
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT22831

300

A Comprehensive Study on 8 Puzzle Problem without Heuristic and

with Heuristic Algorithm
Palash Dutta Banik*, Asoke Nath

Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India

Article Info

Volume 8, Issue 2

Page Number : 300-308

Publication Issue :

March-April-2022

Article History

Accepted: 10 April 2022

Published: 22 April 2022

ABSTRACT

Artificial Intelligence (AI) is now one most challenging and important field of

computer science. With the help of AI one can make the machine can think like

a human being and deliver solutions like a human brain. Now a day’s AI replacing

many old powerful technologies. There are many important areas where AI is

used like a tool to achieve better solutions. Before introduction of AI algorithms,

we were using search techniques like BFS, DFS, etc. But after the evolutionary

change in computer science, now search techniques like Heuristic Search, A*

algorithm, etc. were introduced to solve standard problems. With the help of some

knowledge, one can easily find a solution for large and complex problems. In the

present study the author will try to explore how one can solve 8-puzzle problem

using heuristic search algorithm and also using non heuristic algorithm.

Keywords : Artificial Intelligence, Informed Search, Uninformed Search,

Heuristic Function, Depth First Search, Breadth First Search, Heuristic Search

Function, A* algorithm.

I. INTRODUCTION

Prior to 1949, computers were able to execute

commands, but they could not remember what they

were doing as they could not keep those commands. In

1950, Alan Turing discussed how to build smart

machines and test this ingenuity in his paper

“Computing Machinery and Intelligence”. Five years

later, the first AI program was launched at the

Dartmouth Summer Research Project on Artificial

Intelligence (DSPRAI). This event has been the

catalyst for AI research over the next few decades.

Computers were fast, cheap and easily accessible

between 1957 and 1974. Machine learning algorithms

improved and, in 1970, one of the DSPRAI executives

told Life Magazine that there would be a standard 3-8-

8 machine-based human years. Despite its success, the

inability of computers to store or process information

quickly created obstacles in pursuit of practical

wisdom for the next decade.

AI was revived in the 1980s with the expansion of the

algorithmic tool kit and the most dedicated funds. John

Hopefield and David Rumelhart introduced "deep

learning" strategies that allow computers to learn using

information. Edward Feigenbaum introduced “expert

programs” that mimic human decision-making.

Despite the lack of government funding and public

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

301

hype, AI prospered and many important goals were

achieved in the next two decades. In 1997, former

world chess and Grandmaster Gary Kasparov lost to

IBM's Deep Blue, a computer program that played

chess. That same year, a speech recognition software

developed by Dragon Systems was implemented on

Windows. Cynthia Breazeal also developed Kismet, a

robot that can detect and express emotions. In 2016,

Google's AlphaGo program defeated Go master Lee Se-

dol and in 2017, Libratus, a supercomputer playing

poker defeated the best human players.

AI (Artificial Intelligence) [1]: AI is a branch of

computer science concerned with the study and

creation of computer systems, which have some form

of intelligence: Systems that learn new concepts and

tasks, systems that can reason and draw useful

conclusions about the world around us, systems that

can understand a natural language and systems that can

perform other types of work which needs human types

of intelligence. Here intelligence is the ability to

acquire, understand and apply the knowledge or the

ability to exercise some thoughts and reasons.

II. Uninformed Search [2]

Before the area of AI started, the Uninformed Search

techniques was available, which do not require any

kind of knowledge or information about the goal state.

It has more time and space complexity, this type of

searching method is also known as the Brute force

searching method.

Example - BFS, DFS, bidirectional search, etc.

III. Informed Search[3]

Informed search algorithms contain an array of

knowledge such as how far we are from the goal node,

path cost, how to reach the goal node, etc.

This is a type of searching method where we require

the knowledge to find the steps to reach the solution

or the goal state. Here, we always search with some

information, for which this method can find quick

solutions. This is also known as Heuristic Searching

Method.

These informed search algorithms are more useful for

large search spaces.

Example- A* algorithm, Heuristic Graph Searching,

Best First Search, etc.

