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ABSTRACT 

Now a days, online marketplaces often witness opinion spam in the form of 

reviews. People are often hired to target specific brands for promoting or 

impeding them by writing highly positive or negative reviews. This is often 

collectively done in groups. Although some previous studies attempted to 

identify and analyze such opinion spam groups, little has been explored to spot 

those groups who target a brand as a whole, instead of just products. In this 

application, we collected the reviews from the Amazon product review site and 

manually labeled a set of 923 candidate reviewer groups. The groups are 

extracted using frequent item set mining over brand similarities such that users 

are clustered together if they have mutually reviewed (products of) a lot of 

brands. We hypothesize that the nature of the reviewer groups is dependent on 

eight features specific to a (group, brand) pair. We develop a feature-based 

supervised model to classify candidate groups as extremist entities. We run 

multiple classifiers for the task of classifying a group based on the reviews 

written by the users of that group to determine whether the group shows signs 

of extremity. A three-layer perceptron-based classifier turns out to be the best 

classifier. We further study behaviors of such groups in detail to understand the 

dynamics of brand-level opinion fraud better. These behaviors include 

consistency in ratings, review sentiment, verified purchase, review dates, and 

helpful votes received on reviews. Surprisingly, we observe that there are a lot of 

verified reviewers showing extreme sentiment, which, on further investigation, 

leads to ways to circumvent the existing mechanisms in place to prevent 

unofficial incentives on Amazon. 

Keywords : Characterization, Detection, Online Products, Reviews. 

 

I. INTRODUCTION 

 

In today’s world dominated by online marketplaces, 

review portals and websites play a crucial role in the 

buyer’s decision for their next purchase. “It is a 

virtuous cycle–the more reviews, the more buys. The 

more buys, the more reviews. The more buys, the 

higher your rank in search and the more sales you 

http://ijsrcseit.com/
http://ijsrcseit.com/


Volume 8, Issue 3, May-June-2022  | http://ijsrcseit.com 

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353 

 

 

 

 
343 

get,” says Alice, the owner of online cosmetic brand 

Elizabeth Mott. Undoubtedly, it is highly likely that 

some people write reviews that are less than truthful 

to manipulate widespread decision of buyers in their 

favor. These people act either individually or in 

groups. While individual reviewers write such 

reviews in a matter of frustration or joy, they do not 

influence the overall opinion on a product to a large 

extent but help other buyers by stating their 

experiences. However, a more compelling case is 

when multiple individuals form an intricate web, and 

due to sheer higher number of people reviewing (and 

certain other techniques, discussed in Section VIII), 

they end up being a major influence on the overall 

sentiment of the product. The extent of such 

influence is not just limited to the reviews by opinion 

spam. Previous work has shown that 10%–15% 

reviews are essentially echoing the earliest reviews, 

and thus, a misleading early review has an even 

higher influential potential. This is widespread 

opinion spam, and every review website must be 

aware of this activity and take appropriate measures 

for the identification and/or prevention of this 

phenomenon. This is a classic example of collective 

fraud behavior, where several users are part of a 

business network and work together to target and 

influence a particular product. This is a lesser known 

phenomenon, and most groups work following 

certain techniques to not make their collaboration 

obvious. However, since such groups are 

economically or otherwise incentivized, and several 

of these are generally run by a given organization, 

they have several targets for opinion spam, which 

often share certain common characteristics in their 

nature of reviews. These characteristics can be 

exploited to classify them better using a robust and 

thorough an analysis technique. Amazon India, to 

prevent opinion spam, has brought about a new 

policy that limits the number of reviews on a product 

in a day, as stated in. In order to still be effective, we 

claim that certain groups target brands in general and 

post extreme reviews across multiple products for a 

given target brand. This is a higher level of opinion 

spamming, deliberately writing highly positive or 

negative reviews for a brand in general in order to 

promote or demote them in the cut-throat 

competition of the online marketplace. Studies have 

been conducted to identify such groups that try to 

influence a product; however, groups exhibiting a 

brand-based opinion spamming is a phenomenon that 

remains widely unexplored. A detailed discussion is 

required for these brand-related activities because 

these practices are against the code of conduct of 

these review websites since they negatively skew the 

brand-based competition, giving innate 

(dis)advantages to certain brands. Since only the 

nonverified reviews are limited by the policies,1 

reviewers from these groups can often purchase the  

Section IV of the Supplementary Material). In this 

article, we identify and study the behavioral 

characteristics of extremist reviewer groups. We also 

build a feature-based classifier based on the brand-

specific activities of reviewer groups to identify the 

extremist groups on the Amazon India marketplace. 

