
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

343

Detecting and Characterizing Extremist Reviewer Groups in

Online Product Reviews
Jothika. J1, Nalagampalli MoniSree1, Pavithra. M2

UG Scholar1, Assistant Professor2

Department of CSE, Kingston College, Vellore, Tamil Nadu, India

Article Info

Volume 8, Issue 3

Page Number : 342-353

Publication Issue :

May-June-2022

Article History

Accepted: 03 June 2022

Published: 15 June 2022

ABSTRACT

Now a days, online marketplaces often witness opinion spam in the form of

reviews. People are often hired to target specific brands for promoting or

impeding them by writing highly positive or negative reviews. This is often

collectively done in groups. Although some previous studies attempted to

identify and analyze such opinion spam groups, little has been explored to spot

those groups who target a brand as a whole, instead of just products. In this

application, we collected the reviews from the Amazon product review site and

manually labeled a set of 923 candidate reviewer groups. The groups are

extracted using frequent item set mining over brand similarities such that users

are clustered together if they have mutually reviewed (products of) a lot of

brands. We hypothesize that the nature of the reviewer groups is dependent on

eight features specific to a (group, brand) pair. We develop a feature-based

supervised model to classify candidate groups as extremist entities. We run

multiple classifiers for the task of classifying a group based on the reviews

written by the users of that group to determine whether the group shows signs

of extremity. A three-layer perceptron-based classifier turns out to be the best

classifier. We further study behaviors of such groups in detail to understand the

dynamics of brand-level opinion fraud better. These behaviors include

consistency in ratings, review sentiment, verified purchase, review dates, and

helpful votes received on reviews. Surprisingly, we observe that there are a lot of

verified reviewers showing extreme sentiment, which, on further investigation,

leads to ways to circumvent the existing mechanisms in place to prevent

unofficial incentives on Amazon.

Keywords : Characterization, Detection, Online Products, Reviews.

I. INTRODUCTION

In today’s world dominated by online marketplaces,

review portals and websites play a crucial role in the

buyer’s decision for their next purchase. “It is a

virtuous cycle–the more reviews, the more buys. The

more buys, the more reviews. The more buys, the

higher your rank in search and the more sales you

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

343

get,” says Alice, the owner of online cosmetic brand

Elizabeth Mott. Undoubtedly, it is highly likely that

some people write reviews that are less than truthful

to manipulate widespread decision of buyers in their

favor. These people act either individually or in

groups. While individual reviewers write such

reviews in a matter of frustration or joy, they do not

influence the overall opinion on a product to a large

extent but help other buyers by stating their

experiences. However, a more compelling case is

when multiple individuals form an intricate web, and

due to sheer higher number of people reviewing (and

certain other techniques, discussed in Section VIII),

they end up being a major influence on the overall

sentiment of the product. The extent of such

influence is not just limited to the reviews by opinion

spam. Previous work has shown that 10%–15%

reviews are essentially echoing the earliest reviews,

and thus, a misleading early review has an even

higher influential potential. This is widespread

opinion spam, and every review website must be

aware of this activity and take appropriate measures

for the identification and/or prevention of this

phenomenon. This is a classic example of collective

fraud behavior, where several users are part of a

business network and work together to target and

influence a particular product. This is a lesser known

phenomenon, and most groups work following

certain techniques to not make their collaboration

obvious. However, since such groups are

economically or otherwise incentivized, and several

of these are generally run by a given organization,

they have several targets for opinion spam, which

often share certain common characteristics in their

nature of reviews. These characteristics can be

exploited to classify them better using a robust and

thorough an analysis technique. Amazon India, to

prevent opinion spam, has brought about a new

policy that limits the number of reviews on a product

in a day, as stated in. In order to still be effective, we

claim that certain groups target brands in general and

post extreme reviews across multiple products for a

given target brand. This is a higher level of opinion

spamming, deliberately writing highly positive or

negative reviews for a brand in general in order to

promote or demote them in the cut-throat

competition of the online marketplace. Studies have

been conducted to identify such groups that try to

influence a product; however, groups exhibiting a

brand-based opinion spamming is a phenomenon that

remains widely unexplored. A detailed discussion is

required for these brand-related activities because

these practices are against the code of conduct of

these review websites since they negatively skew the

brand-based competition, giving innate

(dis)advantages to certain brands. Since only the

nonverified reviews are limited by the policies,1

reviewers from these groups can often purchase the

Section IV of the Supplementary Material). In this

article, we identify and study the behavioral

characteristics of extremist reviewer groups. We also

build a feature-based classifier based on the brand-

specific activities of reviewer groups to identify the

extremist groups on the Amazon India marketplace.

