
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

408

Enhancing Capability of Gang scheduling by integration of Multi

Core Processors
Krishan Kumar1, Suman2

1Assistant Professor, Department of CSE, JCDM College of Engineering, Sirsa, India
2M.Tech. Scholar, Department of CSE, JCDM College of Engineering, Sirsa, India

Article Info

Volume 8, Issue 3

Page Number : 408-411

Publication Issue :

May-June-2022

Article History

Accepted: 03 June 2022

Published: 15 June 2022

ABSTRACT

In this paper, a new algorithm for gang scheduling is proposed. This method

aims to reduce the average response time of gangs by increasing the

serviceability of gangs in the shortest execution time possible. The performance

of the proposed algorithm is examined and compared to the basic gang

scheduling algorithm within the simulation.

Objective of research is increase efficiency of scheduling dependent task using

enhanced multithreading. gang scheduling of parallel implicit-deadline periodic

task systems upon identical multiprocessor platforms is considered. In this

scheduling problem, parallel tasks use several processors simultaneously. first

algorithm is based on linear programming & is first one to be proved

optimal for considered gang scheduling problem. Furthermore, it runs in

polynomial time for a fixed number m of processors & an efficient

implementation is fully detailed. second algorithm is an approximation

algorithm based on a fixed-priority rule that is competitive under resource

augmentation analysis in order to compute an optimal schedule pattern.

Precisely, its speedup factor is bounded by (2−1/m). Both algorithms are also

evaluated through intensive numerical experiments. In our research we have

enhanced capability of Gang Scheduling by integration of multi core processor;

Cache; make simulation of performance in MATLAB.

Keywords: Multiprocessor, Multi Core Processor, Gang Scheduling, MATLAB

I. INTRODUCTION

Gang scheduling is a scheduling algorithm for parallel

systems that schedules related processes or threads to

run simultaneously on different processors. These

processes or threads of each job are packed into a

single row of the matrix. Gang scheduling is a

combination of time-sharing and space-sharing

approaches. Gang scheduling appeared as the solution

to the problems of job scheduling policies in those

systems where the processor scheduling was a simple

dispatch. In this kind of systems, the main problem

seems to be the fragmentation, then reasons to use

gang scheduling were presented as responsiveness and

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 408-411

409

efficient use of resources All processes belonging to a

job run at the same time (the term gang denotes all

processors within a job). Each process runs alone on

each processor. but there is rapid coordinated context

switching. It is possible to suspend/preempt jobs

arbitrarily. Gang Scheduling Working :The different

gangs are grouped in time slots following some re-

packing algorithm. The total number of processors

requested by gangs in a time slot must be less or equal

than the total number of processors of the machine.

Periodically, at each quantum expiration, the

scheduler selects a new time slot to execute all of its

gangs. If the workload has changed during the

execution of the last quantum, the re-packing

algorithm will be re-applied. In any case,the new slot

selected is scheduled.

II. LITERATURE REVIEW

Yeh-Ching Chung wrote on “Applications &

Performance Analysis of A Compile-Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory Multiprocessors”

They have proposed a compile-time optimization

approach, bottom-up top-down duplication heuristic

(BTDH), for static scheduling of directed+cyclic

graphs (DAGS) on distributed memory

multiprocessors (DMMs). In this paper, they discuss

applications of BTDH for list scheduling algorithms

(LSAs). There are two ways to use BTDH for LSAs.

BTDH can be used with LSAto form a new scheduling

algorithm (LSA/BTDH). It could be used as a pure

optimization algorithm for a LSA (LSA-BTDH). We

have applied BTDH with two well known

LSAs,highest level first with estimated time

(HLFET)&earlier taskfirst(ETF) heuristics. We have

performed extensive simulation to study performance

of BTDH for LSAs. Three parameters, graph

parallelism (GP) of a DAG,ratio of average

communication cost to average computation cost

(CCR) of a DAG&number(PN) of a DMM, ares

imulated. From simulation, they have following

conclusions. Given a DAG,GP of DAG could

accurately predict number of processors to be used

such that a good scheduling length &a good resource

utilization (or efficiency) could be achieved

Ishfaq Ahmad1&Yu-Kwong Kwok2 wrote on “On

Parallelizing Multiprocessor Scheduling Problem”

