
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT228623

285

Splay Tree and Skip List: Effectiveness and Analysis in Internet

Packet Categorization
Prof. Sumit S Shevtekar, Harish Sumant, Abhijit Suryawanshi

Department of Computer Engineering, Pune Institute of Computer Technology, Pune, Maharashtra, India

Article Info

Publication Issue :

Volume 8, Issue 6

November-December-2022

Page Number : 285-294

Article History

Accepted: 12 Nov 2022

Published: 28 Nov 2022

ABSTRACT

Internet packet traffic has expanded rapidly as a result of the rising number of

world wide web users and the amount of information sent by software

applications which has highlighted the necessity of speeding up the processing

required in network systems. Packet categorization is among the strategies

utilized across network architecture. Skip List and Splay Tree, two of the most

important data structures used in decision trees, will be investigated for their

effectiveness in packet categorization in this study. The period of packet

identification, the amount of memory accesses, and memory consumption per

event make up our performance criterion. These criteria are used to judge

whether data structure, between Skip List and Play Tree, is the preferable one to

use for accurate packet classification.

Keywords : Skip list, Splay tree, Decision Tree, Packet classification, Data

Structures

I. INTRODUCTION

Internet packet traffic has substantially increased as a

result of the rise in users and the volume of

information that programs are exchanging. For this

reason, a crucial proce- dure called packet

classifications is applied to speed up the processing

necessary in network systems such as routers.The

broadest packet-switching network is the Internet. In

this network, data is sent from the source to the

destination in the packet form.The various streams of

packets in network systems are termed to as ”network

packets” by classifica- tion.Number of network

methods incorporate packet routing, packet

classification, and packet guiding policies.using these

key principles, packet flow processing has become

possible at very high velocities, and the same rules

may well be applied to every local traffic

policies.Applications functioning over such a network

that involve packet classification contain security

operations, traffic management and quality of service

(QOS), and policy-based routing are the three distinct

areas.Numerous research have benchmarked various

packet detection methods analytically or

operationally.

A. Desorption

Two processing phases are used by a decomposition-

based method. In the first stage, each filter is searched

separately, and in the second step, In the second

stage, the intersection is used to combine the results

of the all the searches on the various fields. As a

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

286

result, the method has a lot of parallelism potential.

Memory use is high due to the big amount of the data.

B. Extensive search

The primary drawback of these algorithms is the

linear relationship between time complexity and the

quantity of filters. In this kind of method, each item

in a list is examined to see if it matches the search

query argument.

C. Decision tree

Based on the binary patterns in the prefix fields of the

filters, these techniques store the set of filters in

search trees. In order to create a decision tree based

on many fields, a tree is constructed in which the

leaves have a defined filter or a collection of filters

that intersect the traversed prefix from the root to the

leaves. These algorithms examine the binary contents

of the relevant fields on the search tree to find the

most suitable filter matching the input package

The current approaches are not balanced in terms of

time and memory usage. Binary trees, on the other

hand, function well when the elements are

introduced unintentionally but degrade when the

procedures are carried out sequentially. Different data

formats are used by tree algorithms when searching.

The splay tree and the skip list are two of the most

significant data structures commonly used in decision

trees.

The history of access to a splay tree’s elements

determines how well it performs. The effectiveness of

a skip list, on the other hand, is based on an

independent randomization of the height of links that

point to particular parts. Therefore, the operation of

splay trees and skip lists is examined using

probabilistic approaches. For a probabilistic

examination of the complexity of these algorithms,

we point the reader to the references.

Using these two different data structures, we will

assess and contrast the performance of packet-

classifying tree algorithms in this work. We’ll apply

the temporal complexity and memory complexity

standards for this. Memory complexity depends on

how much memory is required by the method’s data

structure.

Time complexity depends on how many memory

locations are used by the algorithm to categorise each

packet.