We then further analyze our methodology to unfold

behaviors that best signify such activities and

compare and analyze the overall trend of these groups

viz-a-viz their behaviors. The major contributions of

this article are fourfold: 1) a manually labeled data set

of 923 reviewer groups that are classified into

“extremist” and “moderate” categories; 2) the first-

ever characterization and study of the novel problem

of identifying brand-level extremism; 3) detailed

characterization of extremist reviewer groups; 4)

design supervised approach to detect extremist

reviewer groups. To encourage reproducible research,

we have made the codes publicly available at

https://github.com/virresh/ extremist-reviewers.2

This article is organized as follows. We briefly survey

the various studies related to review extremism,

applications developed using reviews, and fake review

detection in Section II. Section III outlines the details

of the collected data set and annotation methodology.

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

344

Section IV presents the modeling of features at brand

level and features.

II. RELATED WORKS

HawkesEye: Detecting fake retweeters using Hawkes

process and topic modeling: Retweets are essential to

boost the popularity of a tweet, and a large number of

fake retweeters can contribute heavily to this aspect.

We define a fake retweeter as a Twitter account that

retweets spammy tweets, retweets an abnormally

large amount of tweets in a short period, or misuses a

trending hashtag to promote events irrelevant to the

topic of discussion. We introduce an up-to-date,

temporally diverse, trend-oriented labeled dataset to

address the problem of fake retweeter detection. We

develop a novel classifier, called HawkesEye which

makes predictions based on a temporal window, in

contrast to existing approaches which require a

<italic>graph-like</italic> relationship between tweet

entities, or the presence of the <italic>entire

retweeting timeline</italic> of a retweeter.

HawkesEye utilizes both temporal and textual

information using a class-specific topic model and

Hawkes processes.

Spotting collective behaviour of online frauds in

customer reviews: Online reviews play a crucial role

in deciding the quality before purchasing any product.

Unfortunately, spammers often take advantage of

online review forums by writing fraud reviews to

promote/demote certain products. It may turn out to

be more detrimental when such spammers collude

and collectively inject spam reviews as they can take

complete control of users’ sentiment due to the

volume of fraud reviews they inject. Group spam

detection is thus more challenging than

individuallevel fraud detection due to unclear

definition of a group, variation of inter-group

dynamics, scarcity of labeled group-level spam data,

etc. Here, we propose DeFrauder, an unsupervised

method to detect online fraud reviewer groups. It first

detects candidate fraud groups by leveraging the

underlying product review graph and incorporating

several behavioral signals which model multi-faceted

collaboration among reviewers. It then maps

reviewers into an embedding space and assigns a spam

score to each group such that groups comprising

spammers with highly similar behavioral traits

achieve high spam score. While comparing with five

baselines on four real-world datasets (two of them

were curated by us), DeFrauder shows superior

performance by outperforming the best baseline with

17.11% higher NDCG@50 (on average) across datasets

What makes a helpful online review? A meta-analysis

of review characteristics: In this study, we aim to

clarify the determinants of online review helpfulness

concerning review depth, extremity and timeliness.

Based on a meta-analysis, we examine the effects of

important characteristics of reviews employing 53

empirical studies yielding 191 effect sizes. Findings

reveal that review depth has a greater impact on

helpfulness than review extremity and timeliness

with the exception of its sub-metric of review volume,

which exerts the negative influence on review

helpfulness. Specifically, readability is the most

important factor in evaluating review helpfulness.

Furthermore, we discuss important moderators of the

relationships and find interesting insights regarding

website and culture background. In accordance with

the results, we propose several implications for

researchers and E-business firms. Our study provides

a much needed quantitative synthesis of this

burgeoning stream of research.

Machine Learning Classifiers to Detect Malicious

Websites: We address the problem of automating the

process of network troubleshooting for a large-scale

WiFi network. Specifically, we target identifying the

causes of unnecessary active scans in WiFi networks,

that are known to degrade the WiFi performance. We

collect 340 hours worth of data with several

thousands of episodes of active scans to train various

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

345

machine learning models. Data is collected with 27

devices across vendors in varied network setups under

a controlled setting. We study unsupervised and

supervised machine learning techniques to conclude

that a multilayer perceptron is the best model to

detect the causes of active scanning. Further, we

perform an in-vivo model validation in an

uncontrolled real-world WiFi network.

