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ABSTRACT 

 

Misdiagnosis rates are one of the leading causes of medical errors in hospitals, 

affecting over 12 million adults across the US. To address the high rate of 

misdiagnosis, this study utilizes 4 NLP-based algorithms to determine the 

appropriate health condition based on an unstructured transcription report. 

From the Logistic Regression, Random Forest, LSTM, and CNN-LSTM models, 

the CNN-LSTM model performed the best with an accuracy of 97.89%. We 

packaged this model into a authenticated web platform for accessible assistance 

to clinicians. Overall, by standardizing health care diagnosis and structuring 

transcription reports, our NLP platform drastically improves the clinical 

efficiency and accuracy of hospitals worldwide.  

Index Terms : Natural Language Processing, Medical Tran-scription Notes(s), 

Diagnostic Systems, Recurrent Neural Net-work, Long Short-Term Memory 

Network 

 

I. INTRODUCTION 

 

A. Physician Ineffectiveness in Hospitals 

In the United States alone, nearly 400,000 people are 

killed annually due to preventable medical errors [1]. 

With over 12 million adults in the U.S. receiving 

misdiagnoses yearly, inaccurate diagnoses are the 

leading cause of medical errors in hospitals [2]. 

Misdiagnoses refer to inaccurate assessments by 

healthcare providers of a patient’s condition, often 

leading to either inappropriate or excessive treatment 

and sometimes no treatment at all. In a case study 

conducted at the University of Maryland Medical 

Center, it was found that in a group of 177 patients, 

over 90% of patients received at least one unnecessary 

treatment, highlighting the unreliable nature of 

physicians in hospital settings [3]. Not only can 

misdiagnoses undermine the effectiveness of 

clinicians, but over one-third of such cases with 

inaccurate treatment result in death, injury, or 

permanent disabilities [4]. 

Beyond high misdiagnosis rates, the lack of 

communication between patients and doctors 

contributes to diminished patient outcomes and care. 

In 2010, a study conducted in JAMA Internal 

Medicine discovered the striking discrepancies in 

communication between patients and doctors, 

especially in relation to diagnoses. The authors 

determined that while 77% of physicians believed 

patients knew their diagnosis, only 57% of patients 
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actually did [5]. This alarming inconsistency reveals 

broader issues regarding the subjectivity, unreliability, 

and variability between clinicians, demanding the 

necessity for more objective and accurate diagnostic 

approaches. 

 

B. Electronic Health Records and Unstructured Data 

The recent rise in electronic health records (EHRs) 

only increases this variability and further warrants 

the need for automated methods to standardize 

diagnosis procedures in medical settings [6]. EHRs 

primarily consist of unstructured data, which lacks 

standardized specifications and is written in free-text 

without, clear separations. Unstructured data is often 

found in clinical report notes, discharge summaries, 

and chart reviews; however, interpreting such data 

requires costly time and presents a considerable 

challenge to medical practitioners due to its lack of 

baselines and standardized components. In fact, the 

The Agency for Healthcare Research and Quality 

acknowledges unstructured data in EHRs as a primary 

barrier in understanding data quality and interpreting 

key diagnostic information [7]. Currently, most teams 

and researchers that focus on medical record 

abstraction target structured data, ignoring the 

widespread amount of unstructured data. 

Because of the sheer amount of unstructured data 

available, the use of Machine Learning and Deep 

Learning methods are crucial for eliminating clinician 

subjectivity across hospitals around the world and for 

utilizing the vast amount of data available to improve 

diagnosis. 

 

II. LITERATURE REVIEW 

 

A. Emergence of Machine Learning and NLP 

Machine Learning, a subset of Artificial Intelligence, 

refers to algorithms that can efficiently learn, 

generalize, and thus develop a complex, mathematical 

understanding of pre-existing training data to give 

accurate predictions on unseen test data 

[8]. As a result of the increase in computational 

power and the emergence of the “big data” era, the 

application of ML in medical imaging and health care 

systems has increased and can strongly facilitate 

healthcare operations [9]. More specifically, Natural 

Language Processing (NLP), a form of Deep Learning, 

has emerged as a promising discipline to analyze 

unstructured data, a task that is time-consuming and 

extremely challenging for doctors and physicians, 

especially in low-income countries. 

Over 80% of all healthcare data is unstructured [10], 

so the ability of NLP models to decode unstructured 

clinical reports and provide insightful diagnostic 

advice presents an enormous opportunity. However, 

NLP is most often associated with speech analytics, 

sentiment analysis, and chat generation, with 

relatively little attention for misdiagnosis rates in 

medical settings. As the healthcare community looks 

to incorporate exponentially more automated 

technologies into their infras-tructure, it is vital to 

approach specific problems in the medical community 

with state-of-the-art NLP models. 