The paper is divided into the following sections for

struc- ture. Firstly, we review the history of packet

classification tree algorithms and the associated

earlier efforts in order to assess the performance of

these algorithms.Fundamental design and

implementation of tree algorithms based on skip lists

and splay trees is discussed in the third section. A

fourth section explains the tools for creating filters

and packets and compares the performance

assessments in two ways after explaining the

evaluation criteria. A conclusion is presented in the

concluding section, along with suggestions for future

research.

D. Tuple spaces

Partitioning of filters is done by the count of bits

supplied in the search query’s prefixes, splitting the

search space into distinct sub searching

areas.Matching and verification of the incoming

packets is done at the time of classification upon the

prefix fields of interest using basic and tree-based

search algorithms.The packet which is matched with

the tuple is successful ,the tuples that are equivalent

to sets of the tuple with regard to their matching with

other fields of the packet those filters are evaluated.

The memory complexity is more efficient then

decomposition based algorithm.It is determined

whether these filters are consistent with some other

elements of the packet by comparing them with sets

of tuples.

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

287

E. Background

Examining the performance of the skip list and splay

tree data structures when used in multidimensional

search- ing on a packet classifier’s rule set is the major

goal of this work.Because of the manner such data

structures are examined, inserted, and updated, tree-

based packet analyzers can minimise the amount of

memory required throughout the search and, as a

consequence, the complexity of categorization.

According to a review of prior research, no study has

been conducted to properly evaluate the effectiveness

of packet- classifying tree algorithms based on skip

lists and splay trees. Previous attempts did not

compare the effectiveness of various algorithms;

instead, they concentrated on optimizing them.

The skip list was used to increase the speed of data

gathering techniques in local lists. The skip list is

designed to start the search with the nearest node

previously retrieved from this prefix. As a result,

tremendous time is saved. Comprehensive tests show

that their approach can outperform the original

design on a 4 byte device.

To improve the performance of the firewall, Trabelsi

et al. (2015) introduced a multi-stage and dynamic

packet filtering system in 2015. Splay tree filters are

used to implement their suggested mechanism, and it

makes advantage of traffic features to cut down on

packet filtering time. The most favorable customized

pattern for the tree and evaluate if dynamic updates

of the Splay Tree can be predicted by it. Network

window traffic is filtered by the filters. Initial

acceptance of the packet is performed using the splay

tree

data structure which is dynamically updated in line

with the network traffic streams. As a result, frequent

packets require less memory access, which cuts down

on the time required to filter all of the packets.

Zhong, Geng, and Zhao (2013) concentrated on a

straightforward yet significant type of remote

authentication challenge. Membership requests are

validated by this form which has a collection of

dynamic n data components which are stored in

folders with no name. They examined certain

membership request confirmation approaches which

were already existing. Few examples are Merkle hash

tree, skip list and RSA tree. The data structures that

the algorithms in each of these methods utilise to

update the data are either too slow or have a high

level of complexity. Various data structures may also

be able to be rebuilt throughout the updating process.

B+ trees having RSA accumulators are chosen for the

authentication mechanism. Low processing costs for

membership queries are properties of B+ trees hence

they are used.

An incoming packet can be quickly rejected by

maximising the comparison order of the matched

security-rule fields. Trabelsi Zeidan (2012) established

a mechanism in 2012 to enhance the filtering time of

firewall packets. Their suggested solution relied on

rearranging the filtering fields in accordance with

traffic data. It also permitted the use of classifiers with

many levels. Consequently, their suggested approach

might be seen as a defence against denial-of-service

attacks for the device (DoS). Splay trees are used to

achieve early packet acceptance, and they alter

dynamically in relation to traffic streams. An

improvement to the prior method known as Self-

adjusting Binary Search was sought. The prior method

had several drawbacks that were addressed by the

proposed method. Frequent packets require less

memory access. Their approach therefore according

to the simulation results, their proposed mechanism

can improve the firewall’s performance in terms of

total packet processing time, in contrast to the SA-

BSPL approach.

