
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

412

Light Weight Secure Data Sharing Scheme with Data Integrity in

Cloud Computing
M. Anjineyulu1, J. Harathi1, C. Karthik1, P. Alekhya1, V. Chandra Mohan Reddy1, C. Soundarya2

1Student, 2Assistant Professor

Gates Institute of Technology, Gooty, Andhra Pradesh, India

Article Info

Volume 8, Issue 3

Page Number : 412-418

Publication Issue :

May-June-2022

Article History

Accepted: 10 June 2022

Published: 21 June 2022

ABSTRACT

With the popularity of cloud computing, mobile devices can store / retrieve

personal data anytime, anywhere. As a result, the data security problem in the

mobile cloud is exacerbated and prevents further development of the mobile

cloud. There are significant studies conducted to improve cloud security.

However, most of them do not apply to the mobile cloud as mobile devices only

have limited computing resources and power. Mobile cloud applications require

a lot of solutions with less computational overhead. In this paper, we propose

Lightweight Data Sharing Scheme (LDSS) for mobile cloud computing.

Keywords: Security, Integrity, mobile cloud computing, data encryption.

I. INTRODUCTION

With the development of cloud computing and the

popularity of smart mobile devices, people are

gradually getting accustomed to a new era of data

sharing model in which the data is stored on the

cloud and the mobile devices are used to

store/retrieve the data from the cloud. Typically,

mobile devices only have limited storage space and

computing power. On the contrary, the cloud has

enormous amount of resources. In such a scenario, to

achieve the satisfactory performance, it is essential to

use the resources provided by the cloud service

provider (CSP) to store and share the data. Nowadays,

various cloud mobile applications have been widely

used. In these applications, people (data owners) can

upload their photos, videos, documents and other files

to the cloud and share these data with other people

(data users) they like to share. CSPs also provide data

management functionality for data owners. Since

personal data files are sensitive, data owners are

allowed to choose whether to make their data files

public or can only be shared with specific data users.

Clearly, data privacy of the personal sensitive data is a

big concern for many data owners. What is data

integrity.

The overall precision, completeness, and continuity of

data is known as data integrity. Data integrity also

applies to the data's protection and security in terms

of regulatory enforcement, such as GDPR compliance.

It is kept up to date by a set of procedures, guidelines,

and specifications that were put in place during the

design phase. It's easy to get the true sense of data

integrity muddled because there's so much chatter

about it. Data protection and data quality are often

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

M. Anjineyulu et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 412-418

413

confused with data integrity, but the two terms have

different meanings. Data integrity also ensures that

the information is protected from outside influences.

Different Kinds of data integrity

• Physical integrity

• Logical integrity

• Entity integrity

• Referential integrity

• Domain integrity

• User-defined integrity

The state-of-the-art privilege management/access

control mechanisms provided by the CSP are either

not sufficient or not very convenient. They cannot

meet all the requirements of data owners. First, when

people upload their data files onto the cloud, they are

leaving the data in a place where is out of their

control, and the CSP may spy on user data for its

commercial interests and/or other reasons. Second,

people have to send password to each data user if they

only want to share the encrypted data with certain

users, which is very cumbersome. To simplify the

privilege management, the data owner can divide data

users into different groups and send password to the

groups which they want to share the data. However,

this approach requires fine-grained access control. In

both cases, password management is a big issue.