IV. Heuristic Function h(n)[4]

Heuristic Function is a type of function which is used

in informed search and it finds the most promising

path. It takes the current state of the node as it’s input

and produces the estimation of how close the present

node is from the Goal node.

When state space exponentially grows or the problem

is Non-polynomial, the Heuristic function is used to

reduce time/space.

V. Main Focus

Given a 3×3 board with 8 tiles (every tile has one

number from 1 to 8) and one empty space. The

objective is to place the numbers on tiles to match the

final configuration using the empty space. One can

slide four adjacent (left, right, above, and below) tiles

into the empty space.

i.e., in 8 puzzle problem we have total of 4 moves, Up,

Down, Right, Left.

Suppose, we have 8 puzzle problem which has a

Starting State/Initial State of

1 2 3

B 4 6

7 5 8

Our Goal State is –

1 2 3

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

302

4 5 6

7 8 B

Now, if uninformed search like DFS (Depth First

Search) or BFS (Breadth First Search) is applied to find

the Goal state without Heuristic then one has to

consider the following:

VI.1.Using DFS[5][12]

It’s a type of uninformed search or blind search

algorithm. It always goes to the deepest node. It may

be possible that DFS will not give us a solution every

time. It uses Stack (Last InFirst Out).

We can perform a depth-first search on state-space tree.

In this way we can reach all possible states from the

initial state.

In this solution, successive moves can take us away

from the goal rather than bring us closer. The search of

the state-space tree follows the leftmost path from the

root regardless of the initial state. An answer node may

never be found in this approach.

Time complexity – O (𝑏𝑑), where “b” is the branch

factor and “d” is depth.

VI.2.Using BFS:[6][11]

It’s a type of uninformed search or blind search

algorithm. In this method we search level wise that is

why this method is called as Level Search Technique.

If our goal state is closer from the initial state then BFS

is better to use. It uses Queue (First InFirst Out).

We can perform a Breadth-first search on the state

space tree. This always finds a goal state nearest to the

root. But no matter what the initial state is, the

algorithm attempts the same sequence of moves as DFS.

Time complexity – O (𝑏𝑑), where “b” is the branch

factor and “d” is depth.

VI.3. Explain with an example

Here, R = Right Move, L = Left Move, D = Down Move,

U = Up Move

Fig.1 : 8-puzzle problem with uninformed search

methods

VI.4. Understanding the Complexity with the help of

this example

As we know the complexity is O (𝑏𝑑), Where b is the

branching factor and d is the depth of the solution. In

simple words, d is the distance between the starting

state to the goal state.

Depth depends on the complexity of the starting

matrix and for this particular example, the depth is 20

and the branching factor is 3.

In worst case time complexity is – O (3)20

Fig. 2 : Branching Factor Calculation

Branching Factor calculation:

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

303

{(2 * 4) + (3 * 4) + (1 * 4)} = 24

now, the average branching factor is (24 / 9) = 2.66 ≈ 3,

as 9 is the total number of spaces.

VI.5. Drawbacks of this type of uninformed search

method and why we use the informed search method

i.e., heuristic search

In case of easy problems, it is useful and an optimal

solution is guaranteed but whenever the complexity of

the matrix increases exponentially, the machine will

take a large amount of time to reach the goal state. That

is why to achieve the quickness to find the solution

heuristic methods are more useful.

VI.6. Heuristic Search Algorithm[7]

This algorithm is a simple algorithm that guarantees

finding a solution. If we can perform this algorithm

systematically then surely there exists a solution. With

the help of heuristic information, we can find which

node is most promising by the heuristic function h(n).

It takes the node “n” and returns the real non-negative

number which is the average cost of the route from

point “n” to the goal area. The function h (n)

underestimates if h (n) is less than or equal to the actual

cost of the low-cost route from point n to point.

A heuristic activity is a way of informing a search

about the path to a goal. Provides an intuitive way to

predict which node neighbor will lead to a goal.

Now, if we use informed search like Branch and Bound

technique to find the Goal state with Heuristic then –

The search for an answer node can often be speeded by

using an “intelligent” ranking function (Heuristic

Function), also called an approximate cost function to

avoid searching in sub-trees that do not contain an

answer node. It is similar to the backtracking

technique but uses a BFS-like search.

