

Retinopathy Image Augmentation Using Robust Generative Adversarial Networks (GANs) : A Review

Rutu Pathak¹, Dr. Sheshang Degadwala², Dhairya Vyas³

*1Computer Engineering Department, Sigma Institute of Engineering, Vadodara, Gujarat, India
²Computer Engineering Department, Sigma Institute of Engineering, Vadodara, Gujarat, India
³Managing Director, Shree Drashti Infotech LLP, Vadodara, Gujarat, India

ABSTRACT

Article Info

Publication Issue : Volume 8, Issue 6 November-December-2022

Page Number : 428-435

Article History Accepted: 20 Nov 2022 Published: 05 Dec 2022 Crimes against women have become a global problem, and many governments are striving to curb them. The National Crime Records Bureau indicates that crimes against women have risen substantially. In June, NCW received the most crime complaints against women in eight months. The Indian government is interested in finding a solution to this problem and promoting social progress. Each year, crime reports generate a vast amount of data, which is collated. This information may help us evaluate and anticipate criminal behavior and reduce criminal activity. Data analysis involves assessing, cleansing, manipulating, and modelling data to draw conclusions and enhance decision-making. This research uses supervision learning to analyze the Indian women's criminal examination. The police department received crime reports. Anomalies, invalid locations, longitudes, and scopes were created in advance. The study was meant to breakdown women's crimes by kind and district and produce crime heat maps. The results help decision makers predict and prevent crimes against women. Applying Find the geographical criminal hotspot and the kind of crime, such as murder, rape, sexual assault, beating, dowry threats by the husband or his family, immoral trafficking, stalking, etc.

Keywords : Crime against women, Data Mining, Region, Machine Learning, Forecasting, Support Vector Machine, K-nearest Neighbor, Random Forest, Decision Tree, Navier Bayes.

I. INTRODUCTION

The overall crime rate has been steadily climbing for quite some time now. Because criminal activity is either methodical or fortuitous, it is impossible to predict it. Crimes committed against women are sometimes referred to as gender-based forms of violence. Acts of criminality that are done against women and girls, either mostly or only. It is a crime that is fast growing at an alarming rate in many regions of the nation in the present day. The purpose of this study is to conduct a survey of the criminal activity that is causing crime against women and to come up with effective preventative methods. As a

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

result, it is imperative to perform an analysis of the various types of data pertaining to crimes committed against women to make projections regarding patterns and trends. This will enable law enforcement officials to take effective measures to reduce the number of crimes committed against women. Here are some examples of many sorts of crimes that may be committed in India, including homicide, rape, sexual assault, battering, dowry threats, cruelty committed by the husband or his family, bringing females into the nation illegally, immoral trafficking, etc.

The application of data mining methods may improve the accuracy, performance, and speed with which crime predictions are made. Mining methods are used to assess criminal trends based on both recently collected data and historical information. Therefore, the primary obstacle that stands in our way is the creation of a better and more effective instrument for the identification of crime patterns, which will allow us to properly identify crime patterns.

Problems Associated with Crime Prediction:

- Increase the amount of information in the • criminal record that should be positioned to the left and studied.
- The analysis of in sequence raises concerns • given that, in turn, incompatibility and deficiency exist.
- Restrictions on how much may be made by • selling criminal records at the beginning of the rule The office of enforcement
- The specificity of the research location must be • determined in advance for the agenda to be accurate.

Sr.	Title	Publication- Method Advantage		Future Work	
No.		Year			
1	Diabetic	IEEE Access	Prognosis of	This model improved	Work with Large
	Retinopathy	2020	Microaneurysm	robustness and	data volumes and a
	Detection Using		and early	stability for image	high range of
	Prognosis of		diagnostics	segmentation.	applications.
	Microaneurysm and		system for non-		
	Early Diagnosis		proliferative		
	System for Non-		diabetic		
	Proliferative		retinopathy		
	Diabetic		(PMNPDR)		
	Retinopathy Based				
	on Deep Learning				
	Algorithms				
2	Application of	Springer-	Generative	Varies Methods of	By optimizing
	generative	2022	Adversarial	Generative	ophthalmology
	adversarial		Network	Adversarial Network	datasets, GAN
	networks (GAN) for			is discussed with its	approaches may
	ophthalmology			applications	improve pathological
	image				ocular condition
	domains: a survey				identification
					systems.

