

Article Info

Volume 8, Issue 1

Page Number : 53-60

Publication Issue :

January-February-2022

Article History

Accepted : 02 Jan 2022

Published : 13 Jan 2022

ABSTRACT

In modern times every human being rely upon the internet for their scant to hefty

needs as internet offers vast amount of information to users, so it’s availability to

users is indispensable. Major objectives of security are availability, integrity and

confidentiality. Cross Site Scripting (XSS) and SQL Injection Attack (SQLIA) is a

generic and critical security issue towards to the web application and database

security. In general, not well validated and verified web applications are highly

prone and vulnerable by the attackers. Due to the creative and dynamic XSS and

SQLIA methods and techniques, users can save their valuable, integral and

confidential data in the web site to save their market stability towards their self as

well as social enrichment.

Many tools and techniques are addressed to the references regarding the XSS and

SQL Injection issues, but we are present and used pattern matching techniques in

SQL statements to implement the SQLIA and XSS in web application. At the outset

pattern matching algorithm is used and gets better solution towards on

implementation of SQLIA and XSS attacks and preventions.

Keywords - SQLIA, SQL queries, XSS, Cross site Scripting, web application, asp.net.,

Security, Internet, Server.

I. INTRODUCTION

Web services now use online apps to implement the

tools and use the web platform to become an

innovative solution for companies with software

applications. It helps the development of universal

applications that can be conveniently accessed by

millions of users. World Wide Web (WWW) has

been a great advancement but internet attacks have

risen at the same time. There will be millions of

security vulnerabilities occurring day after day.

However, according to Akamai [1], the volume of

internet device attacks rose 69 percent in the third

quarter of 2017 compared with Q3 2016. Although

SQL injection and local File Intrusion attacks

accounted for 85% of all these assaults, XSS was just

http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT22816

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

54

9%. For Verizon's 2017 Data Breach Study [2], just

15.4 percent of reported web application assault cases,

while web application assaults suffered 29.5 percent

of the breaches. SQL Injection is the most common

online attack. Figure 1 shows a recent article on SQL

Injection.

Figure 1.1: A chart representing XSS and Sql

Injection Attack Frequency

According to studies carried out by U.S. cloud service

provider Akamai, who discovered in his Internet

State of Report [13] that SQL injection and Local Filer

Inclusion assaults accounted for more than 85% of the

assault vectors identified. SQL injection attacks

accounted for 65 per cent of web-based attack vectors

from November 2017 to March 2019.

Figure 1.2: Representing Web Attacks

Akamai registered cyber alerts of just under four

billion (3,993) threats over a 17-month span, of which

just 1.23 billion happened in the first half of 2019.

The primary concern of internet is security against

repudiation, integrity, confidentiality and availability

of information. Attacks obstruct the legitimate user to

access the network services and allow attacker to

access the all leverage of services. It can be conducted

by using single machine or multiple machines named

as zombies.

Figure 1.3: Top internet attack distribution data

Web App or Web applications are the tools to share

and display their personnel or self-valuable

information to access in worldwide network from

anywhere. Regarding the usage of the web

applications have many benefits, out of which some

of the issues are much more risky. Now a day’s

information as well as network security is a big

concern, where users can face many types of attack,

out of which one simple and common category is

SQLIA and XSS. As we know that Web applications

are one such tool to access and transfer various self -

information across the world with internet facility.

Meanwhile some creative and dynamic hackers are

also waiting and accomplish to hack this precious

information from internet and breach the privacy of

users. So that attackers have used many techniques,

out of which SQL Injection Attack (SQLIA) and XSS

are the major and common attacks performed by the

attacker. As per the internet and network security

concern SQLIA and XSS are one of the serious threats

in the web application. XSS and SQLIA are considered

to be in top ten vulnerability for web application

usage. Now a day’s SQLIA and XSS will be the easiest

way to hack or attack the Web applications with

various servers in using in World Wide Web protocol,

i.e. if the web applications is coded very Poor in

programming language or if the system files are not

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

55

uploaded in the system, then it dam sure that, such

web applications are very easy to hack by the

attackers.

1.1 Introduction to SQL Injection:

Generally speaking, people say that SQL injection

isn't new to them and they know about this concept

but the reality is completely different from it and

they've either read about it or encountered it by

superficial scenarios. SQL injection is one of the most

damaging flaws and can have a very significant effect

on business since it will reveal any confidential

information contained in an application's database,

including valuable information such as usernames ,

passwords, identities, emails, telephone numbers,

credit and debit card details.

