
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT228626

101

An Architectural Pattern for Dynamic Component Integration
Dr. L. Kathirvelkumaran1, Dr. R. Saravana Moorthy2

1Assistant Professor and Head, Department of Computer Science with Data Analytics, Kongunadu Arts and

Science College, Coimbatore, Tamil Nadu, India
2Associate Professor and Head Department of Computer Science, Kongunadu Arts and Science College,

Coimbatore, Tamil Nadu, India

Article Info

Publication Issue :

Volume 9, Issue 1

January-February-2023

Page Number : 101-105

Article History

Accepted: 01 Jan 2023

Published: 25 Jan 2023

ABSTRACT

The continuing increase of interest in Component-based Software Engineering

(CBSE) signifies the emergence of a new development trend within the software

industry. CBSE deals with the usage of reusable software components to provide

complex integrated solutions at shorter development time and minimum cost.

This engineering approach emphasizes the identification, selection, evaluation,

procurement, integration, and evolution of reusable components for

constructing complex and large-scale software solutions. Component-based

development approach has a great potential for significantly reducing the cost

and time to market of large-scale and complex software systems, improving

system maintainability and flexibility. However the usage of components

imposes some problems in the development process. Especially, the complexity

of the integration process is increased due to the black box nature of the

products. Integration is further influenced by problems due to architectural

mismatches, component incompatibility etc. Apart from these general static

integration problems, necessity for intelligent services and context aware

computing paves way for the dynamic integration of components. Patterns have

promising benefits in solving software design problems and their benefits have

been realized in the design of component integration also. Patterns exist in

different levels. Architectural patterns provide the overall structure of a system;

design patterns deal with localized design choices; Idioms define patterns of

usage within a particular language. Design patterns express proven techniques

making it possible to reuse successful designs and provide a common vocabulary

to share design descriptions. Architectural patterns cover a wider realm,

specifying system-wide structural properties for an application, and impacting

on subsystem architecture. This report presents the study of literature related to

patterns and its application in the design of component-based systems. An

Architectural pattern has been proposed in this report, for the design of a

component-based system that dynamically integrates components. The

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Dr. L. Kathirvelkumaran et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 101-106

102

dynamism is achieved using a service model.

Keywords: Component-based Software Engineering (CBSE) ,identification,

selection, evaluation, procurement, integration and evolution .

I. INTRODUCTION

omponent-based software development, a rapidly

emerging trend in industrial software engineering, is

based on the concept of building software systems by

selecting, adapting and integrating a set of pre-

engineered and pre-tested reusable software

components.

1.1 Component Integration

A recurring problem in component based

development is; there is no single off-the-shelf

component that satisfies all the software

requirements. In many cases, the solution is to

integrate two or more components, and when

combined, they satisfy the requirements, though

some of the code must still be implemented in-house.

The integration approach to component usage

involves the developer buying two or more separate

software packages and integrating them into a larger

system. Integration is influenced by problems due to

architectural mismatches, component incompatibility

etc. The scenario becomes more complicated when

necessity for intelligent services and context aware

computing arrives that paves way for the dynamic

integration of components.

1.2 Software Patterns

Patterns for software development are one of the

latest “hot topics” to emerge from the object-oriented

community. They are a literary form of software

engineering problem-solving discipline that has its

roots in a design movement of the same name in

contemporary architecture, literate programming, and

the documentation of best practices and lessons

learned in all vocations.

The authors of Patterns of Software Architecture[]

define three types of patterns: architectural, design

and idiom.

An architectural pattern expresses a fundamental

structural organization or schema for software

systems. It provides a set of predefined subsystems,

specifies their responsibilities, and includes rules and

guidelines for organizing the relationships between

them.

A design pattern provides a scheme for refining the

subsystems or components of a software system, or

the relationships between them. It describes

commonly recurring structure of communicating

components that solves a general design problem

within a particular context.

An idiom is a low-level pattern specific to a

programming language. An idiom describes how to

implement particular aspects of components or the

relationships between them using the features of the

given language.

1.3 Architectural patterns

Architectural patterns have been proposed in many

domains as means of capturing recurring design

problems that arise in specific design situations. They

document existing, well-proven design experience,

allowing reuse of knowledge gained by experienced

practitioners [1]. For example, a software architecture

pattern describes a particular recurring design

problem and presents a generic scheme for its

solutions.