We then further analyze our methodology to unfold 

behaviors that best signify such activities and 

compare and analyze the overall trend of these groups 

viz-a-viz their behaviors. The major contributions of 

this article are fourfold: 1) a manually labeled data set 

of 923 reviewer groups that are classified into 

“extremist” and “moderate” categories; 2) the first-

ever characterization and study of the novel problem 

of identifying brand-level extremism; 3) detailed 

characterization of extremist reviewer groups; 4) 

design supervised approach to detect extremist 

reviewer groups. To encourage reproducible research, 

we have made the codes publicly available at 

https://github.com/virresh/ extremist-reviewers.2 

This article is organized as follows. We briefly survey 

the various studies related to review extremism, 

applications developed using reviews, and fake review 

detection in Section II. Section III outlines the details 

of the collected data set and annotation methodology. 
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Section IV presents the modeling of features at brand 

level and features. 

 

II. RELATED WORKS 

 

HawkesEye: Detecting fake retweeters using Hawkes 

process and topic modeling: Retweets are essential to 

boost the popularity of a tweet, and a large number of 

fake retweeters can contribute heavily to this aspect. 

We define a fake retweeter as a Twitter account that 

retweets spammy tweets, retweets an abnormally 

large amount of tweets in a short period, or misuses a 

trending hashtag to promote events irrelevant to the 

topic of discussion. We introduce an up-to-date, 

temporally diverse, trend-oriented labeled dataset to 

address the problem of fake retweeter detection. We 

develop a novel classifier, called HawkesEye which 

makes predictions based on a temporal window, in 

contrast to existing approaches which require a 

<italic>graph-like</italic> relationship between tweet 

entities, or the presence of the <italic>entire 

retweeting timeline</italic> of a retweeter. 

HawkesEye utilizes both temporal and textual 

information using a class-specific topic model and 

Hawkes processes.  

 

Spotting collective behaviour of online frauds in 

customer reviews: Online reviews play a crucial role 

in deciding the quality before purchasing any product. 

Unfortunately, spammers often take advantage of 

online review forums by writing fraud reviews to 

promote/demote certain products. It may turn out to 

be more detrimental when such spammers collude 

and collectively inject spam reviews as they can take 

complete control of users’ sentiment due to the 

volume of fraud reviews they inject. Group spam 

detection is thus more challenging than 

individuallevel fraud detection due to unclear 

definition of a group, variation of inter-group 

dynamics, scarcity of labeled group-level spam data, 

etc. Here, we propose DeFrauder, an unsupervised 

method to detect online fraud reviewer groups. It first 

detects candidate fraud groups by leveraging the 

underlying product review graph and incorporating 

several behavioral signals which model multi-faceted 

collaboration among reviewers. It then maps 

reviewers into an embedding space and assigns a spam 

score to each group such that groups comprising 

spammers with highly similar behavioral traits 

achieve high spam score. While comparing with five 

baselines on four real-world datasets (two of them 

were curated by us), DeFrauder shows superior 

performance by outperforming the best baseline with 

17.11% higher NDCG@50 (on average) across datasets  

 

What makes a helpful online review? A meta-analysis 

of review characteristics: In this study, we aim to 

clarify the determinants of online review helpfulness 

concerning review depth, extremity and timeliness. 

Based on a meta-analysis, we examine the effects of 

important characteristics of reviews employing 53 

empirical studies yielding 191 effect sizes. Findings 

reveal that review depth has a greater impact on 

helpfulness than review extremity and timeliness 

with the exception of its sub-metric of review volume, 

which exerts the negative influence on review 

helpfulness. Specifically, readability is the most 

important factor in evaluating review helpfulness. 

