

doi : https://doi.org/10.32628/CSEIT228660

Transfer Learning Approaches for Alzheimer disease Classification: A Review

Alpesh Solanki¹, Dr. Sheshang Degadwala², Dhairya Vyas³

*1Computer Engineering Department, Sigma Institute of Engineering, Vadodara, Gujarat, India
²Computer Engineering Department, Sigma Institute of Engineering, Vadodara, Gujarat, India
³Managing Director, Shree Drashti Infotech LLP, Vadodara, Gujarat, India

ABSTRACT

Article Info

Publication Issue : Volume 8, Issue 6 November-December-2022

Page Number : 386-393

Article History

Accepted: 20 Nov 2022 Published: 05 Dec 2022 Alzheimer's disease is a kind of dementia that causes cell death in the brain. Consistent cell death in the brain causes a gradual loss of cognitive abilities. We are only scratching the surface of a therapy for this illness. Whatever the case, its early results have the potential to help in stopping the spread of illness. An automated localization and classification framework that can identify and organize the individual with Alzheimer's disease should be constructed for use in the early diagnosis of the illness utilizing MRI of the brain (MRI). These systems need not only to be able to identify Alzheimer's patients, but also to differentiate between the four phases of Alzheimer's. The paper aims to Future research on Alzheimer's stage prediction will be guided by a discussion of various Machine Learning and Deep Learning methodologies and their advantages. The advantages and disadvantages of deep learning, as well as other machine learning methods, are reviewed so that the best option may be selected. **Keywords :** Alzheimer's disease, Convolution network, Alex-net, Recurrent Neural Network, Resnet, VGG-net.

I. INTRODUCTION

By far, Alzheimer's disease is the most prevalent kind of dementia. Alzheimer's disease is а neurodegenerative disorder characterised by progressive brain shrinkage and cell death. Of the estimated 50 million persons with dementia globally, 60–70% are thought to have Alzheimer's disease. The illness is named after the German doctor who discovered it, Alois Alzheimer. In 1906, he documented "Auguste Symptoms. "'s Memory loss, abnormal behaviour, and a diminished brain volume were some of the symptoms. In a medical journal article published in 1910, Dr. Alzheimer's colleague, psychiatrist Emil Kraepelin, first used the term "Alzheimer's disease." High levels of beta-amyloid and tau, two proteins found in the brain, are a strong indicator of Alzheimer's disease. In 1984, scientists discovered beta-amyloid. In Alzheimer's disease patients, tau tangles were first identified two years later. The two proteins may inflict harm on brain cells (neurons) [1,4,6].

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

Figure 1. Alzheimer Brain

Alzheimer's disease destroys brain cells and disrupts their ability to communicate with one another. The five stages of Alzheimer's disease are as follows: (1) preclinical Alzheimer's disease, (2) mild cognitive impairment due to Alzheimer's disease, (3) mild dementia due to Alzheimer's disease, (4) moderate dementia due to Alzheimer's disease, (5) severe dementia due to Alzheimer's disease [8,9].

Sr.	Name of paper	Year	Journal	Methods	Advantages
No					
1.	Transfer Learning Assisted Classification and Detection of Alzheimer's Disease Stages Using 3D MRI	2019	Sensors	AlexNet, ImageNet, contrast stretching, K-Mean clustering	It is giving overall accuracies of 89.6% and 92.8% for binary and multi- class problems, respectively
2.	Auto-DetectionofAlzheimer'sDiseaseUsingDeepConvolutionalNeuralNetworks [2]	2018	14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC- FSKD	Convolutional Neural Network SVM	Using DCNN for diagnosing the disease of AD to achieve high level of accuracy.
3.	Transfer Learning for Alzheimer's Disease Detection on MRI Images [3]	2019	The 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)	Deep learning, CNN, RNN	recurrent neural networks can improve the accuracy of CNNs in general.
4.	TransferLearningWithIntelligentTrainingDataSelectionfor	2019	SPECIAL SECTION ON DEEP LEARNING FOR	CNN	They validate their hypothesis with detailed experiments