 In this paper, they introduce a parallel algorithm that

is guided by a systematic partitioning of task graph to

perform scheduling using multiple processors. The

algorithm schedules both tasks & messages, &is

suitable for graphs with arbitrary computation &

communication costs &is applicable to systems with

arbitrary network topologies using homogeneous or

heterogeneous processors. They have implemented

algorithm on Intel Paragon &compared it with three

closely related algorithms. The experimental results

indicate algorithm yields higher quality solutions

while using an order of magnitude smaller scheduling

times. The algorithm also exhibits an interesting

trade-off between solution quality & speedup while

scaling well with problem size.

Maruf Ahmed, Sharif M. H. Chowdhury wrote on”

List Heuristic Scheduling Algorithms for Distributed

Memory Systems with Improved Time Complexity”

They present a compile time list heuristic scheduling

algorithm called Low Cost Critical Path algorithm

(LCCP) for distributed memory systems. LCCP has

low scheduling cost for both homogeneous &

heterogeneous systems. In some recent papers list

heuristic scheduling algorithms keep their scheduling

cost low by using a fixed size heap &a FIFO, where

heap always keeps fixed number of tasks & excess

tasks are inserted within FIFO. When heap has empty

spaces, tasks are inserted within it from FIFO. Best

known list scheduling algorithm based on this

strategy requires two heap restoration operations, one

after extraction& another after insertion. Our LCCP

algorithm improves on this by using only one such

operation for both

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 408-411

410

extraction &insertion, that within theory reduces

scheduling cost without compromising scheduling

performance. In our experiment they compare LCCP

with other well known list scheduling algorithms &it

shows that LCCP is fastest among all.

Wayne F. Boyer wrote on “Non-evolutionary

algorithm for scheduling dependent tasks within

distributed heterogeneous computing environments”

The Problem of obtaining an optimal matching &

scheduling of interdependent tasks within distributed

heterogeneous computing (DHC) environments is

well known to be an NP-hard problem. In a DHC

system, task execution time is dependent on machine

to which it is assigned &task precedence constraints

are represented by a directed acyclic graph. Recent

research within evolutionary techniques has shown

that genetic algorithms usually obtain more efficient

schedules that other known algorithms.

They propose a non-evolutionary random scheduling

(RS) algorithm for efficient matching& scheduling of

inter-dependent tasks within a DHC system. RS is a

succession of randomized task orderings &a heuristic

mapping from task order to schedule. Randomized

task ordering is effectively a topological sort where

outcome may be any possible task order for which

task precedent constraints are maintained. A detailed

comparison to existing evolutionary techniques

(GA&PSGA) shows proposed algorithm is less

complex than evolutionary techniques, computes

schedules within less time, requires less memory

&fewer tuning parameters. Simulation results show

that average schedules produced by RS are

approximately as efficient as PSGA schedules for all

cases studied &clearly more efficient than PSGA for

certain cases.

III. Research Methodology

Objective:

1. To analyze previous design algorithms for task

scheduling and find the limitations.

2. Researcher to design new algorithm for task

scheduling.

3. Implementation and deployment of proposed

algorithm for providing better performance.

4. comparison between previously developed

algorithm and proposed one.

Challenges within Research

Multiple threads could interfere with each other

when sharing hardware resources such as caches or

translation look aside buffers (TLBs). As a result,

execution times of a single thread are not improved

but could be degraded, even when only one thread is

executing, due to lower frequencies or additional

pipeline stages that are necessary to accommodate

thread-switching hardware. Overall efficiency varies;

Intel claims up to 30% improvement with its Hyper

Threading technology,[1] while a synthetic program

just performing a loop of non-optimized dependent

floating-point operations actually gains a 100% speed

improvement when run within parallel. On other

hand, hand-tuned assembly language programs using

MMX or Altivec extensions &performing data pre-

fetches (as a good video encoder might) do not suffer

from cache misses or idle computing resources. Such

programs therefore do not benefit from hardware

multithreading& could indeed see degraded

performance due to contention for shared resources.