Apparently, to solve the above problems, personal

sensitive data should be encrypted before uploaded

onto the cloud so that the data is secure against the

CSP. However, the data encryption brings new

problems. How to provide efficient access control

mechanism on ciphertext decryption so that only the

authorized users can access the plaintext data is

challenging. In addition, system must offer data

owners effective user privilege management

capability, so they can grant/revoke data access

privileges easily on the data users. There have been

substantial researches on the issue of data access

control over ciphertext. In these researches, they

have the following common assumptions. First, the

CSP is considered honest and curious. Second, all the

sensitive data are encrypted before uploaded to the

Cloud. Third, user authorization on certain data is

achieved through encryption/decryption key

distribution. In general, we can divide these

approaches into four categories: simple ciphertext

access control, hierarchical access control, access

control based on fully homomorphic encryption and

access control based on attribute-based encryption

(ABE). All these proposals are designed for non-

mobile cloud environment. They consume large

amount of storage and computation resources, which

are not available for mobile devices. According to the

experimental results in [26], the basic ABE operations

take much longer time on mobile devices than laptop

or desktop computers. It is at least 27 times longer to

execute on a smart phone than a personal computer

(PC). This means that an encryption operation which

takes one minute on a PC will take about half an hour

to finish on a mobile device. Furthermore, current

solutions don’t solve the user privilege change

problem very well. Such an operation could result in

very high revocation cost. This is not applicable for

mobile devices as well. Clearly, there is no proper

solution which can effectively solve the secure data

sharing problem in mobile cloud. As the mobile cloud

becomes more and more popular, providing an

efficient secure data sharing mechanism in mobile

cloud is in urgent need.

II. RELATED WORKS

Implementing Gentry’s Fully-Homomorphic

Encryption Scheme: We describe a working

implementation of a variant of Gentry’s fully

homomorphic encryption scheme (STOC 2009),

similar to the variant used in an earlier

implementation effort by Smart and Vercauteren

(PKC 2010). Smart and Vercauteren implemented the

underlying “somewhat homomorphic” scheme, but

were not able to implement the bootstrapping

functionality that is needed to get the complete

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

M. Anjineyulu et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 412-418

414

scheme to work. We show a number of optimizations

that allow us to implement all aspects of the scheme,

including the bootstrapping functionality. Our main

optimization is a key-generation method for the

underlying somewhat homomorphic encryption, that

does not require full polynomial inversion. This

reduces the asymptotic complexity

from O~(n2.5)O~(n2.5) to O~(n1.5)O~(n1.5) when

working with dimension-n lattices (and practically

reducing the time from many hours/days to a few

seconds/minutes). Other optimizations include a

batching technique for encryption, a careful analysis

of the degree of the decryption polynomial, and some

space/time trade-offs for the fully-homomorphic

scheme. We tested our implementation with lattices

of several dimensions, corresponding to several

security levels. From a “toy” setting in dimension 512,

to “small,” “medium,” and “large” settings in

dimensions 2048, 8192, and 32768, respectively. The

public-key size ranges in size from 70 Megabytes for

the “small” setting to 2.3 Gigabytes for the “large”

setting. The time to run one bootstrapping operation

(on a 1-CPU 64-bit machine with large memory)

ranges from 30 seconds for the “small” setting to 30

minutes for the “large” setting.

Efficient Fully Homomorphic Encryption from

(Standard) LWE: We present a fully homomorphic

encryption scheme that is based solely on the

(standard) learning with errors (LWE) assumption.

Applying known results on LWE, the security of our

scheme is based on the worst-case hardness of "short

vector problems" on arbitrary lattices. Our

construction improves on previous works in two

aspects: 1) We show that "somewhat homomorphic"

encryption can be based on LWE, using a new re-

linearization technique. In contrast, all previous

schemes relied on complexity assumptions related to

ideals in various rings. 2) We deviate from the

"squashing paradigm" used in all previous works. We

introduce a new dimension-modulus reduction

technique, which shortens the ciphertexts and

reduces the decryption complexity of our scheme,

without introducing additional assumptions. Our

scheme has very short ciphertexts and we therefore

use it to construct an asymptotically efficient LWE-

based single-server private information retrieval (PIR)

protocol. The communication complexity of our

protocol (in the public-key model) is k · polylog(k) +

log |DB| bits per single-bit query (here, A; is a security

parameter).