II. LITERATURE STUDY

			COMPLETED		
	Prediction of		COMPUTER-		on the benchmark
	Alzheimer's Disease		AIDED		ADNI dataset,
			MEDICAL		obtain 95.19%
			DIAGNOSIS		accuracy results.
5.	Binary Classification	2019	Journal of Digital	ANN, 2D-CNN	They work for
	of Alzheimer's		Imaging		custom CNN model
	Disease Using MRI				built with separable
	Imaging Modality				convolutional layers
	and Deep Learning				and compared its
	[5]				performance on
					three datasets.
6.	Detection of	2018	10th International	Fourier Descriptor	The results revealed
	Alzheimer's Disease		conference on		classification
	with Shape Analysis		soft computing		accuracy of 87.5%.
	of MRI Images [6]		and intelligent		
			systems		
7.	A deep feature-based	2020	Multimedia Tools	AlexNet	They use efficient
	real-time system for		and Applications-		transfer learning
	Alzheimer disease		Springer		architecture
	stage detection [7]				ALexnet to
					extract deep
					features which are
					further used for AD
					stage classification
8.	Automatic	2020	Informatics in	Linear SVM	MRI based
	classification of		Medicine		classification
	cognitively normal,		Unlocked-		with
	mild cognitive		Elsevier		neuropathological
	impairment and				AD using ML
	Alzheimer's disease				algorithms such as
	using structural MRI				RF
	analysis [8]				and SVM classifiers
	·				with 77% accuracy
9.	Early Diagnosis of	2019	IEEE/ACM	Deep neural	DNN classify high
	Alzheimer's Disease		Transaction	network	dimensionally
	Based on Resting-		on Computational		multimedia data
	State Brain Networks		Biology and		and could help to
	and Deep Learning		Bioinformatics		predict and prevent
	[9]				AD.
I					

Alpesh Solanki et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 386-393

10.	Effective Use of Data	2018	IEEE	20th	ML	techniques-	The use	of Mac	chine
	Science Toward		International	1	PCA,	ICA	Learning	to ass	ist in
	Early Prediction of		Conference	on			the dia	gnosis	and
	Alzheimer's Disease		High				predictio	on pr	ocess
	[10]		Performance	!			of	Alzhei	mer's
			Computing	and			disease v	will he	lp to
			Communicat	ions			learn n	nore a	about
							the dise	ase an	d its
							behaviou	ır.	

III. METHODS AND MATERIAL

A. AlexNet [1,3,11]

A large perceptron (RNN) may be able to achieve high excellent on a highly difficult dataset by using solely supervised learning methodologies, according to the findings of the AlexNet study. In the year after the debut of AlexNet, a competition was launched that has continued to this day.

The Convolutional Neural Network is used to categories all contributions to the ImageNet database. CNN is a pioneer in biomedical research, ushering in a new age with AlexNet, which was created in collaboration with the National Institutes of Health and launched in 2004. Because a variety of deep learning are readily available, the mounting of AlexNet is rather basic.

B. Resnet [2,4]

ResNet-50 is a convolutional neural network that is 50 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. It is a construction piece that was destroyed but which still contains a bridged connector (formerly known as a legacy connection) that permits data to flow through it without being altered in any way despite the destruction. The data signal x is converted into an output signal F by the activation curve layer. It is composed of two types: layer 1 and layer 2, which are interconnected (x). The transfer seems to be comparable to those of a connection that has been skipped in this instance. The residual unit in this specific design demonstrates how it control signal x varies from those of the thanks to advances F, which is a result of the construction process itself (x). In accordance with the findings of this study, if the infrastructure has also fruitfully recreated the linear mapping that is assembled on a given spot, the improvements may be effective to minimize muscular endurance in the unavailable slabs on varying scales to essentially zero, but also guarantee that the output passes across the disconnect with next to no damage.