 

B. Objective 

While recent studies have used models such as RNNs 

[11] to predict surgery complications and extract 

structured data from clinical reports, very few 

institutions have focused their research on correcting 

misdiagnosis rates. Moreover, there is a lack of an 

easily accessible and accurate early-diagnostics system 

for classifying medical specialties from unstructured 

medical transcription notes. 

Thus, in an effort to streamline the process for 

medical practitioners and improve clinical care for 

patients within the hospital, we developed various 

machine learning and deep learning-based 

architectures to determine the specific medical 

specialty that a clinical transcription note describes, 

ultimately reducing misdiagnosis rates and alleviating 

the burden for overloaded hospitals. Furthermore, to 

increase accessibility for hospitals worldwide, our 
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models are packaged into an efficient and accurate 

AI-enabled medical app. 

 

III. METHODS 

 

To categorize the medical transcription reports into 

various specialties and types, our machine learning 

models require large amounts of categorical data to 

operate smoothly. In addition to scraping data from 

an online website to curate our dataset, we also 

implemented various types of data pre-processing to 

maximize the performance of all models used. 

 

A. Data Collection and Transformation 

We retrieved and scraped our data from MTSamples, 

a public corpus of data that contains transcribed 

medical reports. 5003 sample reports were extracted 

from the MTSamples collection of data. It contains 40 

different medical specialties, such as ’Urology’ 

and ’Nephrology,’ 28581 unique words, and 487.5 

average characters per sentence. 

To reduce heterogeneity between values in the 

dataset, we funneled the data down to four main 

human body systems: Heart, Brain, Reproductive, and 

Digestive. To maintain a fair balance of nearly 300 

reports per category, we accordingly combined 

certain medical specialties. For example, the Brain 

label contained both ”Neurology” and ”Neurosurgery” 

reports, and the Digestive label contained 

both ”Gastroenterology” and ”Nephrology.” In total, 

our modified dataset had 1304 reports (371 heart, 317 

brain, 311 reproductive, and 305 digestive), a unique 

vocabulary size of 20127, and a mean sentence length 

of 464.9 characters. A sentence length histogram is 

displayed in Figure 1 to illustrate the distribution of 

sentence length for the medical transcription reports 

included in our modified dataset. 

 
Fig. 1.  Transcription Report Sentence Length 

Histogram 

 

Within our dataset, each report contains a variety of 

non-standardized labels with sections differing even 

within med-ical specialties. Our scraper attempted to 

extract all relevant information regarding the medical 

specialty and transcription report details. To further 

resolve any discrepancies and correct errors from our 

scraping algorithm, we also screened the full modified 

dataset. 

 

B. Data Preprocessing 

After transforming the dataset and parsing the 

specified categories, we applied four preprocessing 

steps on cleaning the data. First, we removed any 

reports with missing transcription details or medical 

specialties. Second, we removed numbers, symbols, 

punctuation, and special characters such as brackets 

and slashes to standardize the text and delete 

unnecessary elements, allowing for improved analysis 

of the transcription input. Third, we tokenized our 

transcription sentences into smaller tokens, all in 

lower-case, while also removing stop-words that lack 

contextual significance. Fourth, we lemmatized our 

data by converting the tokenized elements into 

shorter but more useful forms and linking words to its 

root through a dictionary-based implementation. 

These four steps work to-gether to convert the 



Volume 8, Issue 3, May-June-2022  | http://ijsrcseit.com 

Krish Maniar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, May-June-2022, 8 (3) : 435-442 

 

 

 

 
438 

initially unstructured transcription report to a more 

standardized and structured report. 

Once our data was cleaned, we applied a recently 

developed vectorization preprocessing algorithm 

called Term Frequency Inverse Document Frequency 

(TFIDF) to translate the string tokens to numerical 

vectors. Most natural language processing models use 

the Bag Of Words (BOW) algorithm, where the 

location of words directly influences the text 

vectorization. However, this approach fails to utilize 

semantics to guide the vectorization of an embedding 

space. The TFIDF algorithm builds upon this 

traditional BOW approach and consists of two 

primary steps: Term Frequency and Inverse Data 

Frequence. The first step divides the frequency of 

each word by the total number of words in the text. 

The second step weights each word based on its 

semantic relevance to the medical specialty. For 

example, words like ”the” and ”of” may be the most 

frequent tokens but lack semantic value to the 

classification task, so they will be assigned a low 

weight. Both steps work together to produce a vector 

and represent the reports in an embedding space. 

Figure 1 displays the embedding space for all four 

categories in the dataset (Brain, Heart, Digestive, and 

Reproductive). 