The key to understanding SQL Injection is in its name:

SQL + Injection. The word “injection” here doesn’t

have any medical connotations, but rather is the

usage of the verb “inject.” Together, these two words

convey the idea of putting SQL into a web application.

Putting SQL into a web application . . . hmmm . . .

Isn’t that what we’re doing anyway? Yes, but we

don’t want an attacker to drive our database Web App

or Web applications are the tools to share and display

their personnel or self-valuable information to access

in worldwide network from anywhere. Regarding the

usage of the web applications have many benefits, out

of which some of the issues are much more risky.

Now a day’s information as well as network security

is a big concern, where users can face many types of

attack, out of which one simple and common category

is SQLIA.As we know that Web applications are one

such tool to access and transfer various self -

information across the world with internet facility.

Meanwhile some creative and dynamic hackers are

also waiting and accomplish to hack this precious

information from internet and breach the privacy of

users. So that attackers have use many techniques, out

of which SQL Injection Attack (SQLIA) is the major

and common attacks performed by the attacker. As

per the internet and network security concern SQLIA

is one of the serious threats in the web application

and SQLIA is considered to be in top ten vulnerability

for web application usage. Now a day’s SQLIA will be

the easiest way to hack or attack the Web applications

with various servers in using in World Wide Web

protocol, i.e. if the web applications is coded very

Poor in programming language or if the system files

are not uploaded in the system, then it dam sure that,

such web applications are very easy to hack by the

attackers. It has been found that to detect and prevent

SQLIA tour system, we must use some efficient

algorithm to safeguard our personal data, in this paper

we analyze and use pattern matching algorithm to

detect and prevent SQLIA. Naive String pattern

matching algorithm is used and tested efficiently in

SQLIA.

1.2 Introduction to Cross Site Scripting

Cross-Site Scripting is a kind of security exploit in

which the attacker inserts malicious code of his

choice (mostly script) into a web page or a database

without the user's knowledge. XSS in itself is a threat

which is brought by the internet security weaknesses

of client-side scripting languages, with HTML and

JavaScript (others being VBScript, ActiveX, HTML, or

Flash) as the prime culprits for this exploit.

We can categorize XSS as follows:

• Reflected (when malicious code goes from the

user's browser to the server and comes back from

server)

• Persistent (when code remains stored

somewhere, example - code stored in a database

and executed on the client browser over and

over, which makes it more dangerous).

• DOM based XSS attack (both reflected and

persistent can fall in this category, attacker can

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

56

manipulate DOM elements and can use DOM

data).

II. HISTORY OF XSS and SQLI ATTACKS

Several solutions that mitigate the risk posed by SQL

Injection attacks have already been proposed [1], [7]–

[9]. All of these solutions have been successful in

mitigating SQL Injection attacks. However, none of

these solutions address the actual SQL injection attack

that exists in the source code. A common way to

remove SQL injection vulnerability is to separate the

SQL structure from the SQL input by using prepared

statements.

Ruse et al.’s Approach, propose a technique that uses

automatic test case generation to detect SQL Injection

Vulnerabilities. The main idea behind this framework

is based on creating a specific model that deals with

SQL queries automatically. Adding to that, the

approach identifies the relationship (dependency)

between sub-queries. Based on the results, the

methodology is shown to be able to specifically

identify the causal set and obtain 85% and 69%

reduction respectively while experimenting on few

sample examples.

SAFELI et al.’s proposes a Static Analysis Framework

in order to detect SQL Injection Vulnerabilities.

SAFELI framework aims at identifying the SQL

Injection attacks during the compile-time. This static

analysis tool has two main advantages. Firstly, it does

a White-box Static Analysis and secondly, it uses a

Hybrid-Constraint Solver. For the White-box Static

Analysis, the proposed approach considers the byte-

code and deals mainly with strings. For the Hybrid-

Constraint Solver, the method implements an

efficient string analysis tool which is able to deal with

Boolean, integer and string variables.

Ali et al.’s Scheme, adopts the hash value approach to

further improve the user authentication mechanism.

They use the user name and password hash values

SQLIPA (SQL Injection Protector for Authentication)

prototype was developed in order to test the

framework. The user name and password hash values

are created and calculated at runtime for the first time

the particular user account is created.

Thomas et al.’s Scheme, suggest an automated

prepared statement generation algorithm to remove

SQL Injection Vulnerabilities. They implement their

research work using four open source projects namely:

(i) Nettrust, (ii) ITrust, (iii) WebGoat, and (iv) Roller.