II. LITERATURE STUDY

	Deen I		aun an-i J	DI mothed for DD	I Iltimatala
	Deep Learning	IEEE Access-	supervised	DL methods for DR	
3	Techniques for	2022	learning, self-	detection &	transformer-based
	Diabetic		supervised	classification. scores	models enable better
	Retinopathy		learning	reported of existing	interpretability for
	Classification: A			methods.	researchers and
	Survey				future work
	Convolutional	IEEE-2021	CNN	Training accuracy	The future scope of
	Neural Network for			from 80% to about	this includes the
	Diabetic			94% is improved up	model will be
	Retinopathy			to 30 epochs, and	improved and trained
4	Detection			after 30 epochs the	on more
				accuracy is almost	datasets to be capable
				constant at around	of identifying more
				96%.	diseases to help the
					physician in the
					clinic and hospitals.
	Detection of	IEEE-2021	Adaptive	Fundus images and	Increasing No of
	Diabetic		Histogram,	classify them into	images using data
	Retinopathy and its		CNN	various stages of	augmentation
5	Classification from			progress of disease as	
5	the Fundus Images			Normal, Moderate	
				and Proliferative	
				Diabetic Retinopathy	
				(PDR).	
	Self-Attention	2019	Model-	Effective in	Not work on medical
	Generative		SAGAN	modelling long-	images.
6	Adversarial			range dependencies.	
	Networks			Work with ImageNet	
				Datasets	
	Semi-supervised	Computer	Model- BUS-	BUS-GAN model can	Burden of a tedious
7	Segmentation of	Methods and	GAN	achieve higher	image annotation
	Lesion from Breast	Programs in		segmentation	process and
	Ultrasound Images	Biomedicine-		accuracy on both the	alleviating the
	with Attentional	2019		in-house testing	subjective influence
	Generative			dataset and the	of physician's
	Adversarial			public dataset.	experiences in
	Network				clinical practice.
	Image Super-	Computerized	Model- PGAN	This method gives	Does not work with
8	Resolution Using	Medical		high quality of	image translation or
	Progressive	Imaging and		images for high	combine factors.
	Generative	Graphics-		scaling factors.	
		-		, č	

	Adversarial	2018			
	Networks for				
	Medical Image				
	Analysis				
	MedGAN: Medical	Elsevier-2019	Model-	The Model	Work with MR
		Elseviel-2017	MedGAN	framework	image only.
	0		MedGAN		iniage only.
	using GANs			outperformed other	
9				similar translation	
				approaches	
				quantitatively and	
				qualitatively across	
				the different task.	
	Unpaired Brain	IEEE-2018	Model-	CycleGAN are very	Tasks that require
	MR-to-CT		CycleGAN	good image quality	Ũ
10	Synthesis using a			approaches that of	0 0
	Structure-			paired image-to-	such as cat-to-dog
	Constrained			image translation on	translations, usually
	CycleGAN			many tasks.	fail.
	Data Augmentation	IEEE 9th	Model- GAN	the quality and	improve the accuracy
	For Deep Learning	Global		accuracy of the	of image generation
	Using Generative	Conference		results achieved	from a small amount
11	Adversarial	on Consumer		were sufficient	of data using a GAN
**	Networks	Electronics			to generate images of
		(GCCE)-2020			comparable quality to
					that of the training
					dataset.
	Data Augmentation	IEEE-2021	Model- GAN	increase the quality	By increasing the size
12	Powered by			of few-shot learning	and diversity of the
	Generative			face identification by	real facial dataset, the
	Adversarial			using Generative	Predictor's accuracy
	Networks			Adversarial	could increase.
				Network-based data	
				augmentation	
				techniques.	

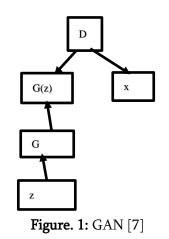
III. DIFFERENT GAN TYPES

A. Generative Adversarial Network [1,2,5,7]

The functioning of the first GAN is shown in figure 1. where the G and D represent different types of neural networks. An arbitrary noise data vector, denoted by z, is provided to G as an input. This vector is sampled from the distributed p. (z).

$$L_{G=min_{G}} Ez_{p(z)} \left[log(1 - D(G(z))) \right]$$
[2]

G intends to manufacture data that are as close to the genuine ones as is humanly feasible in the hopes that D will be unable to differentiate between the real and the false data. The functions listed above are those used to optimize D and G respectively



B. Deep Convolution Generative Adversarial Network [2]

Because G and D are both ordinary fully connected networks, they are not suitable for use in the production of graphics and so are not included in the original GAN. The distribution of picture data is quite intricate and has a high number of dimensions.