The ResNet architecture follows two basic design rules. First, the number of filters in each layer is the same depending on the size of the output feature map. Second, if the feature map's size is halved, it has double the number of filters to maintain the time complexity of each layer. ResNet-50 has an architecture based on the model depicted above, but with one important difference. The 50-layer ResNet uses a bottleneck design for the building block. A bottleneck residual block uses 1×1 convolutions, known as a "bottleneck", which reduces the number of parameters and matrix multiplications. This enables

much faster training of each layer. It uses a stack of three layers rather than two layers.

Figure 2. ResNet Model Layers

All hidden layers are equipped with the rectification (ReLU) non-linearity. It is also noted that none of the networks (except for one) contain Local Response Normalisation (LRN), such normalization does not improve the performance on the ILSVRC dataset but leads to increased memory consumption and computation time.

C. VggNet [3,8]

The input to cov1 layer is of fixed size 224 x 224 RGB image. The image is passed through a stack of convolutional (conv.) layers, where the filters were used with a very small receptive field: 3×3 (which is the smallest size to capture the notion of left/right, up/down, centre). In one of the configurations, it also utilizes 1×1 convolution filters, which can be seen as a linear transformation of the input channels (followed by non-linearity). The convolution stride is fixed to 1 pixel; the spatial padding of conv. layer input is such that the spatial resolution is preserved after convolution, i.e., the padding is 1-pixel for 3×3 conv. layers. Spatial pooling is carried out by five maxpooling layers, which follow some of the conv. layers (not all the conv. layers are followed by max-pooling). Max-pooling is performed over a 2×2-pixel window, with stride 2. Three Fully Connected (FC) layers follow a stack of convolutional layers (which has a different depth in different architectures): the first two have 4096 channels each, the third performs 1000-way ILSVRC classification and thus contains 1000 channels (one for each class). The final layer is the soft-max layer. The configuration of the fully connected layers is the same in all networks.

	Input		RNN [3]	Every piece of	It is quite tough
				knowledge	to train an RNN.
	Conv 1-1			accumulated	When utilizing
	Conv 1-2			through time. It	tanh or relu as
	Pooing			is only effective	an activation
	Conv 2-1			in time series	function, it
	Conv 2-2			prediction since	won't be able to
	Pooing			it has the ability	handle very
	Conv 3-1			to recall past	lengthy
	Conv 3-2			inputs.	sequences.
	Conv 3-3	<	AlexNet	This led to faster	This model has a
	Pooing	ଜୁ	[1,3,11]	training of	relativelv
	Conv 4-1	6) 上		models.	shallow depth
	Conv 4-2	6		It also worked	compared to the
	Conv 4-3			well for the time	other models
				with color	discussed in this
	Conv 5-1			images.	post, and as a
	Conv 5-2			It does not limit	result, it fails to
	Pooing			the output unlike	learn features
	Dence			other activation	from picture
	Dense			functions	sets
Dense			Improve model	5013.	
				training speed	
	Output			since not all	
				perceptrop's are	
Fi	gure 4. Vgg-16 Mod	el Layers		perceptions are	
			Res Not [2 /]	Allows vou to	Complex to
	IV. Comparative A	nalysis		bypass	Implement 10
	- ጥለ DI C I	-		connections	implement
			To increase		
COMPARATIVE ANALISIS			efficiency and		
Method	Advantage	Disadvantages		and acouracy batch	
CNN [1,2,4]	Increased	Takes more time		normalization is	
	efficiency.	to train			
	It is simple to	Complex		useu.	
	categories.				
	Deals with a large				

amount of data Handles a wide

range of data

TT NT (VCC: 1	TT1 11
VggNet	VGG introduces a	The model
[3,8]	model that has	produced using
	been pre-trained.	VggNet has a
	As the depth of	problem with
	the model is	disappearing
	increased, the	gradients.
	accuracy	The ResNet is
	improves.	slower.
	The non-	
	linearity, which	
	is always positive,	
	increases as the	
	number of layers	
	with smaller	
	kernels increases.	