Learning distributed representations from reviews for

collaborative filtering: Motivated by the success of

this approach, we introduce two different models of

reviews and study their effect on collaborative

filtering performance. While the previous state-of-

the-art approach is based on a latent Dirichlet

allocation (LDA) model of reviews, the models we

explore are neural network based: a bag-of-words

product-of-experts model and a recurrent neural

network.

We demonstrate that the increased flexibility offered

by the product-of-experts model allowed it to achieve

state-of-the-art performance on the Amazon review

dataset, outperforming the LDA-based approach.

However, interestingly, the greater modeling power

offered by the recurrent neural network appears to

undermine the model's ability to act as a regularizer

of the product representations.

III. Methodology

In proposed system, unlike other studies that majorly

focus on fake review/reviewer detection, we here

focus on extremist reviewer detection, which may not

be fake. Moreover, we attempt to identify “groups”

instead of detecting “individual user” by using

machine learning algorithms.

Figure 1 : Block diagram of proposed method

IV. IMPLEMENTATION

Logistic regression

 Logistic regression is a Machine Learning

classification algorithm that is used to predict the

probability of a categorical dependent variable. In

logistic regression, the dependent variable is a binary

variable that contains data coded as 1 (yes, success, etc.)

or 0 (no, failure, etc.). In other words, the logistic

regression model predicts P(Y=1) as a function of X.

Step1: Logistic regression hypothesis

The logistic regression classifier can be derived by

analogy to the logistic regression the function g(z) is

the logistic function also known as the sigmoid

function.

The logistic function has asymptotes at 0 and 1, and it

crosses the y-axis at 0.5.

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

346

Step (1b): Logistic regression decision boundary

Since our data set has two features: height and weight,

the logistic regression hypothesis is the following

Random forest classifier

Random forest is a supervised learning algorithm

which is used for both classification as well as

regression. But however, it is mainly used for

classification problems. As we know that a forest is

made up of trees and more trees means more robust

forest. Similarly, random forest algorithm creates

decision trees on data samples and then gets the

prediction from each of them and finally selects the

best solution by means of voting. It is an ensemble

method which is better than a single decision tree

because it reduces the over-fitting by averaging the

result.

Working of Random Forest Algorithm

We can understand the working of Random Forest

algorithm with the help of following steps −

• Step 1 − First, start with the selection of

random samples from a given dataset.

• Step 2 − Next, this algorithm will construct a

decision tree for every sample. Then it will get

the prediction result from every decision tree.

• Step 3 − In this step, voting will be performed

for every predicted result.

• Step 4 − At last, select the most voted

prediction result as the final prediction result.

The following diagram will illustrate its working −

Naive Bayes algorithm

Bayes’ Theorem provides a way that we can calculate

the probability of a piece of data belonging to a given

class, given our prior knowledge. Bayes’ Theorem is

stated as:

• P (class data) = (P (data class) * P(class)) / P(data)

Where P (class data) is the probability of class given

the provided data.

https://machinelearningmastery.com/bayes-theorem-for-machine-learning/

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

347

1) Step 1: Separate by Class

This means that we will first need to separate our

training data by class. A relatively straightforward

operation.

We can create a dictionary object where each key is

the class value and then add a list of all the records as

the value in the dictionary.

2) Step 2: Summarize Dataset

We need two statistics from a given set of data.

We’ll see how these statistics are used in the

calculation of probabilities in a few steps. The two

statistics we require from a given dataset are the mean

and the standard deviation (average deviation from

the mean).

The mean is the average value and can be calculated

as:

• mean = sum(x)/n * count(x)

Where x is the list of values or a column we are

looking.

3) Step 3: Summarize Data By Class

We require statistics from our training dataset

organized by class.

Above, we have developed the separate_by_class

() function to separate a dataset into rows by class.

And we have developed summarize dataset

() function to calculate summary statistics for each

column.

We can put all of this together and summarize the

columns in the dataset organized by class values.

4) Step 4: Gaussian Probability Density Function

Calculating the probability or likelihood of observing

a given real-value like X1 is difficult.

One way we can do this is to assume that X1 values

are drawn from a distribution, such as a bell curve or

Gaussian distribution.

A Gaussian distribution can be summarized using

only two numbers: the mean and the standard

deviation. Therefore, with a little math, we can

estimate the probability of a given value. This piece of

math is called a Gaussian Probability Distribution

Function (or Gaussian PDF) and can be calculated as:

• f(x) = (1 / sqrt(2 * PI) * sigma) * exp(-((x-mean)^2 / (2 *

sigma^2)))

Where sigma is the standard deviation for x, mean is

the mean for x and PI is the value of pi.