An example of the Branch and Bound approach is A*

algorithm. So, we can use the A* algorithm to solve 8

puzzle problem in an intelligent way.

A* algorithm extends the path that minimizes the

following function –

f (n) = g(n) + h(n)

Here,

• “n” is the last node on the path.

• g(n) is the cost of the path from start node to

node “n”.

• h(n) is the Heuristic Function that estimates

the cost of the cheapest path from “n” to the

Goal node.

Note: A* algorithm maintains two lists, OPEN list and

CLOSED list.

VI. A* Algorithm[8]

Step 1: Place the starting node into OPEN list and find

it’s f (n) value.

Step 2: Remove the node from OPEN list, if it has the

smallest f (n) value.If, it is the Goal Node then Stop and

Return Success.

Step 3: Else, remove the node from OPEN list and find

all the successors of the node.

Step 4: Find the f (n) values of successors; place them

into OPEN list and place the removed node into

CLOSED list.

Step 5: Go to step 2.

Step 6: Exit.

Time complexity – O (𝑏𝑑), where “b” is the branch

factor and “d” is depth.

VI.1. Advantages

I. A* algorithm is a complete and optimal

algorithm to find the best way to reach the goal

state.

II. It is used to solve all most every complex

problem.

VII. 2. Disadvantages

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

304

I. A* algorithm is complete if the branching

factor is finite and every path has its fixed cost.

II. At some cases this A* algorithm can face

complexity problems.

III. The speed execution of an A* algorithm is

highly dependent on the accuracy of the

Heuristic Function, which is used to compute

the h(n).

VIII. Explain with an example

Here, R = Right Move, L = Left Move, D = Down Move,

U = Up Move and H is the Heuristic value.

Fig.3 : 8-puzzle problem with A* algorithm

IX. PUZZLE PROBLEM WITH A* ALGORITHM

PYTHON CODE

from copy import deepcopy

from colorama import Fore, Back, Style

#direction matrix

DIRECTIONS = {"U": [-1, 0], "D": [1, 0], "L": [0, -1], "R":

[0, 1]}

#target matrix

END = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]

unicode for draw puzzle in command promt or

terminal

left_down_angle = '\u2514'

right_down_angle = '\u2518'

right_up_angle = '\u2510'

left_up_angle = '\u250C'

middle_junction = '\u253C'

top_junction = '\u252C'

bottom_junction = '\u2534'

right_junction = '\u2524'

left_junction = '\u251C'

#bar color

bar = Style.BRIGHT + Fore.CYAN + '\u2502' +

Fore.RESET + Style.RESET_ALL

dash = '\u2500'

#Line draw code

first_line = Style.BRIGHT + Fore.CYAN +

left_up_angle + dash + dash + dash + top_junction +

dash + dash + dash + top_junction + dash + dash + dash

+ right_up_angle + Fore.RESET + Style.RESET_ALL

middle_line = Style.BRIGHT + Fore.CYAN +

left_junction + dash + dash + dash + middle_junction+

dash + dash + dash + middle_junction + dash + dash +

dash + right_junction + Fore.RESET +

Style.RESET_ALL

last_line = Style.BRIGHT + Fore.CYAN +

left_down_angle + dash + dash + dash +

bottom_junction + dash + dash + dash +

bottom_junction + dash + dash + dash +

right_down_angle + Fore.RESET + Style.RESET_ALL

#puzzle print function

def print_puzzle(array):

 print(first_line)

 for a in range(len(array)):

 for i in array[a]:

 if i == 0:

print(bar, Back.RED + ' ' + Back.RESET, end=' ')

 else:

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

305

print(bar, i, end=' ')

 print(bar)

 if a == 2:

 print(last_line)

 else:

 print(middle_line)

