
Copy r i g ht : © t h e a u t h or (s) , p u b l i s h e r a n d l i c e n s e e Te c hn o s c i e n c e Ac a d e my . Th i s i s an

o p e n - a c c e s s a r t i c l e d i s t r i b ut e d un d e r t h e t e r ms o f t he C r e a t i ve Commo n s At t r i b u t i o n No n -
C omme r c i a l Li c e n s e , wh i c h p e r mi t s u n r e s t r i c t ed n o n - c ommer c i a l u s e , d i s t r i bu t i on , a nd
r e p r o d u c t i o n i n a n y me d i um, p r o v i d e d t h e o r i g i n a l wo r k i s p r o p e r l y c i t e d

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

 316

A Study Using Machine Learning Techniques to Predict Software

Quality
B. Sivaji * 1 , D. Santhosh2

MCA Student, Madanapalle Institute of Technology & Science, Madanapalle, India

Article Info

Publication Issue :

Volume 8, Issue 4

July-August-2022

Page Number : 316-323

Article History

Accepted: 10 August 2022

Published: 30 August 2022

ABSTRACT

Software quality estimation is an activity needed at various stages of software

development. It may be used for planning the project̀ s quality assurance

practices and for benchmarking. In earlier previous studies, two methods

(Multiple Criteria Linear Programming and Multiple Criteria Quadratic

Programming) for estimating the quality of software had been used. Also, C5.0,

SVM and Neutral network were experimented with for quality estimation.

These studies have relatively low accuracies. In this study, we aimed to improve

estimation accuracy by using relevant features of a large dataset. We used a

feature selection method and correlation matrix for reaching higher accuracies.

In addition, we have experimented with recent methods shown to be successful

for other prediction tasks. Machine learning algorithms such as XGBoost,

Random Forest, Decision Tree, Logistic Regression and Naïve Bayes are applied

to the data to predict the software quality and reveal the relation between the

quality and development attributes. The experimental results show that the

quality level of software can be well estimated by machine learning algorithms.

Keywords : Estimation, Machine Learning, Software Quality, Extreme Gradient

Decent, Boosting.

I. INTRODUCTION

Software applications may contain defects, originating

from requirements analysis, specification and other

activities conducted in the software development.

Therefore, software quality estimation is an activity

needed at various stages. It may be used for planning

the project based quality assurance practices and for

benchmarking. In addition, the number of defects per

unit is considered one of the most important factors

that indicate the quality of the software.

The quality of a software product can be defined as

the measure of performance of a system on which the

software is implemented in terms of execution time,

memory capacity utilized and probability of errors,

etc. In addition to this, the amount of effort

contributed by the software developer also represents

a key factor while assessing the quality of a software

product. The quality of a software product can be

considered to be internal as well as external. The

internal quality of a software can be assessed in course

of development during software development life

http://ijsrcseit.com/
http://ijsrcseit.com/

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

317

cycle (SDLC); whereas, the external quality can be

measured during its implementation and can be

assessed with respect to its level of functionality. The

external quality also depends upon its internal quality.

In order to assess the external quality of a software

product, quality models can be devised that represent

a function of the internal quality attributes. In order

to achieve this, first of all the internal attributes must

be identified and then the relationship existing

between the internal and external quality attributes

must be identified. A number of software quality

prediction models have been proposed by various

authors. However, the machine learning approach to

devising such a model appears to be more popular and

more effective as claimed by the authors. We have

been motivated by this aspect to carry out a review of

the machine learning approaches for software quality

prediction models the quality of a software product

can be defined as the measure of performance of a

system on which the software is implemented in

terms of execution time, memory capacity utilized

and probability of errors, etc. In addition to this, the

amount of effort contributed by the software

developer also represents a key factor while assessing

the quality of a software product. The quality of a

software product can be considered to be internal as

well as external. The internal quality of a software

can be assessed in course of development during

software development life cycle (SDLC); whereas, the

external quality can be measured during its

implementation and can be assessed with respect to

its level of functionality. The external quality also

depends upon its internal quality. In order to assess

the external quality of a software product, quality

models can be devised that represent a function of the

internal quality attributes. In order to achieve this,

first of all the internal attributes must be identified

and then the relationship existing between the

internal and external quality attributes must be

identified. A number of software quality prediction

models have been proposed by various authors.