Based on the experimental results, their prepared

statement code was able to successfully replace 94%

of the SQLIVs in four open source projects. Dynamic

Candidate Evaluations Approach

Bisht et al.’s propose CANDID. It is a Dynamic

Candidate Evaluations method for automatic

prevention of SQL Injection attacks. This framework

dynamically extracts the query structures from every

SQL query location which are intended by the

developer (programmer). Hence, it solves the issue of

manually modifying the application to create the

prepared statements.

Haixia and Zhihong’s et. al’s Database Security

Testing Scheme, propose a secure database testing

design for Web applications. They suggest a few

things; firstly, detection of potential input points of

SQL Injection; secondly, generation of test cases

automatically, then finally finding the database

vulnerability by running the test cases to make a

simulation attack to an application. The proposed

methodology is shown to be efficient as it was able to

detect the input points of SQL Injection exactly and

on time as the authors expected. However, after

analyzing the scheme, we find that the approach is

not a complete solution but rather it needs additional

improvements in two main aspects: the detection

capability and the development of the attack rule

library.

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

57

Swaddler et. al’s, analyzes the internal state of a web

application. It works based on both single and

multiple variables and shows an impressive way

against complex attacks to web applications. First the

approach describes the normal values for the

application’s state variables in critical points of the

application’s components. Then, during the detection

phase, it monitors the application’s execution to

identify abnormal states.

Stephen et. al’s. proposed a prepared statement

replacement algorithm and a corresponding tool for

automated fix generation.

Cristian et.al’s. presented a hybrid approach based on

the Adaptive Intelligent Intrusion Detector Agent

(AIIDASQL) for the detection of SQL injection

attacks. The AIIDA-SQL agent incorporates a Case-

Based Reasoning (CBR) engine which is equipped

with learning and adaptation capabilities for the

classification of SQL queries and detection of

malicious user requests. To carry out the tasks of

attack classification and detection, the agent

incorporates advanced algorithms in the reason-ing

cycle stages. Concretely, an innovative classification

model based on a mixture of an Artificial Neuronal

Network together with a Support Vector Machine is

applied in the reuse stage of the CBR cycle. This

allowed classification of SQL queries.

Michelle et. al’s proposed a technique that is based on

automatically developing a model for a SQL query

such that the model captures the dependencies

between various components (sub-queries) of the

query. The authors analyzed the model using CREST

test-case generator and identify the conditions under

which the query corresponding to the model is

deemed vulnerable. The authors further analyzed the

obtained condition set to identify its subset; this

subset being referred to as the causal set of the

vulnerability. The technique proposed by the authors

considers the semantics of the query conditions, i.e.,

the relationship between the conditions, and as such

complements the existing techniques which only rely

on syntactic structure of the SQL query. In short, the

technique proposed by the authors can detect

vulnerabilities in nested SQL queries.

Su and Wassermann et. al’s develop a formal model

for command injection attacks and apply a syntactic

criterion to filter out malicious dynamic content.

Applications of taint checking to server programs that

generate content to ensure that untrustworthy input

does not flow to vulnerable application components

have also been explored UserCSP is a Mozilla tool that

allows security savvy users to specify and en-force

content security policy to protect themselves from

cross-site scripting attacks. The tool automatically

infers content security policies for the websites user

visits and enforces them to protect users from XSS

attacks. Other solutions need browser modifications

to identify untrusted or malicious scripts from trusted

scripts.

MashupOS [31] makes the browser a multi-principal

operating system for Web applications. BEEP [13] lets

Web sites restrict the scripts that run in each of their

pages. ConScript [14] enforces application-specified

security policies. OMash [3] restricts communication

to public interfaces declared by each page.

Kailas et. al’s proposed a solution to isolate untrusted

scripts included in web applications from the trusted

scripts. It allows isolation of Javascript context for

scripts from different origins. In addition, it also

provides different privileges of read and write to

scripts running in isolated Javascript contexts.

BrowserShield [24] propose to defeat JavaScript-based

attacks by rewriting scripts according to a security

policy prior to executing them in the browser. In

BrowserShield, the rewriting process inserts trusted

JavaScript functions to mediate access to the

document tree by untrusted scripts.

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

58

Jackson et al’s describe several unexpected

repositories of private information in the browsers

cache that could be stolen by XSS attacks. They

advocate applying a refinement of the same-origin

policy [15] to cover aspects of browser state that

extend beyond cookies. By allowing the server to

explicitly specify the scripts that it intentionally

includes in the document, our approach can also be

thought of as an extension of the same-origin policy.