From software standpoint, hardware support for

multithreading is more visible to software, requiring

more changes to both application programs

&operating systems than multiprocessing. Hardware

techniques used to support multithreading often

parallel software techniques used for computer

multitasking of computer programs. Thread

scheduling is also a major problem within

multithreading.

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Krishan Kumar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 408-411

411

IV. Implementation : Proposed Work

Choosing a scheduling algorithm

When designing an operating system, a programmer

must consider which scheduling algorithm would

perform best. There is no universal “best” scheduling

algorithm, & several operating systems use extended

or combinations of scheduling algorithms above.

Operating system process scheduler implementations.

The algorithm used may be as simple as round-robin

within which each process is given equal time (for

instance 1 ms, usually between 1 ms&100 ms) within

a cycling list. So, process A executes for 1 ms, then

process B, then process C, then back to process A.

More advanced algorithms take into account process

priority, or importance of process. This allows some

processes to use more time than other processes. The

kernel always uses whatever resources it needs to

ensure proper functioning of system, &so could be

said to have infinite priority. In SMP(symmetric

multiprocessing) systems, processor affinity is

considered to increase overall system performance,

even if it may cause a process itself to run more

slowly. This generally improves performance by

reducing cache thrashing.

In computer science, thrashing occurs when a

computer's virtual memory subsystem is within a

constant state of paging, rapidly exchanging data

within memory for data on disk, toexclusion of most

application-level processing. This causes performance

of computer to degrade or collapse. The situation may

continue indefinitely underlying cause is addressed.

The term is also used for various similar phenomena,

particularly movement between other levels of

memory hierarchy, where a process progresses slowly

because significant time is being spent acquiring

resources.

V. Scope of research

If a thread gets a lot of cache misses, other threads

could continue taking advantage of unused computing

resources, that may lead to faster overall execution as

these resources would have been idle if only a single

thread were executed. Also, if a thread cannot use all

computing resources of CPU (because instructions

depend on each other's result), running another

thread may prevent those resources from becoming

idle. If several threads work on same set of data, they

could actually share their cache, leading to better

cache usage or synchronization on its values.

VI. REFERENCES

[1]. Abraham Silberschatz, Peter Baer Galvin & Greg

Gagne (2013). Operating System Concepts 9. John

Wiley & Sons,Inc. ISBN 978-1-118-06333-0.

[2]. Yeh-Ching Chung and Sanjay Ranka, Applications

and Performance Analysis of A Compile- Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory Multiprocessors,

1063-953Y92 $3.00 0 1992 IEEE

[3]. Ishfaq 5. Wayne F. Boyer, Gurdeep S. Hurab, Non-

evolutionary algorithm for scheduling dependent

tasks in distributed heterogeneous computing

environments, J. Parallel Distrib. Comput. 65 (2005)

1035 – 1046

[4]. Ahmad and Yu-Kwong Kwok, On Parallelizing the

Multiprocessor Scheduling Problem,1998

[5]. Maruf Ahmed , Sharif M. H. Chowdhury and Masud

Hasan, List Heuristic Scheduling Algorithms for

Distributed Memory Systems with Improved Time

Complexity

[6]. Remzi H. Arpaci-Dusseau; Andrea C. Arpaci-Dusseau

(January 4, 2015). "Chapter 7: Scheduling:

Introduction, Section 7.6: A New Metric: Response

Time". Operating Systems: Three Easy Pieces

(PDF). p. 6. Retrieved February 2, 2015.

Cite this article as :

Krishan Kumar, Suman, "Enhancing Capability of Gang

scheduling by integration of Multi Core Processors",

International Journal of Scientific Research in Computer

Science, Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 8 Issue 3, pp.408-

411 , May-June 2022.

Journal URL : https://ijsrcseit.com/CSEIT2283106