Support vector classifiers algorithm

Support Vector Machine or SVM algorithm is a

simple yet powerful Supervised Machine Learning

algorithm that can be used for building both

regression and classification models. SVM algorithm

can perform really well with both linearly separable

and non-linearly separable datasets. Even with a

limited amount of data, the support vector machine

algorithm does not fail to show its magic.

Step 1: Load Pandas library and the dataset using

Pandas

Step 2: Define the features and the target

Step 3: Split the dataset into train and test using

sklearn before building the SVM algorithm model

Step 4: Import the support vector classifier function

or SVC function from Sklearn SVM module. Build the

https://machinelearningmastery.com/continuous-probability-distributions-for-machine-learning/
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Gaussian_function

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

348

Support Vector Machine model with the help of the

SVC function

Step 5: Predict values using the SVM algorithm model

Step 6: Evaluate the Support Vector Machine model

Multi linear perceptron:

In the Multilayer perceptron, there can more than one

linear layer (combinations of neurons). If we take the

simple example the three-layer network, first layer

will be the input layer and last will be output

layer and middle layer will be called hidden layer. We

feed our input data into the input layer and take the

output from the output layer. We can increase the

number of the hidden layer as much as we want, to

make the model more complex according to our task.

Feed Forward Network, is the most typical neural

network model. Its goal is to approximate some

function f (). Given, for example, a classifier y = f ∗

(x) that maps an input x to an output class y, the MLP

find the best approximation to that classifier by

defining a mapping, y = f(x; θ) and learning the best

parameters θ for it. The MLP networks are composed

of many functions that are chained together. A

network with three functions or layers would form f(x)

= f (3)(f (2)(f (1)(x))). Each of these layers is composed

of units that perform an affine transformation of a

linear sum of inputs. Each layer is represented as y =

f(WxT + b). Where f is the activation function

(covered below), W is the set of parameter, or weights,

in the layer, x is the input vector, which can also be

the output of the previous layer, and b is the bias

vector. The layers of an MLP consists of several fully

connected layers because each unit in a layer is

connected to all the units in the previous layer. In a

fully connected layer, the parameters of each unit are

independent of the rest of the units in the layer, that

means each unit possess a unique set of weights.

In a supervised classification system, each input vector

is associated with a label, or ground truth, defining its

class or class label is given with the data. The output of

the network gives a class score, or prediction, for each

input. To measure the performance of the classifier,

the loss function is defined. The loss will be high if the

predicted class does not correspond to the true class, it

will be low otherwise. Sometimes the problem of

overfitting and underfitting occurs at the time of

training the model. In this case, our model performs

very well on training data but not on testing data. In

order to train the network, an optimization procedure

is required for this we need loss function and an

optimizer. This procedure will find the values for the

set of weights, W that minimizes the loss function.

A popular strategy is to initialize the weights to

random values and refine them iteratively to get a

lower loss. This refinement is achieved by moving on

the direction defined by the gradient of the loss

function. And it is important to set a learning rate

defining the amount in which the algorithm is moving

in every iteration.

K-NEAREST NEIGHBOUR:

This k-Nearest Neighbors tutorial is broken down

into 3 parts:

Step 1: Calculate Euclidean Distance.

Step 2: Get Nearest Neighbors.

Step 3: Make Predictions

Step 1: Calculate Euclidean Distance.

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

349

His first step is to calculate the distance between two

rows in a dataset.

Rows of data are mostly made up of numbers and an

easy way to calculate the distance between two rows

or vectors of numbers is to draw a straight line. This

makes sense in 2D or 3D and scales nicely to higher

dimensions

Euclidean Distance = sqrt(sum i to N (x1_i – x2_i)^2)

Where x1 is the first row of data, x2 is the second row

of data and i is the index to a specific column as we

sum across all columns.

With Euclidean distance, the smaller the value, the

more similar two records will be. A value of 0 means

that there is no difference between two records

5) Step 2: Get Nearest Neighbours:

Neighbors for a new piece of data in the dataset are

the k closest instances, as defined by our distance

measure.

To locate the neighbors for a new piece of data within

a dataset we must first calculate the distance between

each record in the dataset to the new piece of data.

We can do this using our distance function prepared

above.