The solution scheme contains components, their

responsibilities and relationships. Patterns for

software architectures also exhibit other desirable

properties: (i) patterns provide a common vocabulary

and understanding for design principles; (ii) they are a

C

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Dr. L. Kathirvelkumaran et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 101-106

103

means for documenting software architectures; (iii)

they support the construction of software with

defined properties; (iv) they support building complex

and heterogeneous software architectures; and (v)

they help managing software complexity.

1.4 Patterns and component based design

The prospect of building software applications out of

pre-fabricated parts represents a fundamental

departure from the development-centric view of

current software engineering practices. This is an

assembly-based and composition-centric view of

software engineering (Component-based Software

Engineering).

Component-based software development encounters

several major challenges, one of which is to integrate

components in software systems because it is not easy

to modify components and most components are

black boxes. Hence, selecting appropriate components

and identifying the interactions among these

components become vital to the success of

component-based software development. The

integration mechanism has to perform compatibility

check of a black-box component with a target

architecture based on functional and non-functional

requirements. Before components are integrated, the

way in which components are expected to interact

among themselves has to be known. Some

interactions result in better software quality and

others do not. Hence, it is important to identify

component interactions in a way to achieve good

software quality and high development productivity.

Design patterns incorporate proven design

experiences and reusing them will prevent designers

from discovering solutions to each solution problem

from the scratch. Therefore an approach has been

proposed [30] that use design patterns for automatic

generation of the component wrappers for component

integration. The goal is to facilitate CBSD by partially

automating component-based software design and

implementation.

The component-based software development process

that adopts design patterns can be summarized in

Figure 1.

1.5 Dynamic Integration of Components

Traditionally, in CBSE technologies, several

components are packaged together to create software

systems. Emerging concerns include multiple

suppliers of components that provide the same

functionality, coping with multiple versions, and

configuration of components. Currently, CBSE

addresses issues and technologies related to COTS

components, inbuilt components, and application

frameworks.

Flexible information systems use COTS components

because they cost-effectively supply required

component functionality. However, as there is a

movement toward a world in which programmable

devices greatly outnumber people, information

systems will increasingly need to address this

ubiquitous-computing context, or ambient intelligent

environment. Such dynamic environments require

coping with anticipated change, such as the release of

new COTS versions. However, they also require

coping with emergent behavior, which arises from

interactions between a system’s components

(including its environment) and thus can’t always be

anticipated.

Thus the integration of COTS components into such a

system requires a dynamic architecture that changes

as the system evolves. This runtime architecture can

integrate COTS components into flexible information

system. Such a system exists in a dynamic

environment and must evolve to incorporate new

capabilities from that environment. Thus a set of

mechanisms for integrating COTS components and

incorporating control systems principles are needed to

guide the system’s ongoing evolution which extends

its use of COTS components’ capabilities, replace one

COTS component with another, or refine its own

architecture based on the COTS components available

in its environment.

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Dr. L. Kathirvelkumaran et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 101-106

104

To summarize, dynamic component integration

facilitates the creation of so-called Intelligent Services

from COTS components, legacy components, and

application frameworks. These services can be

integrated at run time based on available resources

and thereby allow for a federation of services that can

evolve over time.

Fig. 1. Pattern based development of CBSD

II. AN ARCHITECTURAL PATTERN FOR

DYNAMIC COMPONENT INTEGRATION

Context

Software systems mainly information systems use

components because they cost-effectively supply the

required functionality. The whole system is designed

by integrating a number of heterogeneous (desktop,

legacy, network) components so as to offer the

expected functionality. However, as there is a

movement toward a world in which programmable

devices greatly outnumber people, information

systems also need to be flexible in order to address the

rise of ubiquitous-computing context, or ambient

intelligent environment. Such dynamic environments

require coping with anticipated change, according to

users requirements. However, they also require

coping with emergent behavior, which arises from

interactions between a system’s components and thus

can’t always be anticipated. This requires a dynamic

environment in which components are to be

integrated at run time.

Problem

Emerging technologies of component integration

provide a component model where a predefined

infrastructure acts as “plumbing” that facilitates

communication between components. Hence a novel

approach is needed that supports the dynamic

integration of components.

Forces

Dynamic integration requires the dynamic

discovery of the interfaces, handling of mismatches

between the components while integration and the

automatic generation of glue code so as to integrate

the components at run time.

Solution

Given these software engineering considerations, our

goal is to provide a more flexible framework for

integrating software components. We are making use

of the Service Model in order to facilitate the

dynamic integration of components. From an

architectural point of view the proposed system is a

networked application, consisting of interacting

service components. Components can be integrated

into the system at any time and integrated

components can also be disconnected from the system

after the usage.