 
Fig. 2.  TFIDF Vector Embeddings for Modified 

Dataset 

 

While the embeddings are segregated in certain 

portions of the figure, they overlap in numerous areas, 

which both explains the discrepancies that doctors 

have in classifying such reports and adds to the 

complexity of our data and models. 

C. Machine Learning Models 

Once we processed our data into an appropriate 

format, we developed 2 ML and 2 DL models. All 

models were trained and tested with a dataset 

consisting of an 80% train and a 20% test split. 

Logistic Regression. Our first ML algorithm (Logistic 

Regression) generally uses a logistic function to 

separate two classes from each other through using a 

binary entropy function. However, our dataset 

contains multiple classes, so we modified our loss 

function from binary to categorical class entropy, a 

multinomial probability distribution function that 

computes the loss over all four classes. The loss 

function formula is displayed in Figure 3. 

 
Fig. 3.  Category Cross Entropy Loss Function 

We also applied Principal Component Analysis with 

95% variance to reduce the dimensionality of the 

features being inputted into the model. This helped 

expedite the training process and improve the 

interpretability of our Logistic Re-gression model. 

Random Forest. In addition to Logistic Regression, we 

used Random Forest, another common Machine 

Learning architecture. As shown in Figure 4, this 

model consists of an ensemble of decision trees and 

uses numerous yes/no branches to deliver a result for 

classification problems. After fine-tuning several 

hyper parameters, namely the number of decision 

trees and respective branch depth, we determined the 

optimal amount of estimators was 150 trees and ideal 

maximum amount of depth was 4 branches. 

 
Fig. 4.  Random Forest Architecture [12] 
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D. Deep Learning Models 

ML models such as Logistic Regression lack the ability 

to interpret semantics and maintain long-term 

connections in text. Thus, we also developed several 

Deep Learning methods: an LSTM and a CNN-LSTM, 

which combine an LSTM’s semantic elements and a 

CNN’s spatial dependencies. 

Long Short-Term Memory Network. By constructing 

long-term connections in the transcription reports, 

the LSTM model is an improvement over Recurrent 

Neural Networks. A key difference between LSTM 

and RNN architectures is the presence of a memory 

cell that maintains a hidden state as it progresses 

through the text. Figure 5 illustrates the details of a 

memory cell. The states are regulated by the forget, 

input gate, and output gate, which alter memory 

connections between segments of the data. 

CNN-LSTM. While CNN models are generally used 

for computer vision tasks, they can provide useful 

information from text if used in conjunction with an 

LSTM model. Because CNNs use convolutional layers 

and padding, they can extract higher-level features 

than LSTMs. However, they are unable to track long-

term dependencies in transcription reports. Thus, a 

combination of CNN and LSTM models would be 

expected to outperform a core RNN or LSTM model. 

Similar training pa-rameters were utilized as the 

LSTM network, and an overview of the model 

architecture is visible in Figure 6. 

 

 

E. MedicAI Web Application 

To package our Machine and Deep Learning models 

into an accessible platform, we created a Flask web 

application called MedicAI that serves as a dashboard 

for clinicians. As shown in the dashboard in Figure 7, 

doctors are able to access medical transcript records 

for all their patients, and they can accordingly add 

and filter patient records. Once a record is uploaded 

as an image, our Optical Character Recognition (OCR) 

algorithm will tokenize the text from the image and 

parse the corresponding” Findings” section of the 

report. Then, as described in the ’Data Preprocessing’ 

section, this parsed text will be preprocessed using 

TFIDF and subsequently inputted to the model for 

diagnosis classification. 

 
Fig. 5.  LSTM memory cell and corresponding gates 

[13] 

 
Fig. 6.  CNN-LSTM architecture [14] 

 
Fig. 7.  Dashboard for MedicAI Web Application 

 

In terms of the web technologies we used, our front-

end was made with HTML, CSS, and JavaScript, and 

the back-end infrastructure was developed with Flask 

and Firebase. We im-plemented authentication 

procedures with secure login/logout functionality 

using Firebase and developed the database using 

Firebase Cloud Firestore. We believe our application 

is crucial for assisting clinicians in health condition 

diagnoses, and it has the potential of leveling the 

playing field between hospitals of different areas. 
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IV. RESULTS 

 

Once we developed Logistic Regression, Random 

Forest, LSTM, and CNN-LSTM, we trained the 

models on 80% of the dataset and tested them on the 

remaining 20 percent. The Machine Learning models 

were developed with SciKit-Learn, and the Deep 

Learning models were developed with TensorFlow. 

All models were trained with a categorical cross-

entropy loss, a softmax activation function, and 50 

epochs. To analyze the performance of each model, 

we calculated 4 commonly used performance metrics: 

Accuracy, Precision, Recall, and F1-score. Figure 8 

displays a detailed breakdown of the formulas for 

each performance metric based on True Positive (TP), 

True Negative (TN), False Positive (FP), and False 

Negative (FN) rates. 