III. SQLI and XSS ATTACKS

We observed that the aim of content injection attack

to gain illegal access to user data. The Structural

Query Language Injection (SQLI) attack occurs when

an attacker changes the logic, semantics or syntax of a

SQL query by inserting new SQL keywords or

operators. SQL Injection attack is a class of content

injection attacks that occurs when there is no input

validation mechanism deployed by web developers in

the web application. In cross-site scripting attack, the

attackers fold malicious content into the content

being delivered from the compromised site. When the

resulting combined content arrives at the client-side

web browser, it has all been delivered from the

trusted source, and thus operates under the

permissions granted to that system. By finding ways

of injecting malicious scripts into web pages, an

attacker can gain elevated access-privileges to

sensitive page content, session cookies, and a variety

of other information maintained by the browser on

behalf of the user [32]. The successful XSS attack is a

result of lack to provide input validation in the web

application by the developers. Too many existing

techniques are either not publicly available or are

difficult to adopt. Readily available tools would

motivate more developers to combat content injection

attacks. Developer’s unawareness of security

mechanisms and content injection sanitization can

result in data loss or corruption, lack of accountability,

or denial of access. Injection can sometimes lead to

complete host takeover. Therefore, it is important to

provide a solution that protects web applications from

SQLI and XSS attacks. This paper performs the survey

of various techniques proposed to protect web

applications from these attacks.

IV. TECHNIQUES TO GENERATE XSS and

SQLI ATTACK

4.1 Number of Attacks Sent

We generate an attack the number of attack packets

were sent to victim while generating DDoS attack.

Denoted the time at which attack packet were sent to

server from different zombie machines and attack

data were save into the text file for counting the

number of attacks sent to server. It is simply stored

into the text file and by using these files we got the

number of attacks sent to the server as by counting

number of lines in data file. Let us denote the number

of attack packet sent to server is Psuccess.

For experimental purpose, data is collected by sending

packets to server at start time Txby all the machines

andafter error time Tymachines get error message

from server and server stops servicing them.Based

upon the gathered information we measure

performance of server and clients. Approx. 60 packets

per second are delivered to the server and number of

attack per second is evaluated using three attribute

start time of packet sent, error time and number of

packet successful packet, after total attack at instant is

computed using attack per second (Y).

4.2 Attacks per Second

Attacks per second are evaluated using start time (Tx),

error time (Ty) and number of attack packets sent

(Psuccess)

Start time of packet sent = Tx

Error time = Ty

Number of packet sent = Psuccess

𝐴𝑡𝑡𝑎𝑐𝑘 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑(𝑌) = 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑇𝑦 − 𝑇𝑥⁄

Using above formula attacks per secondd for first

client is calculated as follows: start time is 19:28:38

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

59

and error time is 19:29:43 thus the difference between

Ty-Txis 65 seconds and number of packetsPsuccessis 4152.

The value of attacks per second Y calculated is

4152/65 = 63.88s and so on.

4.3 Total attacks at instant

The value of total attacks at instant is computed using

the value of attacks per second (Y) i.e.

Yn, Yn+1, Yn+2………. Where n is number of client

machine.

∑ 𝑌𝑛

𝑛

𝑖=1

= 𝑋𝑖

Where X=Total attacks at instant.

For first machine total attack packets/sec is 63.88 and

for second machine is obtained by adding the first and

second machine data attacks per second and for third

machine by adding machine first to third machine

attacks per second and so on.

4.4 Server performance (Z)

At last using the computed value of total attacks at

instant and attacks per second, server performance is

evaluated

X = Total attacks at instant

Y = Attacks per Second

Z = Server Performance

𝑍

= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑡𝑡𝑎𝑐𝑘 𝑝𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘 𝑎𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑡⁄

∗ 100

 Or

𝑍 =
𝑌𝑚𝑎𝑥

𝑋1
∗ 100

V. CONCLUSION AND FUTURE WORK

Traditionally, content injection was limited to

personal computing environments. However, the

increasing use of smart phones, tablets, and other

portable devices has extended this problem to mobile

and cloud computing environments, where

vulnerabilities could spread much faster and become

much easier to exploit. In this paper, we presented a

survey of SQL injection and Cross-site scripting

prevention research. This paper analyzed important

aspects in content security systems. This survey paper

serves as a guideline for researchers who are new to

web security and want to contribute to this research

area.

VI. REFERENCES

[1]. G. Buehrer, B.W. Weide, and P.A.G. Sivilotti.

“Using parse tree validation to prevent sql

injection attacks”. In Proceedings of the 5th

International Workshop on Software

Engineering and Middleware.

