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Tensor Flow.

This paper describes a method to classify human activities using accelerometer
data by training a deep learning model and using it in an android app which
gathers real time accelerometer data while the device is with user and classifies
his activity by assigning a probabilistic value with highest probability being the
activity predicated. The dataset used in this paper is freely available which is
provided by WISDM Lab and Google cloud-based instances running tensor flow
library for python to code and train the model.
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I. INTRODUCTION

The activity classification is an important part of
many medical diagnostic approaches. It also has a
wide application in consumer wearable market in

and AR/VR
ship with

activity trackers, health monitors

applications. Smartphones nowadays
inertial measurement units such as accelerometers
and gyroscopes of great accuracy and precision. This
paper explains an approach to train a machine
learning model to gather and predict the human
activity by using data collected from accelerometer
sensor of a smartphone and using it in an android
application for prediction of basic human activities
such as walking, running, sitting, standing, climbing
stairs and so on. The dataset used is provided by
Wireless Sensor Data Mining (WISDM) Lab which
has 1,098,207 rows and 6 columns. The columns
contain the serial no., user, activity, x-axis, y-axis and
z-axis data during said activity. A Long Short-Term

Memory (LSTM) Neural Network is trained in tensor

flow and further used in android application. All
machine learning code is written in Python and uses
Google’s open source machine learning library Tensor
Flow for training the model. The android application
is built using java in android studio and incorporating

the exported trained model from last stage.

II. SYSTEM OVERVIEW

The Basic components of the system are Data Import,
Data Preprocessing, Model Training, Model Testing,
Model Exporting, Android Build and Activity
prediction.

The overall system consists of 3 main stages starting
with data preprocessing, training and android app
integration. The python library pandas is used for
data preprocessing and for training the ML model
python tensor flow library is used, and finally after
generating the model we have used it by exporting
the Shared Object file (.SO file) inside the android
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Fig.1. Flow Chart of Model

The software used includes anaconda for running the
python code interactively using Jupyter notebooks so
as to make it easier to track progress and save the
work. Jupyter notebooks provide an interactive way
to run python files line by line making execution
intuitive and debugging easier.

The android application developed in this runs on
android devices from version 6.0 above and is fully

compatible with all kinds of different architectures.

III. SYSTEM SPECIFICATIONS

A Google cloud instance was used, running 32 CPU
cores and 64 GB RAM with an attached 265 GB SSD
running windows server 2016 datacenter. We used
Anaconda distribution of python to run the python
code; and Android studio to build the android

application. For testing the application we used

Samsung Galaxy S8 running Android version 9.

IV. DATA IMPORTING AND EXPLORATION

A free available data from site hosted by WISDM Lab,
Fordham University, Bronx, NY was downloaded.
The data was in CSV(Comma-Separated Values)
format and we stored it locally in the folder that was
being used for the project. This data was collected in a
controlled setting by the lab. The data contains 6
columns namely the user, activity, timestamp of the
activity, X, Y, Z axis values of the accelerometer
while the activity is being performed.

The data was imported into a variable by using

Pandas function.
columns = [“"user', "activity', 'timestamp',
'®-axis", "y-amxis', 'z-a=xis']
df = pd._read csv |

'data.-"IiISIM_ar_Tirl.l_ra'.r.ta{t‘, header = Hone,
names = ocolumns |

Taking a look, it is organized as following in tabular

form:
df.head()
user  activity timestamp x-axis y-axis z-axis
0 33 Joggng 4910596232600 0604638 12680544 0503953
1 33 Jogging 4910606227100 5012088 11264028 0953424
2 33 Jogging 4910611216700 4903325 10882658 0081722
3 33 Jogging 4910622230500 0612016 18496431 3020717
4 33 Joggng 4910633229000 4184970 12108489 7.205164
Fig.2. Dataset Snapshot

For pictorial representation of data and to get an

estimate of data points for each of the activities, the
data was plotted as a bar chart using a simple value

count function for both the activities and users.

df["activity'].value countsz(]}.plot({ kind=
'kar", title= 'Training e=zxamples by activity
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plot_activity("Standing", df)
Training examples by activity type
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Fig. 6. Standing Accelerometer data plot

df ["user'] value_counts() .plet{kind="bar"', plot_activity("]ogging", df)
title="'Training examples by user');

df["user'] .value counts{)._plot{kind="bar"', S
title="'Training examples by user');
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H
WJ%\M “NW) U «Jw, AL ”‘