However, the machine learning approach to devising

such a model appears to be more popular and more

effective as claimed by the authors. We have been

motivated by this aspect to carry out a review of the

machine learning approaches for software quality

prediction models the quality of a software product

can be defined as the measure of performance of a

system on which the software is implemented in

terms of execution time, memory capacity utilized

and probability of errors, etc. In addition to this, the

amount of effort contributed by the software

developer also represents a key factor while assessing

the quality of a software product. The quality of a

software product can be considered to be internal as

well as external. The internal quality of a software

can be assessed in course of development during

software development life cycle (SDLC); whereas, the

external quality can be measured during its

implementation and can be assessed with respect to

its level of functionality. The external quality also

depends upon its internal quality. In order to assess

the external quality of a software product, quality

models can be devised that represent a function of the

internal quality attributes. In order to achieve this,

first of all the internal attributes must be identified

and then the relationship existing between the

internal and external quality attributes must be

identified. A number of software quality prediction

models have been proposed by various authors.

However, the machine learning approach to devising

such a model appears to be more popular and more

effective as claimed by the authors. We have been

motivated by this aspect to carry out a review of the

machine learning approaches for software quality

prediction models The quality of a software product

can be defined as the measure of performance of a

system on which the software is implemented in

terms of execution time, memory capacity utilized

and probability of errors, etc. In addition to this, the

amount of effort contributed by the software

developer also represents a key factor while assessing

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

318

the quality of a software product. The quality of a

software product can be considered to be internal as

well as external. The internal quality of a software

can be assessed in course of development during

software development life cycle (SDLC); whereas, the

external quality can be measured during its

implementation and can be assessed with respect to

its level of functionality. The external quality also

depends upon its internal quality. In order to assess

the external quality of a software product, quality

models can be devised that represent a function of the

internal quality attributes. In order to achieve this,

first of all the internal attributes must be identified

and then the relationship existing between the

internal and external quality attributes must be

identified. A number of software quality prediction

models have been proposed by various authors.

However, the machine learning approach to devising

such a model appears to be more popular and more

effective as claimed by the authors. We have been

motivated by this aspect to carry out a review of the

machine learning approaches for software quality

prediction mode the quality of a software product can

be defined as the measure of performance of a system

on which the software is implemented in terms of

execution time, memory capacity utilized and

probability of errors, etc. In addition to this, the

amount of effort contributed by the software

developer also represents a key factor while assessing

the quality of a software product. The quality of a

software product can be considered to be internal as

well as external. The internal quality of a software

can be assessed in course of development during

software development life cycle (SDLC); whereas, the

external quality can be measured during its

implementation and can be assessed with respect to

its level of functionality.

The external quality also depends upon its internal

quality. In order to assess the external quality of a

software product, quality models can be devised that

represent a function of the internal quality attributes.

In order to achieve this, first of all the internal

attributes must be identified and then the relationship

existing between the internal and external quality

attributes must be identified. A number of software

quality prediction models have been proposed by

various authors. However, the machine learning

approach to devising such a model appears to be more

popular and more effective as claimed by the authors.

We have been motivated by this aspect to carry out a

review of the machine learning approaches for

software quality prediction models.

II. RELATED WORKS

A Review of Machine Learning Techniques for

Software Quality Prediction: Successful

implementation of a software product entirely

depends on the quality of the software developed.

However, prediction of the quality of a software

product prior to its implementation in real-world

applications presents significant challenges to the

software developer during the process of development.

A limited spectrum of research in this area has been

reported in the literature as of today. Most of the

researchers have concentrated their research work on

software quality prediction us ing various machine

learning techniques.

An experimental study for software quality prediction

with machine learning methods: Software quality

estimation is an activity needed at various stages of

software development. It may be used for planning

the project's quality assurance practices and for

benchmarking. In earlier previous studies, two

methods (Multiple Criteria Linear Programming and

Multiple Criteria Quadratic Programming) for

estimating the quality of software had been used Also,

C5.0, SVM and Neutral network were experimented

with for quality estimation.