The service-based paradigm used for dynamic

component integration looks at software reuse from a

different perspective in which components are

viewed as services available on a network The

proposed framework supports the construction of

applications by dynamically integrating these services

at run-time, based on available resources that allows

for a federation of services that can evolve over time.

The process of dynamic component integration

involves wrapping of components of services with

appropriate adapters and storing them in a repository.

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Dr. L. Kathirvelkumaran et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 101-106

105

Generation and execution of clients performs the

integration of the specified services at run time.

Once the services are generated and stored in a

repository, clients can make use of these services by

identifying a general class of service that is required

and the architectural style is necessary to properly

interact with a client.

Once services become available and join the network,

the client is notified. The client integrates with the

services by performing the GUI component

integration as well as the service adapter integration

and utilizes the service.

Solution Discussion

As the components of the service model implements

only a portion of the required functionality, it can be

smaller and, therefore, easier to develop, test, and

maintain. The memory requirements, and

consequently the execution speed, of software

applications can be reduced. This is justifiable because

an application need contain only the core

functionality, while other, more exotic features, can

be loaded and run only when needed. As the

components that provide services are loaded on

demand and removed afterwards, the process of

updating the functionality of an application can be

simplified. New versions of those components can be

substituted as soon as they are developed; whenever

the user needs specific service or services, he will

access the most up-to-date version.

Finally, more flexible pricing schemes can be devised

and implemented, in which the users pay only for the

services (i.e., functionality) they actually use, rather

than for the mammoth-sized applications with the

functionality they don’t need and never use.

Other potential benefits of using a service-based

approach for developing software is that at any given

time, a wide variety of alternatives may be available

that meet the needs of a given client (availability). As

a result, any or all of the services may be integrated

with a client at runtime.

Resulting Context

You now have a flexible framework which facilitates

dynamic component integration thereby allowing the

evolution of a federation of services.

Known Uses

The know uses of dynamic component integration

using a services model include systems for context

aware computing, ambient intelligence and

exploitation of services in ad-hoc networks.

Diagram

Fig.2 Dynamic discovery and integration of

components

III. CONCLUSION AND FUTURE WORK

The discussed work focuses on two emerging fields of

software development viz. component based software

development and software patterns. The literature

related to patterns and its application to components

has been analyzed. An architectural pattern has been

proposed for the problem of dynamic component

integration. This work has been extended by

formulating a pattern language for the same problem

discovering solutions to the recurring problems that

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Dr. L. Kathirvelkumaran et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 101-106

106

arise in dynamically integrating components using

the services model. The proposed patterns have been

used in the construction of a component based

personal information system.

IV. REFERENCES

[1]. Ali Arsanjani,” A Pattern-based Approach for

Building Reusable, Technology-neutral

Component Integration Architectures”, IBM,

National E-business Application

Development, Center of Competency.

[2]. Ali Arsanjani, “CBDi: A Pattern Language for

Component-based Development and

Integration”, IBM, National E-business

Application Development, Center of

Competency, 2001.

[3]. Andy Crabtree, Tom Rodden, ”Patterns:

Problem and Solutions?”, The University of

Nottingham.

[4]. Anind K. Dey, Gregory D. Abowd, Andrew

Wood,”CyberDesk: A Framework for

Providing Self-Integrating Context-Aware

Services”, ACM Press, 2015.

[5]. Gerald C. Gannod, Sudhakiran V. Mudiam,

Timothy E. Lindquist, ”Automated Support

for Service-based Software Development and

Integration”, The Journal of Systems and

Software, 2004 Haines Capt Gary, Carney

David, Foreman John, ” Component-Based

Software Development/ COTS Integration”,

Software Technology Review, 2017

[6]. Philip Eskelin, ”Component Interaction

Patterns”, PLoP 1999.

[7]. Stephen S. Yau, Ning Dong, ”Integration in

Component-Based Software Development

Using Design Patterns”, IEEE, 2020.

[8]. Uwe Zdun, ”Some Patterns of Component and

Language Integration”.

Cite this article as :

Dr. L. Kathirvelkumaran, Dr. R. Saravana Moorthy,

"An Architectural Pattern for Dynamic Component

Integration", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 9, Issue 1, pp.101-106, January-

February-2023. Available at doi :

https://doi.org/10.32628/CSEIT228626

Journal URL : https://ijsrcseit.com/CSEIT228626