TRVITYIRE TR T RN \ I

50000

40000

\|[7 WIY Y Wi "'y [ \
30000 I ‘ f ]
20000 " l f i |
IN ' VI i ' il et
o1 W\\ vW Vm u\/\;" ei\f “n Mlﬁ :‘"V A
10000 ' \ l / ! ‘J { / {
10 -
V
° Ll @ ® o @ w N
RER2NLERE"TORYRIRIVBAERERDT

gEmTameTasTaes Fig 7. Jogging Accelerometer data

Fig. 4. User wise data plot plot_activity("Walking", df)

Next, to visualize the accelerometer data collected for Walking
each of the activities, Graphs were plotted as:
df['activity'].valus counts().plot (kind="bar ﬂ« NW\‘ \ \ M‘M"V\/\ W\J\ﬂ, ’\A Mﬂ.w,m\f\ /‘/'\‘ W“A‘\ \—
', title="Training examples by activity # \' ”"\a“ \“ W‘ \f "‘ w | \H W
type"i;
plot_activity("Sitting”, df} bttt b s i = v
Siting s .‘ j‘\"‘w‘ ,‘WN
30 o s—ft
20 ;p

Fig. 8. Walking Accelerometer data plot

V. DATA PROCESSING
For LSTM training fixed length data segments of

m/ M/WWWWW s length 200 were created.

’B’-\’a‘:“ rﬂ.@w% ﬂ\n@ 7}.\@3 _ﬂ,\fa‘l ,ﬂ:\ﬂ“ ,ﬂ'\"@ fa";b
Fig. 5. Sitting Accelerometer data plot N_TIME_STEPS = 200

N_FEATURES =3
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step = 20 N CIASSES = &

segments = [] N _HIDDEW UNITS = &4

labels = [] def creats LSTHM model (inputs):

for i in range(l, lenidf) - N _TIME STEPS, W=

step] - ) ']_'Lid{ien': e
xs=df['x-axis'].values[i:i+i TIME STEPS] tf-Variable (cf. random nommal([N_FERTURES,
ys=df['y-axis'] .valuss[i:i+i TIME STEDS] ”—HIDD;I‘TEJ‘EI;E;; M.

Y T - s s T mTgT o
zs=df["z-axis’].values[i:i+} TIME STEPS] tf.Varisble (tf.randem normsl([N_HIDDEN UNITS

lakel = stats.mode (dE[" an::_ivitgr' ] , ¥ CLRSSES]])
[i:i+H TIME STEPS1)[0][0) T
segments. append [ [x=s, ys, ==]) bizses = |
lekels_ append(label) 'hidden":
tf.Variable(tf.random normal ([N _HIDDEN UNITS
The result of transformation is: 1, mean=1.0)),
N 'output":

tf_Variable(tf.random normal ([N CLASSES])]
np.arrayi{segments) - shape }

>
X ¥ = cf.cransposseiinpurts, [1, O, 211
(54301, 3, 200) ¥ = tf_reshape(X, [-1, N FERTURES])
hidden = tf nn_relu(tf matmual (X,
Wl"hidden"]) + biases["hidden"])
hidden = tf._spliti{hidden, H_TIME STEPS,
That is 54901 samples of 3 rows and 200 columns. o s Seacr 2 T L
3 tack 2 LETHM lavers
. o . 1stm_layers =
Now transforming this into 200 rows of 3 columns [tf.contrib.znn.BasicLSTMCell (N _HIDDEN UNLTS
. forget_bias=1_0} for _ in rangeil)]
each. lstm layers =
tf.contrib.znn MultiBMNNCe1l (lstm layers)
ocutputs, _ =

tf.contrib.rnn.static ronn(lstm layers,
hidden, dtoype=tf_ float3iz]
reshaped segments=np.asarray/|segments, dtype= ¥ Get output for the last time step

1 - ] - lstm last_cutput = outputs[-1]
np-float3d) .reshape | return tf matmul (l=tm last_cutput,

1.- H_TD‘:[E._E TE :-'S,I'_E."-'.IUF_'._'E :' Wl'output"]) + biases['output"]
labels=np.gsarrayipd.get dummies(labels) , dty tf.reset_default graph()

_ . - - H = tf._placeholder(tf_ £fleoatizZ, [Hone,
pe=np.floatid) H_TIME_STEDS, N_FEATURES], name="input")