#it is the node which store each state of puzzle

class Node:

 def __init__(self, current_node, previous_node, g, h,

dir):

self.current_node = current_node

self.previous_node = previous_node

self.g = g

self.h = h

self.dir = dir

 def f(self):

 return self.g + self.h

def get_pos(current_state, element):

 for row in range(len(current_state)):

 if element in current_state[row]:

 return (row,

current_state[row].index(element))

#it is a distance calculation algo

def euclidianCost(current_state):

 cost = 0

 for row in range(len(current_state)):

 for col in range(len(current_state[0])):

 pos = get_pos(END, current_state[row][col])

 cost += abs(row - pos[0]) + abs(col - pos[1])

 return cost

#getadjucent Nodes

def getAdjNode(node):

listNode = []

emptyPos = get_pos(node.current_node, 0)

 for dir in DIRECTIONS.keys():

newPos = (emptyPos[0] + DIRECTIONS[dir][0],

emptyPos[1] + DIRECTIONS[dir][1])

 if 0 <= newPos[0] <len(node.current_node) and 0

<= newPos[1] <len(node.current_node[0]):

newState = deepcopy(node.current_node)

newState[emptyPos[0]][emptyPos[1]] =

node.current_node[newPos[0]][newPos[1]]

newState[newPos[0]][newPos[1]] = 0

 # listNode += [Node(newState,

node.current_node, node.g + 1,

euclidianCost(newState), dir)]

listNode.append(Node(newState, node.current_node,

node.g + 1, euclidianCost(newState), dir))

 return listNode

#get the best node available among nodes

def getBestNode(openSet):

firstIter = True

 for node in openSet.values():

 if firstIter or node.f() <bestF:

firstIter = False

bestNode = node

bestF = bestNode.f()

 return bestNode

#thisfunctionn create the smallest path

def buildPath(closedSet):

 node = closedSet[str(END)]

 branch = list()

 while node.dir:

branch.append({

 'dir': node.dir,

 'node': node.current_node

 })

 node = closedSet[str(node.previous_node)]

branch.append({

 'dir': '',

 'node': node.current_node

 })

branch.reverse()

 return branch

#main function of node

def main(puzzle):

open_set = {str(puzzle): Node(puzzle, puzzle, 0,

euclidianCost(puzzle), "")}

closed_set = {}

 while True:

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

306

test_node = getBestNode(open_set)

closed_set[str(test_node.current_node)] = test_node

 if test_node.current_node == END:

 return buildPath(closed_set)

adj_node = getAdjNode(test_node)

 for node in adj_node:

 if str(node.current_node) in closed_set.keys()

or str(node.current_node) in open_set.keys() and

open_set[

 str(node.current_node)].f() <node.f():

 continue

open_set[str(node.current_node)] = node

 del open_set[str(test_node.current_node)]

if __name__ == '__main__':

 #it is start matrix

br = main([[1, 2, 3],

 [0, 4, 6],

 [7, 5, 8]])

print('total steps : ', len(br) - 1)

print()

print(dash + dash + right_junction, "INPUT",

left_junction + dash + dash)

 for b in br:

 if b['dir'] != '':

 letter = ''

 if b['dir'] == 'U':

 letter = 'UP'

elif b['dir'] == 'R':

 letter = "RIGHT"

elif b['dir'] == 'L':

 letter = 'LEFT'

elif b['dir'] == 'D':

 letter = 'DOWN'

print(dash + dash + right_junction, letter, left_junction

+ dash + dash)

print_puzzle(b['node'])

print()

print(dash + dash + right_junction, 'ABOVE IS THE

OUTPUT', left_junction + dash + dash)

OUTPUT:

X. Comparison between Informed and Uninformed

Search methods[9][10]

In the case of uninformed searching, the time

complexity is O (𝑏𝑑), and the space complexity is O

(𝑏𝑑), and uninformed search methods always gives us

an optimal solution.

In case of informed searching or heuristic method, we

use some quickness to find out our result quickly.

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

307

The most important benefit of heuristic method is, we

can convert a non-polynomial problem into a

polynomial problem and find the solution quickly but

heuristic method my not give us an optimal solution in

some cases.

XI. CONCLUSION

Although Artificial Intelligence has some limitations,

in case of the larger picture searching with some

knowledge gives us extra benefits and AI gives the

machines a human like thinking and processing ability.