Once distances are calculated, we must sort all of the

records in the training dataset by their distance to the

new data. We can then select the top k to return as

the most similar neighbors.

We can do this by keeping track of the distance for

each record in the dataset as a tuple, sort the list of

tuples by the distance (in descending order) and then

retrieve the neighbor

6) Step 3: Make Predictions

The most similar neighbors collected from the

training dataset can be used to make predictions.

In the case of classification, we can return the most

represented class among the neighbors.

We can achieve this by performing

the max() function on the list of output values from

the neighbors. Given a list of class values observed in

the neighbors, the max() function takes a set of

unique class values and calls the count on the list of

class values for each class value in the set.

XG-BOOST

XGBoost is the most popular machine learning

algorithm these days. Regardless of the data type

(regression or classification), it is well known to

provide better solutions than other ML algorithms. In

fact, since its inception (early 2014), it has become the

"true love" of kaggle users to deal with structured

data. So, if you are planning to compete on Kaggle,

xgboost is one algorithm you need to master.

XGBoost (Extreme Gradient Boosting) is an optimized

distributed gradient boosting library. Yes, it uses

gradient boosting (GBM) framework at core. Yet, does

better than GBM framework alone. XGBoost was

created by Tianqi Chen, PhD Student, University of

Washington. It is used for supervised ML problems.

XGBoost belongs to a family of boosting algorithms

that convert weak learners into strong learners. A

weak learner is one which is slightly better than

random guessing. Let's understand boosting first (in

general).

Boosting is a sequential process; i.e., trees are grown

using the information from a previously grown tree

one after the other. This process slowly learns from

http://www.kaggle.com/
http://homes.cs.washington.edu/~tqchen/

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

350

data and tries to improve its prediction in subsequent

iterations. Let's look at a classic classification example:

XGBoost can used to solve both regression and

classification problems. It is enabled with separate

methods to solve respective problems. Let's see:

Classification Problems: To solve such problems, it

uses booster = gbtree parameter; i.e., a tree is grown

one after other and attempts to reduce

misclassification rate in subsequent iterations. In this,

the next tree is built by giving a higher weight to

misclassified points by the previous tree (as explained

above).

Regression Problems: To solve such problems, we

have two methods: booster = gbtree and booster =

gblinear. You already know gbtree. In gblinear, it

builds generalized linear model and optimizes it using

regularization (L1,L2) and gradient descent. In this,

the subsequent models are built on residuals (actual -

predicted) generated by previous iterations

SGD:

Before explaining Stochastic Gradient Descent (SGD),

let’s first describe what Gradient Descent is.

Gradient Descent is a popular optimization

technique in Machine Learning and Deep Learning,

and it can be used with most, if not all, of the

learning algorithms. A gradient is the slope of a

function. It measures the degree of change of a

variable in response to the changes of another

variable. Mathematically, Gradient Descent is a

convex function whose output is the partial

derivative of a set of parameters of its inputs. The

greater the gradient, the steeper the slope.

Starting from an initial value, Gradient Descent is

run iteratively to find the optimal values of the

parameters to find the minimum possible value of

the given cost function.

The word ‘stochastic‘ means a system or a process

that is linked with a random probability. Hence, in

Stochastic Gradient Descent, a few samples are

selected randomly instead of the whole data set for

each iteration. In Gradient Descent, there is a term

called “batch” which denotes the total number of

samples from a dataset that is used for calculating

the gradient for each iteration. In typical Gradient

Descent optimization, like Batch Gradient Descent,

the batch is taken to be the whole dataset. Although,

using the whole dataset is really useful for getting to

the minima in a less noisy and less random manner,

but the problem arises when our datasets gets big.

Suppose, you have a million samples in your dataset,

so if you use a typical Gradient Descent optimization

technique, you will have to use all of the one million

samples for completing one iteration while

performing the Gradient Descent, and it has to be

done for every iteration until the minima is reached.

Hence, it becomes computationally very expensive

to perform.

This problem is solved by Stochastic Gradient

Descent. In SGD, it uses only a single sample, i.e., a

batch size of one, to perform each iteration. The

sample is randomly shuffled and selected for

performing the iteration.