¥ = tof -placeholder| tf.float32, [Hone,
L. M _CLRSSESI)
Thus giving us segmesnts of shapoe as: pred ¥ = create LSTM model (X)
pred softmax = tf.nn.softmax{ pred ¥,
name="%_"1
La_LOSE = 0.0015
la = La_LOSE * &
sum(tf nn_12 loss{tf_war) for tf_war in

reshaped_segments.shape

> tf_trainable wvariables()]
loss = ti_reduce mean|
(54901 ) 200, 3) tf_nn_softmax cross_entropy with logits(legi

ts = pred ¥, labels = ¥))+12
LEARNING BATE = 0.0025
optimizer = tf.train.Adamiptimizer |

Final step of transformation is to split the data into 2 learning rate=LEARNING RATE) .minimize(loss)
.. .. correct pred = tf.eguall
giving 80% to training the model and 20% for ey argm;ﬁ (pred softmax, 1), tf.argmax(¥, 1))

accuracy = tf.reduce mean|
tf.casticorrect pred, dtype=tf.float3d))
LEARNING BATE = 0.0025

validating the model.

optimizer = tf.train.Adamliptimizer |
¥ train,X test,y train,y test=train test_spl learning rate=LERBNING BATE) .minimize (loss)
it (reshapad segments, labels, test_size=0.Z,
random state=RENDIM SEED) correct_pred = tf.egual! tf.argmax|
- - pred softmax, 1), tf.argmax(¥, 1})
VL. MODELBUILDING AND TRAINING sccuracy = tf.reduce mean( tf.castl

correct_pred, dtype=tf.floatid))
The model was trained using the available data. The

model consisted of stacked two fully-connected and Since TensorFlow part was setup, the model was

two LSTM layers with 64 units for each of these. started to be trained for 50 epochs and a track of

Further a placeholder was created for the model and
accuracy and error was kept.

L2 regulations were used and it was accounted in the
loss. And finally accuracy and optimizer ops were

defined.
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N _EPOCHS =

BRTICH SIZE 1024

saver = tf.train._ Saver|()

history = dict(train_ loss=[],
train acc=[],
test_loss=[],
test_acc=[])

sess=tf.InteractiveSession(]

sezs. runitf._global varisbles initializer())

train count = len(X train)

for i in range(l, N _EDOCHS + 1)

for start , end in zipi{range (0,
train count, BATCH SIZE),range( BATCH SIZE,
train count + 1,BATCH SIZE }):
sesg.runi{optimizer, feed dict={X:
X train[start:end] ,¥: ¥ train[start:end]})

50

_r Acc_train, loss_train =
sezs.runi[pred softmax, accuracy, loss],
feed dict={X: X train, ¥: ¥ _train})

_. acc_test, loss test =
segs. run|[pred softmax, accuracy, loss],
feed dict={ H: X test, ¥: ¥y_test})
history['train loss'].append(losa train)
history['train acc'].append{acc_train)
history['test_loss'] .append{loss_test)
history['test acc'].appendiacc test)
if 1 =1 and i % 10 I!= 0:
continue
print (£'epoch: {i} test accuracy: |
acc_tesat } loss: {losa_test}')

predictions, acc_finsl, loss final =
sess._runi[pred softmax, accuracy, loss],
feed dict={X: X test, ¥: y test})

printi)

print(f'final results: accuracy: {acc_finall
logs: {loss_final}')

=

epoch: 1 test accuracy: 0.773655875%e483013
loss: 1.2773654460506582

gpoch: 10 test accuracy: 0.5382542122455%412
loss: 0.5812533052458775

gpoch: 20 test accuracy: 0.3574717283248301
loss: 0.3516512425714203

epoch: 30 test accuracy: 0.5685%3103432655334
loss: 0.2%35260236263275

gpoch: 40 test accuracy: 0.5747744202613831
loss: 0.250218B%B0573376

Now that training was complete, the model was

stored on the disk.

pickle.dump (predictions, open|
"predictiona.p”, "wb")}

pickle. dump (history, openi("history.p”,
"whb"1}

tf.train.write graph! sess_graph def, '.'
' _{checkpoint/har _pbtxt')

saver.save( sess, save path =

" _{checkpoint/har._ckpt™)

saezs_closal()

[

VII. MODEL TESTING AND EXPORTING
Now the model was trained and stored onto disk. On
Loading it back and plotting the test curve for each
epoch, it was observed that the model achieved 97%

of accuracy and a loss of around 0.2.