Furthermore, we discuss important moderators of the 

relationships and find interesting insights regarding 

website and culture background. In accordance with 

the results, we propose several implications for 

researchers and E-business firms. Our study provides 

a much needed quantitative synthesis of this 

burgeoning stream of research. 

 

Machine Learning Classifiers to Detect Malicious 

Websites: We address the problem of automating the 

process of network troubleshooting for a large-scale 

WiFi network. Specifically, we target identifying the 

causes of unnecessary active scans in WiFi networks, 

that are known to degrade the WiFi performance. We 

collect 340 hours worth of data with several 

thousands of episodes of active scans to train various 
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machine learning models. Data is collected with 27 

devices across vendors in varied network setups under 

a controlled setting. We study unsupervised and 

supervised machine learning techniques to conclude 

that a multilayer perceptron is the best model to 

detect the causes of active scanning. Further, we 

perform an in-vivo model validation in an 

uncontrolled real-world WiFi network. 

 

Learning distributed representations from reviews for 

collaborative filtering: Motivated by the success of 

this approach, we introduce two different models of 

reviews and study their effect on collaborative 

filtering performance. While the previous state-of-

the-art approach is based on a latent Dirichlet 

allocation (LDA) model of reviews, the models we 

explore are neural network based: a bag-of-words 

product-of-experts model and a recurrent neural 

network. 

 

We demonstrate that the increased flexibility offered 

by the product-of-experts model allowed it to achieve 

state-of-the-art performance on the Amazon review 

dataset, outperforming the LDA-based approach. 

However, interestingly, the greater modeling power 

offered by the recurrent neural network appears to 

undermine the model's ability to act as a regularizer 

of the product representations. 

 

III. Methodology 

 

In proposed system, unlike other studies that majorly 

focus on fake review/reviewer detection, we here 

focus on extremist reviewer detection, which may not 

be fake. Moreover, we attempt to identify “groups” 

instead of detecting “individual user” by using 

machine learning algorithms. 

 
Figure 1 : Block diagram of proposed method 

 

IV. IMPLEMENTATION 

Logistic regression 

 Logistic regression is a Machine Learning 

classification algorithm that is used to predict the 

probability of a categorical dependent variable. In 

logistic regression, the dependent variable is a binary 

variable that contains data coded as 1 (yes, success, etc.) 

or 0 (no, failure, etc.). In other words, the logistic 

regression model predicts P(Y=1) as a function of X. 

Step1: Logistic regression hypothesis 

The logistic regression classifier can be derived by 

analogy to the logistic regression the function g(z) is 

the logistic function also known as the sigmoid 

function. 

The logistic function has asymptotes at 0 and 1, and it 

crosses the y-axis at 0.5. 
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Step (1b): Logistic regression decision boundary 

Since our data set has two features: height and weight, 

the logistic regression hypothesis is the following 

 

 

Random forest classifier  

Random forest is a supervised learning algorithm 

which is used for both classification as well as 

regression. But however, it is mainly used for 

classification problems. As we know that a forest is 

made up of trees and more trees means more robust 

forest. Similarly, random forest algorithm creates 

decision trees on data samples and then gets the 

prediction from each of them and finally selects the 

best solution by means of voting. It is an ensemble 

method which is better than a single decision tree 

because it reduces the over-fitting by averaging the 

result. 

Working of Random Forest Algorithm 

We can understand the working of Random Forest 

algorithm with the help of following steps − 

• Step 1 − First, start with the selection of 

random samples from a given dataset. 

• Step 2 − Next, this algorithm will construct a 

decision tree for every sample. Then it will get 

the prediction result from every decision tree. 

• Step 3 − In this step, voting will be performed 

for every predicted result. 

• Step 4 − At last, select the most voted 

prediction result as the final prediction result. 