V. RESULTS AND DISCUSSION

The following images will visually depict the process

of our project.

http://blog.hackerearth.com/wp-content/uploads/2016/12/bigd.png

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

351

Home page:

Upload dataset:

View dataset:

Train/Test dataset:

Model performance:

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

352

Predictions:

VI. CONCLUSION

In this article, we discussed an unexplored form of

opinion spam, where spammers target brands as a

whole, posting extreme reviews, to change the overall

sentiment about the brand. These groups are often

part of a complex business Web that is capable of

influencing the overall popularity and reputation of

several brands on review websites. This article is the

first step toward linking brand-level group activities

and extremism in reviews, which uncovers important

insights about marketplace activities. These insights

would help in developing a better recommendation

that makes use of online reviews. A set of candidate

spam groups was retrieved using FIM, and extremist

groups were identified by observing their actions as a

group based on various features, using a supervised

learning technique based on a ground truth of

manually annotated labels. We then classified

extremist and moderate groups and compared the

accuracy across multiple classification methods. After

classifying these groups, we observed the behaviors

for extremist groups in detail to gain further insights

about the phenomenon and the overall trends of how

these groups target these brands. We have also

released the codes and annotated data set for further

studies.

VII. REFERENCES

[1]. A. Kim. (2017). that review you wrote on

Amazon? Priceless. [Online]. Available:

https://www.usatoday.com/story/tech/news/

2017/03/20/review-you-wrote-amazon-

pricess/99332602/

[2]. E. Gilbert and K. Karahalios, “Understanding

deja reviewers,” in Proc. ACM Conf. Comput.

supported Cooperat. Work (CSCW), 2010, pp.

225–228, doi: 10.1145/1718918.1718961.

[3]. Amazon.in. (2018). Review Community

Guidelines. [Online]. Available:

https://www.amazon.in/gp/help/customer/displ

ay.html?nodeId= 201929730

[4]. A. Mukherjee, B. Liu, and N. Glance, “Spotting

fake reviewer groups in consumer reviews,” in

Proc. 21st Int. Conf. World Wide Web

(WWW), 2012, pp. 191–200.

[5]. Y. Lu, L. Zhang, Y. Xiao, and Y. Li,

“Simultaneously detecting fake reviews and

review spammers using factor graph model,” in

Proc. 5th Annu. ACM Web Sci. Conf. (WebSci),

2013, pp. 225–233.

[6]. S. Rayana and L. Akoglu, “Collective opinion

spam detection: Bridging review networks and

metadata,” in Proc. 21th ACM SIGKDD Int.

Conf. Knowl. Discovery Data Mining (KDD),

2015, pp. 985–994.

[7]. S. Dhawan, S. C. R. Gangireddy, S. Kumar, and

T. Chakraborty, “Spotting collective behaviour

of online frauds in customer reviews,” 2019,

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353

353

arXiv:1905.13649. [Online]. Available:

http://arxiv.org/abs/1905. 13649

[8]. K. Dave, S. Lawrence, and D. M. Pennock,

“Mining the peanut gallery: Opinion extraction

and semantic classification of product reviews,”

in Proc. 12th Int. Conf. World Wide Web

(WWW), 2003, pp. 519–528.

[9]. B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs

up? Sentiment classification using machine

learning techniques,” in Proc. Conf. Empirical

Methods Natural Lang. Process., 2002, pp. 79–

86.

[10]. K. Mouthami, K. N. Devi, and V. M. Bhaskaran,

“Sentiment analysis and classification based on

textual reviews,” in Proc. Int. Conf. Inf.

Commun. Embedded Syst. (ICICES), Feb. 2013,

pp. 271–276.

[11]. Q. Ye, Z. Zhang, and R. Law, “Sentiment

classification of online reviews to travel

destinations by supervised machine learning

approaches,” Expert Syst. Appl., vol. 36, no. 3,

pp. 6527–6535, Apr. 2009.

[12]. M. Chelliah and S. Sarkar, “Product

recommendations enhanced with reviews,” in

Proc. 11th ACM Conf. Recommender Syst.,

Aug. 2017, pp. 398–399.

[13]. L. Chen and F. Wang, “Preference-based

clustering reviews for augmenting e-commerce

recommendation,” Knowl.-Based Syst., vol. 50,

pp. 44–59, Sep. 2013.

[14]. J. Feuerbach, B. Loepp, C.-M. Barbu, and J.

Ziegler, “Enhancing an interactive

recommendation system with review-based

information filtering,” in Proc. IntRS@RecSys,

2017, pp. 10–55.

Cite this article as :

Jothika. J, Nalagampalli MoniSree, Pavithra. M,

"Detecting and Characterizing Extremist Reviewer

Groups in Online Product Reviews", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 8 Issue 3, pp.

342-353, May-June 2022.

Journal URL : https://ijsrcseit.com/CSEIT2283107