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

288

Zeidan Trabelsi (2011) presented a method in 2011 to

improve firewall performance by thwarting denial-of-

service assaults. They accomplished this using a

statistical traffic plan that was implemented as a

multi-level filter, splay tree, and hash tables, along

with a security policy of filtering. The suggested

approach uses less RAM since it quickly discards

undesirable traffic and repeating packets. In general,

packet matching time is decreased as a result. The

examination of this method’s results shows that the

proposed mechanism greatly shortens the time

required to process DoS traffic.

F. Algorithms and tools

The algorithm is described in this section. Consider

the illustration rules in Table 1. If the source

addresses are equal, the sorting operations are carried

out in accordance with the destination addresses. A

list of criteria is provided here that can be used to

assign priorities to source addresses based on the

length of the addresses. The address at the top of the

list is given priority over all others because the

criteria are ordered from highest to lowest based on

address length (Trabelsi Zeidan, 2012). Source and

destination prefix addresses must be converted into a

list of numbers.The higher and lower limits for each

prefix are listed in Table 2 for this purpose. The prefix

addresses are displayed in a convenient six-bit format.

1) Splay Tree: Every splay tree should be created for a

field, which includes the protocol type, source

address, destination address, source port number, and

destination port number. The tree nodes contain

values, counters to count packet matches, lists of

rules, and pointers to child nodes and parents. All

nodes’ counters are initially set to zero.Each node in

the protocol tree contains a list of rules with protocol

fields that are equal to the node’s value, but nodes in

other trees contain lists of rules with lower

boundaries that are less than or equal to the node’s

value and upper boundaries that are greater than or

equal to the node’s value.The source address,

destination address, source port number, and

destination port number values should be added to

the respective trees in two phases since they have

higher and lower bounds.

The lower boundary is set in the first phase. A node

with a lower boundary value than the root value is

placed on the left tree, and a node with a higher

boundary value than the root value is placed on the

right tree. Each rule is then evaluated by comparing

its upper and lower boundary values to the value of

the lower boundary node. The rule’s ID is added to

the list of lower boundary rules whenever the value

of the lower boundary falls inside the range of that

rule. The rotation operation will be used to relocate

the lower boundary node to the tree’s root after it has

been added to the tree.Inserting the higher border

into the tree is the second step. This action is

comparable to inserting the lower boundry.

Any list or tree’s search results come with a list of

matching rules. An intersection operation is carried

out between the five lists acquired from the splay

trees in order to identify a common rule between

them.

Figure 1 illustrates the procedure for making a splay

tree for the source address fields of the rules in Table

2. The R1 rule has been added to the tree in Fig. 1A.

In order to do this, the lower boundary value is first

entered. The rule with ID 39 is placed at the base of

the tree after R1 and R5 have their IDs added to the

rules list, since 32 falls between them. The R2 rule has

been incorporated into the tree in Fig. 1B. In this

instance, the value 16 is added.The IDs of R2, R3, and

R5 are added to the node’s rules list after the node 16

has first been looked for in the tree. The node 16 will

be correctly positioned if the data is missing. The

correct rotations between numbers 23 to 39 and 16 to

32 are used to finally move node 16 to the root.The

number 23, which represents the bottom border of

R2, is added to Fig. 1C. The R2, R3, and R5 rules are

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

289

added to its set of rules in the next phase. After that,

the node 23 is moved to the root by rotating it left

between the nodes 23 and 16 and right between the

nodes 23 and 32.The R3 rule is subsequently added to

the tree. No modification to the tree takes place

because its values have already been inserted.

2) Skip List: The collection of rules is initially sent to

the computer, which calculates the upper and lower

bounds of the rules before building skip lists (Pan et

al., 2016).