[2]. CGIsecurity. The cross-site scripting (xss)

faq.http://www.cgisecurity.com/xss-faq.html.

[3]. S. Crites, F. Hsu, and H. Chen. Omash:

“Enabling secure web mashups via object

abstractions”. In Proceedings of the

International Conference on Computer and

Communications Security (CCS), 2008.

[4]. Xinshu Dong, Kailas Patil, Xuhui Liu, Jian Mao,

and Zhenkai Liang. “An entensible security

framework in web browsers”. Technical Report

TR-SEC-2012-01, Systems Security Group,

School of Computing, National University of

Singapore, 2012.

[5]. Xinshu Dong,Kailas Patil, Jian Mao, and Zenkai

Liang. “A comprehensive client-side behavior

model for diagnosing attacks in ajax

applications”. In proceedings of the 18th

International Conference on Engineering of

Complex Computer systems (ICECSS).

[6]. Dennis Fisher. Persistent XSS bug on twitter

exploited by worm http://threatpost.com/en

us/blogs/persistent-xssbug-twitter-being-

exploited-092110

[7]. W.G.J.Halfond and A. Orso. “Amnesia: analysis

and monitoring for neutralizing sql-injection

attacks”. In Proceedings of the 20th IEEE/ACM

International Conference on Automated

Software Engineering.

Volume 8, Issue 1, January-February-2022 | http://ijsrcseit.com

Bhanwarlal et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, January-February-2022, 8 (1) : 53-60

60

[8]. W.G.J. Halfond and A. Orso. “Combining static

analysis and runtime monitoring to counter sql-

injection attacks”.In Proceed-ings of the Third

International Workshop on Dynamic Analysis.

[9]. W.G.J. Halfond, A. Orso, and P. Manolios.

“Using positive tainting and syntax-aware

evaluation to counter sql-injection at-tacks”. In

Proceedings of the 14th ACM SIGSOFT

International Symposium on Foundations of

Software Engineering.

[10]. Yichen Xie and Alex Aiken. “Static detection of

security vulnerabilities in scripting languages”.

In Proceedings of the USENIX Security

Symposium.

[11]. Collin Jackson, Andrew Bortz, Dan Boneh, and

John C. Mitchell. “Protecting browser state

from web privacy attacks”. In Proceedings of

the International Conference on World Wide

Web (WWW).

[12]. Patil Kailas, Dong Xinshu, Li Xiaolei, Liang

Zhenkai, and Jiang Xuxian. “Towards fine-

grained access control in javascript contexts”. In

Proceedings of the International Conference on

Distributed Computing Systems.

[13]. Ziqing Mao, Ninghui Li, and Ian Molloy.

“Defeating cross-site request forgery attacks

with browser-enforced authenticity

protection”. In Financial Cryptography and

Data Security, 13th International Conference.

[14]. Leo A. Meyerovich and Benjamin Livshits.

“ConScript: Specifying and enforcing fine-

grained security policies for javascript in the

browser”. In Proceedings of the IEEE

Symposium on Security and Privacy (IEEE S &

P).

[15]. Mozilla Same origin policy for javascript.

https://developer.mozilla.org/En/Same_origin_p

olicy_for _javascript.

[16]. The clickjacking meets xss: a state of art.

http://www.milw0rm.com/papers/265.

[17]. Anh Nguyen-tuong, Salvatore Guarnieri, Doug

Greene, Jeff Shirley, and David Evans.

“Automatically hardening web applications

using precise tainting”. In Proceeding of the

20th IFIP International Information Security

Conference.

[18]. National Institute of standards and technology.

National vulnerability database (nvd)

http://web.nvd.nist.gov/view/vuln/search

[19]. Kailas Patil Ensuring session integrity in the

browser environment

http://scholarbank.nus.edu.sg/bitstream/handle/

10635/49161/ThesisHT080141L.pdf?sequence=1

.

[20]. Kailas Patil, Tanvi Vyas, Fredrik Braun, and

Mark Goodwin. “Usercsp- user specified

content security policies”. SOUPS’13 POSTER

Cite this article as :

Bhanwarlal, Irfan Khan, "XSS and SQL Injection

Detection and Prevention Techniques (A Review) ",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8

Issue 1, pp. 53-60, January-February 2022. Available

at doi : https://doi.org/10.32628/CSEIT22816

Journal URL : https://ijsrcseit.com/CSEIT22816

https://doi.org/10.32628/CSEIT22816
https://search.crossref.org/?q=10.32628/CSEIT22816&from_ui=yes
https://ijsrcseit.com/CSEIT22816