A survey on machine learning techniques used for

software quality prediction: In the present software

development scenario, software quality prediction has

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

319

become significantly important for successful

implementation of the software in real world

application and enhances the longevity of its

functionality. Moreover, early identification of

anticipated fault prone software modules in the

process of development of software is crucial in saving

efforts involved in this process. Machine learning

techniques are considered to be the most appropriate

techniques for software quality prediction and a large

spectrum of research work has been conducted in this

direction by several authors. In this paper, we

conduct an extens ive survey on various machine

learning techniques like fuzzy logic, neural network,

and Bayesian model, etc. used for software quality

prediction along with an analytical justification for

each of the proposed solutions.

Study of the impact of hardware fault on software

reliability: As software plays increasingly important

roles in modern society, reliable software becomes

desirable for all stakeholders. One of the root causes

of software failure is the failure of the computer

hardware platform on which the software resides.

Traditionally, fault injection has been utilized to

study the impact of these hardware failures. One issue

raised with respect to the use of fault injection is the

lack of prior knowledge on the faults injected, and the

fact that, as a consequence, the failures observed may

not represent actual operational failures.

A survey on machine learning techniques used for

software quality prediction: In the present software

development scenario, software quality prediction has

become significantly important for successful

implementation of the software in real world

application and enhances the longevity of its

functionality. Moreover, early identification of

anticipated fault prone software modules in the

process of development of software is crucial in saving

efforts involved in this process. Machine learning

techniques are considered to be the most appropriate

techniques for software quality prediction and a large

spectrum of research work has been conducted in this

direction by several authors. In this paper, we

conduct an extens ive survey on various machine

learning techniques like fuzzy logic, neural network,

and Bayesian model, etc. used for software quality

prediction along with an analytical justification for

each of the proposed solutions.

III. METHODS AND MATERIAL

Proposed system:

In this study, we aimed to improve estimation

accuracy by using relevant features of a large dataset.

We used a feature selection method and correlation

matrix for reaching higher accuracies. In addition, we

have experimented with recent methods shown to be

successful for other prediction tasks. Machine

learning algorithms such as XgBoost, Random Forest,

Decision Tree, Logistic Regression and Naïve Bayes

are applied to the data to predict the software quality.

Figure 1: Block diagram

IV. IMPLEMENTATION

The project was carried out using the algorithms

listed below.

XGBoost Classifier:

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

320

XGBoost is an algorithm that has recently been

dominating applied machine learning and Kaggle

competitions for structured or tabular data. XGBoost

is an implementation of gradient boosted decision

trees designed for speed and performance.

XGBoost is a decision-tree-based ensemble Machine

Learning algorithm that uses a gradient boosting

framework. In prediction problems involving

unstructured data (images, text, etc.) artificial neural

networks tend to outperform all other algorithms or

frameworks. However, when it comes to small-to-

medium structured/tabular data, decision tree based

algorithms are considered best-in-class right now.

Bagging: Now imagine instead of a single interviewer,

now there is an interview panel where each

interviewer has a vote. Bagging or bootstrap

aggregating involves combining inputs from all

interviewers for the final decision through a

democratic voting process.

XGBoost and Gradient Boosting Machines (GBMs) are

both ensemble tree methods that apply the principle

of boosting weak learners (CARTs generally) using

the gradient descent architecture. However, XGBoost

improves upon the base GBM framework through

systems optimization and algorithmic enhancements.

Random Forest Classifier:

First, Random Forest algorithm is a supervised

classification algorithm. We can see it from its name,

which is to create a forest by some way and make it

random. There is a direct relationship between the

number of trees in the forest and the results it can get:

the larger the number of trees, the more accurate the

result. But one thing to note is that creating the forest

is not the same as constructing the decision with

information gain or gain index approach.

The author gives four advantages to illustrate why we

use Random Forest algorithm. The one mentioned

repeatedly by the author is that it can be used for both

classification and regression tasks. Overfitting is one

critical problem that may make the results worse, but

for Random Forest algorithm, if there are enough trees

in the forest, the classifier won’t overfit the model.

The third advantage is the classifier of Random Forest

can handle missing values, and the last advantage is

that the Random Forest classifier can be modeled for

categorical values.

There are two stages in Random Forest algorithm, one

is random forest creation, the other is to make a

prediction from the random forest classifier created in

the first stage.