Each of the following fields must be skip-listed:

source address, destination address, source port,

destination port number, and protocol type. Every

skip list comprises a value, a list of pointers to

subsequent nodes based on the level of each node, and

a list of rules. Each node’s level is calculated using a

random method that generates protocol skip list

which contains nodes with a protocol field equal to

their value (0-15 in our implementation), but in other

skip lists, lower boundaries of the corresponding

fields are less than or equal to the node’s value and

higher boundaries are more than or equal to it (Chen

and Li 1998). The source address, destination address,

source port number, and destination port number

should be added to the corresponding skip lists in two

phases because they have higher and lower bounds

(Chen and Li 1998). In the first step, the bottom

border is added. The upper and lower boundary node

values for each rule are then compared to the lower

boundary node value. (Chen and Li 1998). The ID of a

rule is added to the list of lower boundary rules when

the lower boundary value falls inside the range of that

rule. A list of pointers is then constructed for the

newly generated node based on the node’s level. The

top limit is added in the next phase. This action is

comparable to inserting the bottom border. The

procedure for making a skip list for Table 2’s source

address field is shown in Figure 2. In fig 2 R1 rule is

added to the skip list . First, the skip list is updated to

include the lower threshold of 32 at level 0.Because

the number 32 lies between R1 and R5, the ID of

these rules is added to the rules list. The IDs of the R1

and R5 rules are then added to its rules list, and the

higher boundary of 39 at level 2 is placed. The R2 rule

has been added to the skip list in Fig. 2B. The IDs of

R2, R3, and R5 are added to its rules list together with

the value of 16 at level 3. The IDs of R2, R3, and R5

are then added to its rules list together with the value

of 23 at level 1. The R3 rule is added to the skip list in

Fig. 2C.

G. Packet Categorization

The classification of packets using skip lists and splay

trees is as follows. A packet’s header contains

information that is extracted upon receipt, including

the protocol type, source and destination addresses,

source and destination port numbers, and other

information. Next, a skip list or splay tree is formed

for each of the aforementioned fields in the packet,

and it is simultaneously searched for a matching node.

Any list or tree’s search results come with a list of

matching rules. An intersection operation is carried

out between the five lists acquired from the splay

trees in order to identify a common rule between

them. The intersection’s outcome can be null or

include many rules. If the outcome is null, the default

rule’s associated action is applied to the packet;

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

290

otherwise, the highest priority rule’s associated action

is applied.The rule with the shortest row number has

the highest priority because the rules were initially

organised according to priority.The preceding section

explained splay trees, that are binary search trees that

self-adjusting so that the deepest met surviving node

in every operation becomes the root following the

operation. Splay trees don’t keep track of balance or

weight, but because they execute numerous tree

rotations after each access, they are less usefully

efficient than skip lists in many situations. When

nodes are enhanced with auxiliary structures, these

rotations might be especially destructive. The

classification of packets includes this circumstance.

When there is reference locality in the process cycle,

simple operations like move-to- root might assist to

partially overcome this issue and improve the

performance of the splay trees. However, it is not

ideal in the case of packet categorization where the

sequence of the activities has no known locale.(Sahni

Kim, 2002).

Instead, compared to splay trees, skip list algorithms

are simpler, quicker to construct, and offer notable

constant factor speed benefits (Dean Jones, 2007).

Their plan is made to operate well as expected for

busy access patterns (Sahni Kim, 2002). According to

Sen (1991) and Kirschenhofer, Martnez, and

Prodinger (1995), great space is saved by skip lists.

To practically investigate the above predictions about

the performance of these two competitor algorithms,

we imple- ment and experiment them on several data

sets.

II. EVALUATION

On a computer with an Intel Core i5 2.30 GHz

processor and 4 GB of RAM, the C++ implementations

of the splay tree and skip list techniques were run 10

times each. The performance standards were

computed based on average outcomes.

The two methods were compared in terms of memory

utilisation, classification time, and the quantity of

memory accesses required for packet classification.