 
Fig. 8.  Formulas for Performance Metrics 

 

After tuning the Logistic Regression model’s 

hyperparame-ters with a gridsearch function, the 

model yielded an accuracy of 91.19% accuracy. Table 

I describes the results for the other performance 

metrics. 

 

TABLE I LOGISTIC REGRESSION PERFORMANCE 

ON THE TEST DATASET 

 

 Precision Recall F1-score 

Heart 0.92 0.95 0.93 

Brain 0.94 0.94 0.94 

Reproductive 0.90 0.89 0.89 

Digestive 0.88 0.87 0.88 

 

As for the Random Forest model, the resulting 

accuracy on the test set was 84.29% accuracy. Other 

performance metrics are displayed in Table II. The 

optimal hyperparameters were 150 decision trees, 

each with a depth of 4 branches. The other 

performance metrics were also computed in Table II. 

For most of the metrics, the Logistic Regression and 

Ran-dom Forest models performed the best for the 

Brain class, with lower performance on the 

Reproductive and Digestive classes. Additionally, the 

more traditional Logistic Regression performed with 

an accuracy of nearly 7% higher, suggesting its 

simplicity outperforms the complex ensembled 

decision tree estimators. 

 

TABLE II RANDOM FOREST PERFORMANCE ON 

THE TEST DATASET 

 Precision Recall F1-score 

Heart 0.81 0.91 0.85 

Brain 0.89 0.92 0.91 

Reproductive 0.86 0.77 0.79 

Digestive 0.82 0.75 0.79 

While the two Machine Learning models performed 

at an acceptable accuracy, the Deep Learning 

methods——LSTM and CNN-LSTM——produced 

much higher performance rates. The Deep Learning 

models were both trained for 50 epochs on a 20% 

train set with a batch size of 100. The LSTM model 

performed at an accuracy of 97.60%, and the CNN-

LSTM performed slightly better with an accuracy of 

97.89%. More detailed performance metrics are 

illustrated in Table III and Table IV below for the 

LSTM and CNN-LSTM model, respectively. 

TABLE III LSTM PERFORMANCE ON THE TEST 

DATASET 

 

 Precision Recall F1-score 

Heart 1.00 0.97 0.98 

Brain 0.98 1.00 0.99 

Reproductive 0.97 0.98 0.97 

Digestive 0.96 0.96 0.96 
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TABLE IV CNN-LSTM PERFORMANCE ON THE 

TEST DATASET 

 

 Precision Recall F1-score 

Heart 1.00 0.97 0.98 

Brain 0.99 1.00 0.99 

Reproductive 1.00 0.96 0.98 

Digestive 0.93 0.99 0.96 

 

Overall, the CNN-LSTM performed the best for most 

performance metrics, even outperforming the 

standard LSTM model. This is likely due to the spatial 

features of the CNN that facilitate the semantical and 

long-term memory connections computed by the 

LSTM model. 

 

V. DISCUSSION 

 

In this study, we developed a web application for 

doctors that utilizes both traditional and modern 

Machine Learning methods to improve diagnosis of 

health conditions from medical transcription notes. 

Not only does this app reduce misdiagnosis rates and 

increase clinical efficiency in hospitals, but it also 

standardizes medical diagnosis across hospitals around 

the world with an affordable and accurate tool. 

After constructing a Logistic Regression, Random 

Forest, LSTM, and CNN-LSTM model, we determined 

that the CNN-LSTM model, which incorporates 

spatial features and long-term memory connections, 

performed the best with an accu-racy of 97.89% and 

an average F1-score of 0.98. Our model was able to 

seamlessly correctly classify Brain, Heart, Repro-

ductive, and Digestive categories. We integrated this 

CNN-LSTM model into our platform called MedicAI 

to classify health conditions in real-time based on 

medical transcription notes, satisfying the goals of this 

project. 

Further research into state-of-the-art NLP models and 

pre-processing methods should be explored. In the 

future, we should look into modern NLP models, such 

as BERT and GPT, which utilize transformer 

architectures and self-supervised learning to learn 

improved representations. To support the 

computational complexity brought upon by these 

models, we also hope to develop our back-end 

infrastructure to support larger ML models. 

Additionally, we plan to test varying preprocessing 

methods for converting tokens into vectors in an 

embedding space, such as Glove and Word2Vec. 

Lastly, we hope to expand the available data and 

scope of the project by incorporating institutional 

data from hospitals around the world, and eventually 

implementing this platform in global medical centers. 

Thus, we hope this project serves as a strong basis for 

future research into the use of advanced NLP methods 

for medical specialty classification from transcription 

notes. 
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