STEPS:

1. Randomly select “K” features from total “m”

features where k << m

2. Among the “K” features, calculate the node “d”

using the best split point

3. Split the node into daughter nodes using the best

split

4. Repeat the a to c steps until “l” number of nodes has

been reached

5. Build forest by repeating steps a to d for “n” number

times to create “n” number of trees

Decision Tree Classifier:

A tree has many analogies in real life, and turns out

that it has influenced a wide area of machine learning,

covering both classification and regression. In

decision analysis, a decision tree can be used to

visually and explicitly represent decisions and

decision making. As the name goes, it uses a tree-like

model of decisions. Though a commonly used tool in

data mining for deriving a strategy to reach a

particular goal.

A decision tree is drawn upside down with its root at

the top. In the image on the left, the bold text in

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

321

black represents a condition/internal node, based on

which the tree splits into branches/ edges. The end of

the branch that doesn’t split anymore is the

decision/leaf, in this case, whether the passenger died

or survived, represented as red and green text

respectively.

Although, a real dataset will have a lot more features

and this will just be a branch in a much bigger tree,

but you can’t ignore the simplicity of this algorithm.

The feature importance is clear and relations can be

viewed easily. This methodology is more commonly

known as learning decision tree from data and above

tree is called Classification tree as the target is to

classify passenger as survived or died. Regression trees

are represented in the same manner, just they predict

continuous values like price of a house. In general,

Decision Tree algorithms are referred to as CART or

Classification and Regression Trees.

So, what is actually going on in the background?

Growing a tree involves deciding on which features to

choose and what conditions to use for splitting, along

with knowing when to stop. As a tree generally grows

arbitrarily, you will need to trim it down for it to look

beautiful. Let’s start with a common technique used

for splitting.

Logistic Regression:

Logistic Regression was used in the biological sciences

in early twentieth century. It was then used in many

social science applications. Logistic Regression is used

when the dependent variable (target) is categorical.

For example,

To predict whether an email is spam (1) or (0)

Whether the tumor is malignant (1) or not (0)

Consider a scenario where we need to classify

whether an email is spam or not. If we use linear

regression for this problem, there is a need for setting

up a threshold based on which classification can be

done. Say if the actual class is malignant, predicted

continuous value 0.4 and the threshold value is 0.5,

the data point will be classified as not malignant

which can lead to serious consequence in real time.

From this example, it can be inferred that linear

regression is not suitable for classification problem.

Linear regression is unbounded, and this brings

logistic regression into picture. Their value strictly

ranges from 0 to 1.

Types of Logistic Regression

1. Binary Logistic Regression

The categorical response has only two 2 possible

outcomes. Example: Spam or Not

2. Multinomial Logistic Regression

Three or more categories without ordering. Example:

Predicting which food is preferred more (Veg, Non-

Veg, Vegan)

3. Ordinal Logistic Regression

Three or more categories with ordering. Example:

Movie rating from 1 to 5

Bagging Classifier:

A Bagging classifier is an ensemble meta-estimator

that fits base classifiers each on random subsets of the

original dataset and then aggregate their individual

predictions (either by voting or by averaging) to form

a final prediction. Such a meta-estimator can typically

be used as a way to reduce the variance of a black-box

estimator (e.g., a decision tree), by introducing

randomization into its construction procedure and

then making an ensemble out of it.

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

322

Each base classifier is trained in parallel with a

training set which is generated by randomly drawing,

with replacement, N examples (or data) from the

original training dataset – where N is the size of the

original training set. Training set for each of the base

classifiers is independent of each other. Many of the

original data may be repeated in the resulting training

set while others may be left out. Bagging reduces

Overfitting (variance) by averaging or voting,

however, this leads to an increase in bias, which is

compensated by the reduction in variance though.

A Bagging classifier is an ensemble meta-estimator

that fits base classifiers each on random subsets of the

original dataset and then aggregate their individual

predictions (either by voting or by averaging) to form

a final prediction. ... The base estimator to fit on

random subsets of the dataset.

V. RESULTS AND DISCUSSION

The following screenshots are depicted the flow and

working process of project.

Importing Libraries:

Data Loading:

Decision Tree Model Building:

Random Forest Model Building:

XGBoost Model Building:

Logistic Regression Model Building:

Bagging Classifier Model Building:

Graphs:

VI.CONCLUSION

In this application, we used supervised Machine

Learning models to predict the quality of the software.