Rule sets and packet headers were generated using

the Class Bench tool (Taylor Turner, 2007). In the

assessments For our evaluations, we produced a set of

8 k, 32 k, and 128 k packet headers for every set of

rules. The number of memory accesses needed for

packet classification as well as the processing times

for classification with 500, 1K, and 8K rules were

compared using the ACL and IPC rules. To determine

how much memory there is In addition, we used ACL

and 1000 IPC rules. The time from when a packet

first enters. The packet classification time refers to the

structure of the classifier and the time at which the

system may determine the matching rule for a given

packet. The structure of the classifier will operate

properly the quicker the packet classification task can

be finished. The skip list and splay tree are governed

by sets of 1k, 500 and 8k ACL and IPC rules,

respectively.

The period of time from the moment a packet enters

the classifier’s structure and the point at which the

system can identify the matching rule for that packet

is known as the packet classification time. The

classifier’s structure will be more effective the faster

the packet classification time can be completed. In

accordance with sets of 500, 1000, and 8000

ACL and IPC rules for the skip list and splay tree,

Figure 3 illustrates the time required to categorise a

wide range of packets. These two methods are

compared in Figure 3A for 8000 packets.500 rules

show the smallest difference between the two

approaches in these charts, whereas 8k rules show the

biggest difference. The splay tree and skip list classify

packets for 500 IPC and ACL rules in 1,011 and 2,271

ms and 391 and 1,415 ms, respectively. Additionally,

whereas the splay tree takes 684 and 8,131 ms for

packet categorization, the skip list for 8 k IPC and

ACL rules takes 805 and 4,231 ms, respectively. We

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

291

can draw the conclusion that as the number of rules

increases, the classification time disparity between

the two techniques’ results increases. In actuality, the

skip list completes this task better than the splay tree.

Additionally, the kind of rules used and their

compatibility with IPC rules have a substantial impact

on how quickly packets are categorised. A smaller

number of rules would result in a smaller time

difference, whereas a larger number of rules would

result in a larger time difference. Therefore,

performance may be impacted by the sort of rules

chosen for packet classification.

The skip list and splay tree for 32k packets are both

evaluated in Figure 3B. As shown in Fig. 3A, Between

ACL and IPC rules, 500 rules demonstrate the least

variation in packet categorization time, while 8 k

rules show the highest difference. In 1,849 and 4,660

milliseconds, respectively, the skip list classifies

packets for 500 IPC and ACL rules, and in 5,981 and

7,994 milliseconds, respectively, the splay tree.

Additionally, the packet categorization times for the 8

k IPC and ACL rules skip list are 3,192 and 3,813

milliseconds, respectively.Additionally, the splay tree

takes 11,947 and 25,722 milliseconds to categorise

packets whereas the 8 k IPC and ACL rules skip list

require 3,192 and 3,813 milliseconds, respectively.

while the greatest change is shown with 8 k rules.

The skip list classifies packets for 500 ACL and IPC

rules in 1,849 and 4,660 milliseconds, respectively;

the splay tree does it in 5,981 and 7,994 milliseconds,

respectively. ACL rules may be used to handle a

higher volume of packets if the number of rules is

minimal; otherwise, IPC rules should be used for

higher rule counts. The distinction is crucial when

employing 8 k rules for classification. skip list

accomplishes it in 6,792 ms. Similar to the preceding

section, the set of 500 ACL rules exhibits the least

difference between these two approaches, with the

skip list’s packet categorization time being 11,846 ms

and the splay tree’s being 13,020 ms. When using IPC

and ACL rules, there is a sizable difference in packet

classification time between a skip list and a splay tree.

This outcome can be used to choose the best rules for

creating a system that is effective in packet

classification. gain, the scenario with 8 k rules

demonstrates the biggest distinction between the two

methods. Using 8 k IPC and ACL rules, the skip list

categorises packets in 9,508 and 9,778

milliseconds.splay tree completes the same operation

in 22,457 and 72,444 ms. As can be observed, the IPC

rules have a significantly lower time difference than

the ACL rules.