Data leakage mitigation for discretionary access

control in collaboration clouds: With the growing

popularity of cloud computing, more and more

enterprises are migrating their collaboration

platforms from in-enterprise systems to Software as a

Service (SaaS) applications. While SaaS collaboration

has numerous advantages, it also raises new security

challenges. In particular, since SaaS collaboration is

increasingly used across enterprise boundaries,

organizations are concerned that sensitive

information may be leaked to outsiders due to their

employees' inadvertent mistakes on information

sharing. In this article, we propose to mitigate the

data leakage problem in SaaS collaboration systems by

reducing human errors. Built on top of the

discretionary access control model in existing

collaboration systems, we have designed a series of

mechanisms to provide defense in depth against

information leakage. First, we allow enterprises to

encode their organizational security rules as

mandatory access control policies, so as to impose

coarse-grained restrictions on their employees'

discretionary sharing decisions. Second, we design an

attribute-based recommender that suggests and

prioritizes potential recipients for users' files,

reducing errors in the choices of recipients. Third, our

system actively examines abnormal recipients entered

by a file owner, providing the last line of defense

before a file is shared. We have implemented a

prototype of our solution and performed experiments

on data collected from real-world collaboration

systems.

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

M. Anjineyulu et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 412-418

415

Secure and efficient access to outsourced data:

Providing secure and efficient access to large scale

outsourced data is an important component of cloud

computing. In this paper, we propose a mechanism to

solve this problem in owner-write-users-read

applications. We propose to encrypt every data block

with a different key so that flexible cryptography-

based access control can be achieved. Through the

adoption of key derivation methods, the owner needs

to maintain only a few secrets. Analysis shows that

the key derivation procedure using hash functions

will introduce very limited computation overhead.

We propose to use over-encryption and/or lazy

revocation to prevent revoked users from getting

access to updated data blocks. We design mechanisms

to handle both updates to outsourced data and

changes in user access rights. We investigate the

overhead and safety of the proposed approach, and

study mechanisms to improve data access efficiency.

On key assignment for hierarchical access control: A

key assignment scheme is a cryptographic technique

for implementing an information flow policy,

sometimes known as hierarchical access control. All

the research to date on key assignment schemes has

focused on particular encryption techniques rather

than an analysis of what features are required of such

a scheme. To remedy this we propose a family of

generic key assignment schemes and compare their

respective advantages. We note that every scheme in

the literature is simply an instance of one of our

generic schemes. We then conduct an analysis of the

Aki-Taylor scheme and propose a number of

improvements. We also demonstrate that many of the

criticisms that have been made of this scheme in

respect of key updates are unfounded, finally,

exploiting the deeper understanding we have

acquired of key assignment schemes, we introduce a

technique for exploiting the respective advantages of

different schemes

III. Methodology

Proposed system:

In proposed system, we are implementing data

integrity for the cloud data storage. That can be

reduces the attacks, and increasing security. The

procedure can increases data efficiency.

Figure 1 : Block diagram of proposed method

IV. Implementation

The project has implemented by the process as

mentioned below.

CSP:

In this module, CSP login into the system with their

valid credentials. CSP can able to view owner details

and view all file details, and check integrity and he

can able to view the user details and then logout from

the system.

TTP:

In this module, TTP login into the system with their

valid credentials. TTP can view requested files, and

view users and then logout from the system.

Data Owner:

Data Owner can register and login into the system

with their credentials. After login he can able to

upload the files into cloud, view files and check

integrity then logout from the system.

Data User:

In this module, users are register into the system and

then he can able to login with email authentication

OTP into the system. After login he can able to search

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

M. Anjineyulu et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 412-418

416

for files and then user can able download the files and

then logout from the system.

V. Results and Discussion

Home page: This is the home page of the project and

it gives us a brief introduction of project.

Data owner registeration

Data owner ogin

Owner home

Upload file

View files

View file data

new data users

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

M. Anjineyulu et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 412-418

417

data users

files

revoke file

VI. CONCLUSION

In this project, In proposed system, we are

implementing data integrity for the cloud data storage.

That can be reduces the attacks, and increasing

security. The procedure can increases data efficiency.

The integrity check after file sharing, user can get a

secret key. Then user can download file by using the

secret key, if user submit the wrong key more than 2

time , like the received user was identify as not

honest person, then the shared file will be have few

changes. Then file owner check the integrity, then it

was not secure then apply to revoke the file. Then

gets their file status from authority person. If received

user can retrieve the file honestly then the file can be

secure.