plt . figure (figsize=(12, 8})
plt.plotinp.array (history['train loss']],
"r—-", label="Train loss")

plt.plotinp.array (history["train ace'l), "g-
=", lakel="Train accuracy")
plt._plotinp.array (history['test_loss']),
", label="Test los=s")

plt.plotinp.array (history['test_acs"]), "g-
", label="Test zccuracy"]

plt.title ("Training session's progress over
iterations")

plc.legend (loc="uppsr right', shadow=True)
plt.vlabel('Training Progress (Loss or
Ropuracy values) ')

plt.=xlabel('"Training Epoch')

ple.vlimi{d)

plt _showi)

e

Training session's progress over iterations

=== Train loss

12 ===-_Train accuracy
— Testloss
—— Test accuracy

Training Progress (Loss or Accuracy values)

Training Epoch

Fig. 9. Training Accuracy plot

The confusion matrix for each activity is given as:

LBRBELE = ['Downstairs', "Jogging',
'Sitting', 'Standing', 'Upstairs”,
'Walking']

max test = np.argmax(y_test, axis=l)

max predictions = np.argmaxipredicticns,
axis=l1)

confusion matrix = metrics._ confusion matrix|
max test, max predictions)

plt.figure (figsize=(1leg, 14))

sns . heatmap {confusion matrix,
xticklabels=LRBELS, yticklsbels=LRBELS,
gnnot=True, fmt="d4d"];

plt.title ["Confusion matrix™)

plt.ylabel | 'True label")

plt.xlabel ('Predicted label")
plt.showi(];
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Fig 10. Confusion Matrix

This shows that the model works great for all
activities with some confusion between upstairs and
downstairs and some exceptions in case of jogging.
Now as the model was ready and tested, it was finally
exported for android so that it could be used to

interface within the android application.

from tensorflow.python.tools import
freeze graph
MODEL WAME = 'har'

input graph path = 'checkpoint/' +
MODEL MEME+' .pbtxt'

chackpoint path = './checkpoint/’
+MOLDEL HREME+' _ckpt'

restore op name = "save/restore_all"
filenams tensor name = "save/Const:0"
output_frozen graph name =

"frozen '+MODEL NEME+' .pb’

freeze graph.freeze graph

input graph path, input saver="",
input binary = False, input checkpoint =

chackpoint path , ocutput node names = "y ",
restore op name = "save/restore_all",
filenams tensor name = "save/Const:0”,

output_graph = output_ frozen graph name,
clear devices = True, initializer nodes="" )

VIII. ACTIVITY PREDICTION
Finally, in the android application, input and output

dimensions and names were defined.

String INPUT _MODE = "imputa™;
String[] OUTPUT NODES = {"v "};
String OUTPUT_HODE = "y _";
leng[] INPUT_SIZE = {1, 200, 3}:
int OUTEUT_SIZE = &;

Then a tensorflow interface was created for

interaction with the saved model.

inferencelnterface = new
TensorFlowInferenceInterface |
context.gethssats (), MODEL FILE);

And finally, code for interacting with the model
interface for each real time value of input gathered

from accelerometer was written.

public float[] predictProbabilities(float[]
data) {
float[] result = new float [OUTPUL_SIZE];
inferenceInterface. feed (INFUT HOLE,
data, INPUT SIZE);
inferenceInterface._ run (JUTFUT WODES) ;
inferencelnterface. fatch (OUTPUT_NODE,
result) ;
return result;

}
IX. RESULTS

The product developed is a model that predicts
human activity using LSTM with 200-time steps,
achieving an accuracy of 97% and the model built was
exported to be used in android application by

interfacing with live accelerometer data.

epoch: 1 test acouracy: 0_.FTT738558T756463013
loss: 1.2773&544€0508982

epoch: 10 test accuracy: 0.53B8542122455412
loss: 0.5812533052498772
apoch: 20 Tast accuracy: 0.9874717283248501
loss: 0.3516512425714203
epoch: 30 test accuracy: 0.2653103432655334
loss: 0.Z25352E02362E3275
epoch: 40 test accouracy: 0.574T77442202€13831
loss: 0.2502188580579376

Fig. 11. Accuracy achieved after training the model

ae i

Activity Recognition

Activity Probability
Downstairs 0.0
Jogging 0.0
Sitting 0.98
Standing 0.01
Upstairs 0.0
Walking 0.0

Fig. 12. Activity recognized by the android

application when user is in sitting position.
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