Generally speaking, Fig. 3 demonstrates that the skip

list strategy classifies packets more quickly.

Additionally, the skip list’s enhanced packet

categorization time is substantially lower than the

splay tree’s due to the higher number of rules than

the latter. It is clear that for packet categorization, the

skip list plays best than the splay tree. The speed of

the search is one of the most crucial factors in

determining how well categorization algorithms

operate.

The most significant cause of lengthy packet

command execution in network processor

architecture is memory access. System performance is

decreased by frequent memory access. Reduced

memory access would speed up the operation by

reducing the amount of time needed to classify

packets. Reduced memory access is therefore essential

to an approach’s effectiveness.

The two methods are compared for 8k packets in

Figure 3A. As can be seen, skip list uses less memory

than splay tree in every situation. There are 500 IPC

rules in the skip list, which has a minimum of 65,477

memory accesses. Splay tree has the maximum

number of memory accesses in our evaluation

(477,664 with 8 k ACL rules). The difference in

memory access between the two systems considerably

widens as the number of rules rises. The largest

difference in the amount of memory visits made by

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

292

the skip list and splay tree may be seen in the case

with 8 k ACL rules. The splay tree has 198,664 and

477,664 memory accesses, compared to the skip list’s

104,017 memory accesses and 98,476 memory

accesses with 8 k IPC and ACL rules. but the splay

tree has 198,664 and 477,664 memory accesses,

respectively. The example with 8 k ACL rules shows

the biggest disparity in the number of memory

accesses made by the skip list and splay tree, with

splay tree making 379,188 times more memory

accesses than skip list. For 128 k packets, Figure 3B

contrasts the skip list and splay tree. The skip list

performs better than the splay tree in terms of

memory access, as in earlier parts. The minimal

number of memory accesses, which generally falls

within the skip list with 500 IPC rules, is 215,169.

The maximum number, 1890056, is part of the splay

tree and has 8 k ACL rules. Time required for packet

classification for sets of 500, 1K, and 8K ACL and IPC

rules for various packet counts. (A) 8k, (B) (B) both

(C) 32k and 128k packets. Memory use for 1K ACL

and IPC rules is shown in Fig. 3. The memory

consumption of the splay tree and skip list algorithms

is shown, respectively, by the red and blue bars.

Furthermore, the increase in memory accesses for the

skip list with more rules is much less evident than for

the splay tree. As a result, it may be said that The skip

list excels the splay tree in terms of efficiency.

significant finding is the precise agreement in all

instances between the results of memory access time

and number. The quantity of memory utilisation is

another performance requirement for classification

algorithms. Therefore, lowering memory use should

be the goal of every strategy. Figure 5 displays the

memory consumption in bytes for the skip list and

splay tree.

The splay tree had 6356259 times more memory

accesses than the skip list in the case of 8 k ACL rules,

which is the biggest difference between the two

methods. In regards to memory access, Figure 4 shows

how the skip list surpasses the splay tree.

Additionally, the skip list’s rise in memory accesses

with more rules is far less pronounced than the splay

tree’s. As a result, it may be said that the skip list

performs more effectively than the splay tree.

According to the charts in Figures 3 and 4, another

significant finding is the precise agreement in all

instances between the results of memory access time

and number.

Because of memory limits in most systems and the

high costs of updating memories, another

performance criterion for classification algorithms is

memory use. As a result, every approach should aim

to reduce memory use. The memory consumption in

bytes for the skip list and splay tree used to categorise

packets using 1 k ACL and IPC rules is shown in

Figure 5. Splay tree requires 30,528 bytes of RAM for

IPC rules and 158,440 bytes for ACL rules, whereas

skip list uses 31,700 bytes for IPC rules and 162,960

bytes for ACL rules. Skip list consumes significantly

more memory than splay tree with both sets of rules.