VII. REFERENCES

[1]. Gentry C, Halevi S. Implementing gentry’s

fully-homomorphic encryption scheme. in:

Advances in Cryptology–EUROCRYPT 2011.

Berlin, Heidelberg: Springer press, pp. 129-148,

2011.

[2]. Brakerski Z, Vaikuntanathan V. Efficient fully

homomorphic encryption from (standard)

LWE. in: Proceeding of IEEE Symposium on

Foundations of Computer Science. California,

USA: IEEE press, pp. 97-106, Oct. 2011.

[3]. Qihua Wang, Hongxia Jin. "Data leakage

mitigation for discertionary access control in

collaboration clouds". the 16th ACM

Symposium on Access Control Models and

Technologies (SACMAT), pp.103-122, Jun.

2011.

[4]. Adam Skillen and Mohammad Mannan. On

Implementing Deniable Storage Encryption for

Mobile Devices. the 20th Annual Network and

Distributed System Security Symposium

(NDSS), Feb. 2013.

[5]. Wang W, Li Z, Owens R, et al. Secure and

efficient access to outsourced data. in:

Proceedings of the 2009 ACM workshop on

Cloud computing security. Chicago, USA: ACM

pp. 55-66, 2009.

[6]. Maheshwari U, Vingralek R, Shapiro W. How

to build a trusted database system on untrusted

storage. in: Proceedings of the 4th conference

on Symposium on Operating System Design &

Implementation-Volume 4. USENIX

Association, pp. 10-12, 2000.

[7]. Kan Yang, Xiaohua Jia, Kui Ren: Attribute-

based fine-grained access control with efficient

revocation in cloud storage systems. ASIACCS

2013, pp. 523-528, 2013.

Volume 8, Issue 3, May-June-2022 | http://ijsrcseit.com

M. Anjineyulu et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 412-418

418

[8]. Crampton J, Martin K, Wild P. On key

assignment for hierarchical access control. in:

Computer Security Foundations Workshop.

IEEE press, pp. 14-111, 2006.

[9]. Shi E, Bethencourt J, Chan T H H, et al. Multi-

dimensional range query over encrypted data.

in: Proceedings of Symposium on Security and

Privacy (SP), IEEE press, 2007. 350- 364

[10]. Cong Wang, Kui Ren, Shucheng Yu, and

Karthik Mahendra Raje Urs. Achieving Usable

and Privacy-assured Similarity Search over

Outsourced Cloud Data. IEEE INFOCOM 2012,

Orlando, Florida, March 25-30, 2012

[11]. Yu S., Wang C., Ren K., Lou W. Achieving

Secure, Scalable, and Fine-grained Data Access

Control in Cloud Computing. INFOCOM 2010,

pp. 534-542, 2010

[12]. Kan Yang, Xiaohua Jia, Kui Ren, Bo Zhang,

Ruitao Xie: DACMACS: Effective Data Access

Control for Multiauthority Cloud Storage

Systems. IEEE Transactions on Information

Forensics and Security, Vol. 8, No. 11, pp.1790-

1801, 2013.

[13]. Stehlé D, Steinfeld R. Faster fully homomorphic

encryption. in: Proceedings of 16th

International Conference on the Theory and

Application of Cryptology and Information

Security. Singapore: Springer press, pp.377-394,

2010.

[14]. [14] Junzuo Lai, Robert H. Deng ,Yingjiu Li ,et

al. Fully secure keypolicy attribute-based

encryption with constant-size ciphertexts and

fast decryption. In: Proceedings of the 9th ACM

symposium on Information, Computer and

Communications Security (ASIACCS), pp. 239-

248, Jun. 2014.

Cite this article as :

M. Anjineyulu, J. Harathi, C. Karthik, P. Alekhya, V.

Chandra Mohan Reddy, C. Soundarya, "Light Weight

Secure Data Sharing Scheme with Data Integrity in

Cloud Computing", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 8 Issue 3, pp. 412-418, May-June 2022.

Journal URL : https://ijsrcseit.com/CSEIT2283110