The following diagram will illustrate its working − 

 

Naive Bayes algorithm 

Bayes’ Theorem provides a way that we can calculate 

the probability of a piece of data belonging to a given 

class, given our prior knowledge. Bayes’ Theorem is 

stated as: 

• P (class data) = (P (data class) * P(class)) / P(data) 

Where P (class data) is the probability of class given 

the provided data. 

https://machinelearningmastery.com/bayes-theorem-for-machine-learning/
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1) Step 1: Separate by Class 

This means that we will first need to separate our 

training data by class. A relatively straightforward 

operation. 

We can create a dictionary object where each key is 

the class value and then add a list of all the records as 

the value in the dictionary. 

2) Step 2: Summarize Dataset 

We need two statistics from a given set of data. 

We’ll see how these statistics are used in the 

calculation of probabilities in a few steps. The two 

statistics we require from a given dataset are the mean 

and the standard deviation (average deviation from 

the mean). 

The mean is the average value and can be calculated 

as: 

• mean = sum(x)/n * count(x) 

Where x is the list of values or a column we are 

looking. 

3) Step 3: Summarize Data By Class 

We require statistics from our training dataset 

organized by class. 

Above, we have developed the separate_by_class 

() function to separate a dataset into rows by class. 

And we have developed summarize dataset 

() function to calculate summary statistics for each 

column. 

We can put all of this together and summarize the 

columns in the dataset organized by class values. 

4) Step 4: Gaussian Probability Density Function 

Calculating the probability or likelihood of observing 

a given real-value like X1 is difficult. 

One way we can do this is to assume that X1 values 

are drawn from a distribution, such as a bell curve or 

Gaussian distribution. 

A Gaussian distribution can be summarized using 

only two numbers: the mean and the standard 

deviation. Therefore, with a little math, we can 

estimate the probability of a given value. This piece of 

math is called a Gaussian Probability Distribution 

Function (or Gaussian PDF) and can be calculated as: 

• f(x) = (1 / sqrt(2 * PI) * sigma) * exp(-((x-mean)^2 / (2 * 

sigma^2))) 

Where sigma is the standard deviation for x, mean is 

the mean for x and PI is the value of pi. 

Support vector classifiers algorithm 

Support Vector Machine or SVM algorithm is a 

simple yet powerful Supervised Machine Learning 

algorithm that can be used for building both 

regression and classification models. SVM algorithm 

can perform really well with both linearly separable 

and non-linearly separable datasets. Even with a 

limited amount of data, the support vector machine 

algorithm does not fail to show its magic. 

Step 1: Load Pandas library and the dataset using 

Pandas 

Step 2: Define the features and the target 

Step 3: Split the dataset into train and test using 

sklearn before building the SVM algorithm model 

Step 4: Import the support vector classifier function 

or SVC function from Sklearn SVM module. Build the 

https://machinelearningmastery.com/continuous-probability-distributions-for-machine-learning/
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Gaussian_function
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Support Vector Machine model with the help of the 

SVC function 

Step 5: Predict values using the SVM algorithm model 

Step 6: Evaluate the Support Vector Machine model 

Multi linear perceptron: 

In the Multilayer perceptron, there can more than one 

linear layer (combinations of neurons). If we take the 

simple example the three-layer network, first layer 

will be the input layer and last will be output 

layer and middle layer will be called hidden layer. We 

feed our input data into the input layer and take the 

output from the output layer. We can increase the 

number of the hidden layer as much as we want, to 

make the model more complex according to our task. 

 

Feed Forward Network, is the most typical neural 

network model. Its goal is to approximate some 

function f (). Given, for example, a classifier y = f ∗ 

(x) that maps an input x to an output class y, the MLP 

find the best approximation to that classifier by 

defining a mapping, y = f(x; θ) and learning the best 

parameters θ for it. The MLP networks are composed 

of many functions that are chained together. A 

network with three functions or layers would form f(x) 

= f (3)(f (2)(f (1)(x))). Each of these layers is composed 

of units that perform an affine transformation of a 

linear sum of inputs. Each layer is represented as y = 

f(WxT + b). Where f is the activation function 

(covered below), W is the set of parameter, or weights, 

in the layer, x is the input vector, which can also be 

the output of the previous layer, and b is the bias 

vector. The layers of an MLP consists of several fully 

connected layers because each unit in a layer is 

connected to all the units in the previous layer. In a 

fully connected layer, the parameters of each unit are 

independent of the rest of the units in the layer, that 

means each unit possess a unique set of weights. 