V. CONCLUSION

Alzheimer's Disease Stages diagnosis or categorization necessitates an understanding of the disease's distinct characteristics. However, spotting distinctive patterns in features is sometimes difficult, especially when the data is huge. We can't utilise typical approaches to discover patterns or develop mathematical models since data obtained from the environment is frequently non-linear. Machine learning-based methods, on the other hand, do not work for massive data, and they take longer and provide less accuracy than deep learning approaches.

So, in the future, if deep learning is the most recent technology that is aiming to tackle this problem. Deep learning's layers may be changed, and when combined with Max Polling, fully connected and soft max layers perform better for Alzheimer's Disease Stages categorization.

VI.REFERENCES

[1] M. Maqsood et al., "Transfer learning assisted classification and detection of alzheimer's disease stages using 3D MRI scans," Sensors (Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112645.

- [2] L. Yue et al., "Auto-detection of alzheimer's disease using deep convolutional neural networks," ICNC-FSKD 2018 14th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., pp. 228–234, 2018, doi: 10.1109/FSKD.2018.8687207.
- [3] A. Ebrahimi-Ghahnavieh, S. Luo, and R. Chiong, "Transfer learning for Alzheimer's disease detection on MRI images," Proc. 2019 IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun. Technol. IAICT 2019, pp. 133–138, 2019, doi: 10.1109/ICIAICT.2019.8784845.
- [4] I. R. R. Silva, G. S. L. Silva, R. G. De Souza, W.
 P. Dos Santos, and R. A. A. De Fagundes, "Model Based on Deep Feature Extraction for Diagnosis of Alzheimer's Disease," Proc. Int. Jt. Conf. Neural Networks, vol. 2019-July, no. July, pp. 1–7, 2019, doi: 10.1109/IJCNN.2019.8852138.
- N. M. Khan, N. Abraham, and M. Hon, "Transfer Learning with Intelligent Training Data Selection for Prediction of Alzheimer's Disease," IEEE Access, vol. 7, pp. 72726–72735, 2019, doi: 10.1109/ACCESS.2019.2920448.
- [6] A. Bin Tufail, Y. K. Ma, and Q. N. Zhang, "Binary Classification of Alzheimer's Disease Using sMRI Imaging Modality and Deep Learning," J. Digit. Imaging, 2020, doi: 10.1007/s10278-019-00265-5.
- [7] H. Fuse, K. Oishi, N. Maikusa, and T. Fukami, "Detection of alzheimer's disease with shape analysis of MRI images," Proc. - 2018 Jt. 10th Int. Conf. Soft Comput. Intell. Syst. 19th Int. Symp. Adv. Intell. Syst. SCIS-ISIS 2018, pp. 1031–1034, 2018, doi: 10.1109/SCIS-ISIS.2018.00171.
- [8] H. Nawaz, M. Maqsood, S. Afzal, F. Aadil, I. Mehmood, and S. Rho, "A deep feature-based real-time system for Alzheimer disease stage

detection," Multimed. Tools Appl., 2020, doi: 10.1007/s11042-020-09087-y.

- [9] V. P. S. Rallabandi, K. Tulpule, and M. Gattu, "Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer's disease using structural MRI analysis," Informatics Med. Unlocked, vol. 18, 2020, doi: 10.1016/j.imu.2020.100305.
- [10] I. Beheshti and H. Demirel, "Feature-rankingbased Alzheimer's disease classification from structural MRI," Magn. Reson. Imaging, vol. 34, no. 3, pp. 252–263, 2016, doi: 10.1016/j.mri.2015.11.009.
- T. Altaf, S. M. Anwar, N. Gul, M. Majid, and M. N. Majeed, "2017 Multi-class Alzheimer Disease Classification using Hybrid Features.pdf," 2017 Futur. Technol. Conf., no. November, pp. 264–267, 2017.

Cite this article as :

Alpesh Solanki, Dr. Sheshang Degadwala, Dhairya Vyas, "Transfer Learning Approaches for Alzheimer disease Classification: A Review", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8 Issue 6, pp. 386-393, November-December 2022. Available at doi : https://doi.org/10.32628/CSEIT228660 Journal URL : https://ijsrcseit.com/CSEIT228660