We used five ML algorithms to predict software

quality they are Random Forest Classifier, Decision

Tree Classifier, XGBoost Classifier, Logistic

Regression and Bagging Classifier. All five algorithms

performs well with good accuracies.

VII. REFERENCES

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

323

[1]. N.Kalaivani, Dr.R.Beena, International Journal

of Pure and Applied Mathematics Volume 118

No. 20 2018, 3863-3873 ISSN: 1314-3395.

[2]. He, Peng, et al. "An empirical study on software

defect prediction with a simplified metric set."

Information and Software Technology 59

(2015): 170-190.

[3]. Yu, Xiao, et al. "Using Class Imbalance Learning

for Cross-Company Defect Prediction." 29th

International Conference on Software

Engineering and Knowledge Engineering (SEKE

2017). KSI Research Inc. and Knowledge

Systems Institute, 2017.

[4]. D. Bowes, T. Hall, and J. Petrić, "Software

defect prediction: do different classifiers find

the same defects?." Software Quality Journal,

26(2), 2018, pp. 525-552.

[5]. X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A

Knowledge Discovery Case Study of Software

Quality Prediction: ISBSG Database," 2010

IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent

Technology, Toronto, ON, 2010, pp. 219-222.

[6]. X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A

Knowledge Discovery Case Study of Software

Quality Prediction Based on Classification

Models: ISBSG Database," The 11th

International Symposium on Knowledge

Systems Sciences (KSS 2010), 2010.

[7]. S. Sohrabi, O. Udrea, and A. V. Riabov,

“Hypothesis Exploration for Malware Detection

Using Planning,” Twenty-Seventh AAAI Conf.

Artif. Intell., pp. 883– 889, 2013.

[8]. Zimmermann, Thomas, et al. "Cross-project

defect prediction: a large scale experiment on

data vs. domain vs. process." Proceedings of the

the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT

symposium on The foundations of software

engineering. ACM, 2009.

[9]. Amasaki, S., Takagi, Y., Mizuno, O., Kikuno, T.:

Constructing a bayesian belief network

topredict final quality in embedded system

development. IEICE Trans. Inf. Syst.8(6), 1134–

1141(2005).

[10]. Idri, A., Abra, A.: A fuzzy logic based measures

for software project similarity: validation

andpossible improvements. In: Proceedings of

7th International Symposium on Software

Metrics,pp. 85–96. IEEE, England, UK (2001).

[11]. Pattnaik, S., Pattanayak, B.K.: A survey on

machine learning techniques used for software

quality prediction. Int. J. Reasoning-Based

Intell. Syst. 12(1/2), 3–14 (2016).

[12]. Kapur, P.K., Khatri, S.K., Goswami, D.N.: A

generalized dynamic integration software

reliability growth model based on neural

network approach. In: Proceedings of

International Conference on Reliability, Safety

and Quality Engineering, pp. 831–838 (2008).

[13]. Wagner, S.: A bayesian network approach to

assess and predict software quality using

activity-based quality model. Inf. Softw.

Technol. 52(11), 1230–1241 (2010).

[14]. Ahmed, M.A., AL-Jamini, H.A.: Machine

learning approaches for predicting software

maintainability: a Fuzzy based transparent

model. IET Softw. 7(6), 317–326 (2013).

[15]. Pattnaik, S., Pattanayak, B.K., Patnail, S.:

Prediction of software quality us ing neuro-

fuzzy model. Int. J. Intell. Enterp. (IJIE) 5(3),

292–307 (2018).

Cite this article as :

B. Sivaji, Mr. A. Damodar Reddy, "A Study Using

Machine Learning Techniques to Predict Software

Quality", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8

Issue 4, pp. 316-323, July-August 2022.

Vol ume 8, I s s ue 4, J ul y - Augus t - 2022| ht t p: // i j s r c s e i t . c om

B. S i va j i , e t a l I nt . J . Sc i . Res . Comput . Sc i . Eng . I nf . Tec hnol . , J ul y - Aug us t - 2022 , 8
(4) : 316- 323

324

Journal URL : https://ijsrcseit.com/CSEIT228465