We can use this technology in various fields where we

required human like intelligence from a machine.

With the help of AI and Heuristic Search we can

perform tasks in a better and efficient way and it can

provide us a set of best solutions in a small amount of

time. In some years AI will acquire the hole computer

industry with its intelligence and knowledge.

XII. REFERENCES

[1]. Hewlett Packard Enterprise Website, 2020,

https://www.hpe.com/in/en/what-is/artificial-

intelligence.html?jumpid=ps_czxkg6qts3_aid-

520061736&ef_id=Cj0KCQjwgYSTBhDKARIsA

B8KukvXmK-

Kaaxnev0jzv4LOdFDAshmpvqYDNq5_RRvA4v

0-

0HKpFRDL20aAsXTEALw_wcB:G:s&s_kwcid=

AL!13472!3!558204152872!e!!g!!what%20is%20

artificial%20intelligence!14386686693!1285185

17985&

[2]. Varun Singla, Gate Smashers YouTube, 13 Dec,

2019,

https://www.youtube.com/watch?v=_CrEYrcIm

v0

[3]. Varun Singla, Gate Smashers YouTube, 15 Dec,

2019,

https://www.youtube.com/watch?v=nmWGhb9

E4es

[4]. javaTpoint Website,2022,

https://www.javatpoint.com/ai-informed-

search-

algorithms#:~:text=Heuristics%20function%3A

%20Heuristic%20is%20a,agent%20is%20from

%20the%20goal.

[5]. geeksforgeeks website, 2022,

https://www.geeksforgeeks.org/depth-first-

search-or-dfs-for-a-graph/

[6]. geeksforgeeks website, 2022,

https://www.geeksforgeeks.org/breadth-first-

search-or-bfs-for-a-graph/

[7]. javaTpoint Website, 2022,

https://www.javatpoint.com/heuristic-

techniques

[8]. javaTpoint Website, 2022,

https://www.javatpoint.com/heuristic-

techniques

[9]. geeksforgeeks website, 2022,

https://www.geeksforgeeks.org/difference-

between-informed-and-uninformed-search-in-

ai/

[10]. Vinita, intellipaat website, 3 July, 2019,

https://intellipaat.com/community/3654/what-

is-the-difference-between-informed-and-

uninformed-

searches#:~:text=An%20uninformed%20search

%20is%20a,current%20state%20to%20the%20g

oal.&text=Uses%20knowledge%20to%20find%

20the%20steps%20to%20the%20solution.

[11]. Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein, Introduction to

Algorithms, Third Edition, 2017, Page – 594 to

595

[12]. Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein, Introduction to

Algorithms, Third Edition, 2017, Page – 603 to

608

AUTHOR PROFILE

Volume 8, Issue 2, March-April-2022 | http://ijsrcseit.com

Palash Dutta Banik et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, March-April -2022, 8 (2) : 300-308

308

Dr. Asoke Nath is working

as Associate Professor in

the Department of

Computer Science, St.

Xavier’s College

(Autonomous), Kolkata.

He is engaged in research

work in the field of

Cryptography and

Network Security,

Steganography, Green Computing, Big data analytics,

Li-Fi Technology, Mathematical modelling of Social

Area Networks, MOOCs, Quantum Computing etc. He

has published more than 257 research articles in

different Journals and conference proceedings.

Mr. Palash Dutta Banik is a

student of St. Xavier’s

College, currently pursuing

M.Sc. in Computer Science.

His interests lie in the field of

Quantum Computing,

Machine Learning, Coding,

App Development,

Cryptography and Network Security, UI Design, Cyber

Security, AI and real-world project implementation of

these fields.

Cite this article as :

Palash Dutta Banik, Asoke Nath, "A Comprehensive

Study on 8 Puzzle Problem without Heuristic and with

Heuristic Algorithm", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 8 Issue 2, pp. 300-308, March-

April 2022. Available at doi :

https://doi.org/10.32628/CSEIT22831

Journal URL : https://ijsrcseit.com/CSEIT22831