In a supervised classification system, each input vector 

is associated with a label, or ground truth, defining its 

class or class label is given with the data. The output of 

the network gives a class score, or prediction, for each 

input. To measure the performance of the classifier, 

the loss function is defined. The loss will be high if the 

predicted class does not correspond to the true class, it 

will be low otherwise. Sometimes the problem of 

overfitting and underfitting occurs at the time of 

training the model. In this case, our model performs 

very well on training data but not on testing data. In 

order to train the network, an optimization procedure 

is required for this we need loss function and an 

optimizer. This procedure will find the values for the 

set of weights, W that minimizes the loss function. 

A popular strategy is to initialize the weights to 

random values and refine them iteratively to get a 

lower loss. This refinement is achieved by moving on 

the direction defined by the gradient of the loss 

function. And it is important to set a learning rate 

defining the amount in which the algorithm is moving 

in every iteration. 

K-NEAREST NEIGHBOUR: 

This k-Nearest Neighbors tutorial is broken down 

into 3 parts: 

Step 1: Calculate Euclidean Distance. 

Step 2: Get Nearest Neighbors. 

Step 3: Make Predictions 

 

Step 1: Calculate Euclidean Distance. 



Volume 8, Issue 3, May-June-2022  | http://ijsrcseit.com 

Jothika. J et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 342-353 

 

 

 

 
349 

 

His first step is to calculate the distance between two 

rows in a dataset. 

Rows of data are mostly made up of numbers and an 

easy way to calculate the distance between two rows 

or vectors of numbers is to draw a straight line. This 

makes sense in 2D or 3D and scales nicely to higher 

dimensions 

Euclidean Distance = sqrt(sum i to N (x1_i – x2_i)^2) 

Where x1 is the first row of data, x2 is the second row 

of data and i is the index to a specific column as we 

sum across all columns. 

With Euclidean distance, the smaller the value, the 

more similar two records will be. A value of 0 means 

that there is no difference between two records 

5) Step 2: Get Nearest Neighbours: 

Neighbors for a new piece of data in the dataset are 

the k closest instances, as defined by our distance 

measure. 

To locate the neighbors for a new piece of data within 

a dataset we must first calculate the distance between 

each record in the dataset to the new piece of data. 

We can do this using our distance function prepared 

above. 

Once distances are calculated, we must sort all of the 

records in the training dataset by their distance to the 

new data. We can then select the top k to return as 

the most similar neighbors. 

 

We can do this by keeping track of the distance for 

each record in the dataset as a tuple, sort the list of 

tuples by the distance (in descending order) and then 

retrieve the neighbor 

 

 

6) Step 3: Make Predictions 

The most similar neighbors collected from the 

training dataset can be used to make predictions. 

In the case of classification, we can return the most 

represented class among the neighbors. 

We can achieve this by performing 

the max() function on the list of output values from 

the neighbors. Given a list of class values observed in 

the neighbors, the max() function takes a set of 

unique class values and calls the count on the list of 

class values for each class value in the set. 

XG-BOOST 

XGBoost is the most popular machine learning 

algorithm these days. Regardless of the data type 

(regression or classification), it is well known to 

provide better solutions than other ML algorithms. In 

fact, since its inception (early 2014), it has become the 

"true love" of  kaggle users to deal with structured 

data. So, if you are planning to compete on Kaggle, 

xgboost is one algorithm you need to master. 

XGBoost (Extreme Gradient Boosting) is an optimized 

distributed gradient boosting library. Yes, it uses 

gradient boosting (GBM) framework at core. Yet, does 

better than GBM framework alone. XGBoost was 

created by Tianqi Chen, PhD Student, University of 

Washington. It is used for supervised ML problems. 

XGBoost belongs to a family of boosting algorithms 

that convert weak learners into strong learners. A 

weak learner is one which is slightly better than 

random guessing. Let's understand boosting first (in 

general). 