The pointers in a skip list are stored in this extra

space. Additionally, both methods use substantially

less RAM when using IPC rules than when using ACL

rules.

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

293

Fig. 1: Packet classification time for the sets of 500,

1000, and 8000 ACL and IPC rules for different

numbers of packets. (A) 8k, (B) 32k, and (C) 128k

packets.

Fig. 3 : Memory usage for 1k ACL and IPC rules. The

red and blue bars represent the memory usage of the

splay tree and skip list algorithms respectively

III. CONCLUSION

One of the fundamental operations of network

processors is Packet classification. Selecting a packet

categorization system that really can catch pace with

network speed is the critical issue. The use of memory

should be optimized using such a method. Memory

and time usage cannot be balanced using the current

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 285-294

294

techniques. Binary trees, on the other hand, function

well when the members are introduced

unintentionally but degrade when the operations are

carried out sequentially. Because of this, we

concentrated on the skip list and the splay tree. Our

findings indicate that the skip list performs better in

regards to package categorization time and memory

visits.

Additionally, when there are more rules, a skip list

takes less time and uses less memory than a splay tree

to classify packets. Due to the pointers being stored in

skip lists, the skip list uses a little bit more memory

than the splay tree. The large decrease in memory

accesses and packet categorization time in skip lists,

however, can be used to appropriately justify this

extra space. Therefore, it may be said that the skip list

is preferable than the splay tree. The authors want to

examine the parallelization of both approaches on

graphics processors and assess how well their

parallelized versions perform in future research. It

goes without saying that the algorithms’ data and

control dependencies will effect how well they

function in parallel processing.

IV. ACKNOWLEDGMENT

This paper and the research behind it would not have

been possible without the exceptional support of our

supervisor Prof.Sumit Shevtekar, ME Computer

Engg., Pune Institute of Computer Technology. His

enthusiasm, knowledge and exacting attention to

detail have been an inspiration and kept our work on

track from our first encounter of this topic to the final

draft of this paper.

V. REFERENCES

[1]. Efficient Packet Classification using Splay Tree

Models Srinivasan, T., Nivedita, M. Mahadevan,

V.: Efficient Packet Classification Using Splay

Tree Models. IJCSNS International Journal of

Computer Science and Network Security 6(5),

28–35 (2020)

[2]. Khezrian N, Abbasi M.2019. Comparison of the

performance of skip lists and splay trees in

classification of internet packets.PeerJ

Computer Science 5:e204

[3]. Analysis of an optimized search algorithm for

skip lists. Theoretical Computer Science.2018

by Kirschenhofer, Mart´ınez Prodinger (2018)

Kirschenhofer P, Mart´ınez C, Prodinger

HJTCS.

[4]. Efficient memristor-based architecture for

intrusion detection and high-speed packet

classification by V Bontupalli , C Yakopcic,

HasanR,TahaTM. 2021. ACM Journal on

Emerging Technologies in Computing Systems

14(4):41.

[5]. Fast packet classification algorithm for

network-wide forwarding behav- iors by Inoue

T, Mano T, Mizutani K, Minato S-I, Akashi O.

2018. : A fast and scalable IP lookup engine for

GPU-based softwarerouters by Li Y, Zhang D,

Liu AX, Zheng J. 2013 In: The proceedings of

the ninth ACM/IEEE conference on

networking and communications system

designs. Piscataway: IEEE Press.

[6]. A survey and classification of Several different

packet classifying techniques by B. Nagpal, N.

Singh, N. Chauhan, and R. Murari. 2015.

Cite this article as :

Prof. Sumit S Shevtekar, Harish Sumant, Abhijit

Suryawanshi, "Splay Tree and Skip List: Effectiveness

and Analysis in Internet Packet Categorization",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8

Issue 6, pp. 285-294, November-December 2022.

Available at doi :

https://doi.org/10.32628/CSEIT228623

Journal URL : https://ijsrcseit.com/CSEIT228623