Boosting is a sequential process; i.e., trees are grown 

using the information from a previously grown tree 

one after the other. This process slowly learns from 

http://www.kaggle.com/
http://homes.cs.washington.edu/~tqchen/
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data and tries to improve its prediction in subsequent 

iterations. Let's look at a classic classification example: 

 

XGBoost can used to solve both regression and 

classification problems. It is enabled with separate 

methods to solve respective problems. Let's see: 

Classification Problems: To solve such problems, it 

uses booster = gbtree parameter; i.e., a tree is grown 

one after other and attempts to reduce 

misclassification rate in subsequent iterations. In this, 

the next tree is built by giving a higher weight to 

misclassified points by the previous tree (as explained 

above). 

Regression Problems: To solve such problems, we 

have two methods: booster = gbtree and booster = 

gblinear. You already know gbtree. In gblinear, it 

builds generalized linear model and optimizes it using 

regularization (L1,L2) and gradient descent. In this, 

the subsequent models are built on residuals (actual - 

predicted) generated by previous iterations 

SGD: 

Before explaining Stochastic Gradient Descent (SGD), 

let’s first describe what Gradient Descent is. 

Gradient Descent is a popular optimization 

technique in Machine Learning and Deep Learning, 

and it can be used with most, if not all, of the 

learning algorithms. A gradient is the slope of a 

function. It measures the degree of change of a 

variable in response to the changes of another 

variable. Mathematically, Gradient Descent is a 

convex function whose output is the partial 

derivative of a set of parameters of its inputs. The 

greater the gradient, the steeper the slope. 

Starting from an initial value, Gradient Descent is 

run iteratively to find the optimal values of the 

parameters to find the minimum possible value of 

the given cost function. 

The word ‘stochastic‘ means a system or a process 

that is linked with a random probability. Hence, in 

Stochastic Gradient Descent, a few samples are 

selected randomly instead of the whole data set for 

each iteration. In Gradient Descent, there is a term 

called “batch” which denotes the total number of 

samples from a dataset that is used for calculating 

the gradient for each iteration. In typical Gradient 

Descent optimization, like Batch Gradient Descent, 

the batch is taken to be the whole dataset. Although, 

using the whole dataset is really useful for getting to 

the minima in a less noisy and less random manner, 

but the problem arises when our datasets gets big. 

Suppose, you have a million samples in your dataset, 

so if you use a typical Gradient Descent optimization 

technique, you will have to use all of the one million 

samples for completing one iteration while 

performing the Gradient Descent, and it has to be 

done for every iteration until the minima is reached. 

Hence, it becomes computationally very expensive 

to perform. 

This problem is solved by Stochastic Gradient 

Descent. In SGD, it uses only a single sample, i.e., a 

batch size of one, to perform each iteration. The 

sample is randomly shuffled and selected for 

performing the iteration. 

 

V. RESULTS AND DISCUSSION 

The following images will visually depict the process 

of our project. 

 

http://blog.hackerearth.com/wp-content/uploads/2016/12/bigd.png
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Home page: 

 
Upload dataset: 

 
View dataset: 

 
Train/Test dataset: 

 

 
Model performance: 
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Predictions: 

 

 
 

VI. CONCLUSION 

In this article, we discussed an unexplored form of 

opinion spam, where spammers target brands as a 

whole, posting extreme reviews, to change the overall 

sentiment about the brand. These groups are often 

part of a complex business Web that is capable of 

influencing the overall popularity and reputation of 

several brands on review websites. This article is the 

first step toward linking brand-level group activities 

and extremism in reviews, which uncovers important 

insights about marketplace activities. These insights 

would help in developing a better recommendation 

that makes use of online reviews. A set of candidate 

spam groups was retrieved using FIM, and extremist 

groups were identified by observing their actions as a 

group based on various features, using a supervised 

learning technique based on a ground truth of 

manually annotated labels. We then classified 

extremist and moderate groups and compared the 

accuracy across multiple classification methods. After 

classifying these groups, we observed the behaviors 

for extremist groups in detail to gain further insights 

about the phenomenon and the overall trends of how 

these groups target these brands. We have also 

released the codes and annotated data set for further 

studies. 
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