Image creation has been improved because to the development of deep convolutional generative adversarial networks (CNN-GAN), which effectively combined the capabilities of CNNs and GANs. CNNs provide images in a more aesthetically pleasing manner compared to fully linked networks. GAN has a mode collapse problem. The DCGAN recommends a variety of approaches that may be used to strike a healthy balance throughout the training process. Both G and D are examples of fully convolutional neural networks that do down-sampling by use stride convolution rather than a pooling layer.

C. CycleGAN [3, 9]

Pix2pix requires picture pairs, of which at least one must have annotations applied to it; this process consumes a lot of time and results in a considerable financial investment. The Cycle-GAN algorithm recommends using a ring-closed network that consists of two generators and two discriminators. Since there are now two generators and discriminators, the overall structure as well as the flow of data is more complicated than it was in the preceding systems.

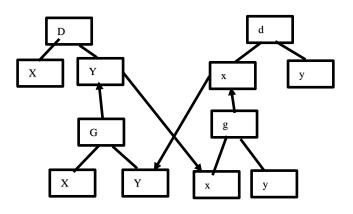


Figure. 2: Cycle-GAN [11]

D. Laplacian Generative Adversarial Network [4,11]

It is not necessary to complete all GAN tasks simultaneously; rather, they may be completed one at a time, which will result in the generation of a whole picture in phases. Replication and the use of residual pictures are the two LAPGAN qualities that, when combined, significantly cut down on the quantity of material and level of complexity that GAN needs to" learn.

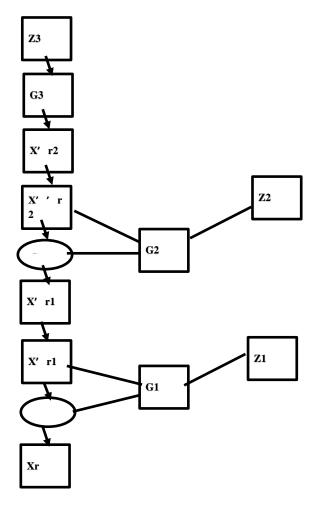


Figure. 3: LAPGAN [1]

E. Conditional Generative Adversarial Network [19,22]

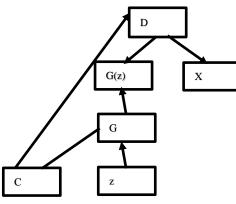


Figure 4: CGAN [12]

To create high-dimensional image data, GAN utilizes a random noise vector with a very small dimension. There are too many degrees of freedom in this approach. Conditional generative adversarial networks improve controllability by introducing a constraint c to data that is a component of both G and D's input layer and directs the production of" data.

IV.Comparative Analysis

TABLE I COMPARATIVE ANALYSIS OF GANS

Туре	Acc	Epoch	Parameters	Limitation
GAN	90.2	100	sensitivity,	То
[1,3,5	%		specificity,	determine
,13,1			AUC	whether
4]				other
				systems
				function
				works as
				well as the
				one being
				utilized,
				more
				research is
				required.
DCG	91.7	90	Accuracy	extend the
AN	%			current
[2,21				network
]				architectur
				e to
				automatical
				ly identify
				other blood
				cells in
				addition to
				WBCs.

Cycle	86.6	40-80	Accuracy,	The lack of
GAN	%		FID score	easily
[1,11,				available
20]				real-world
				picture
				datasets
				that have
				been
				annotated
				to a high
				standard is
				а
				substantial
				challenge
				for the
				fields of
				medical
				image
				processing
				and
				machine
				learning.
Med	84.57	60	Mean	More
GAN	%		score	research
[6,1				should be
0,				done to
18,19				classify
, 21]				various
				medical
				image
Wav	79%	50	Accuracy,	More
eGA			Precision	research
Ν				and
[15,				investigatio
16,				ns are
17,				required in
22]				the areas of
				COVID-19
				and the
				pandemic
				to evaluate
				the

	potential
	for a non-
	contact
	audio or
	speech-
	based
	diagnosis.
	This is
	necessary
	for the
	purpose of
	analyzing
	the
	possibilities

V. CONCLUSION

This study is oriented to GAN for Retinopathy imaging, lists the standard GAN techniques for medical image synthesis. The difficulties with datasets, training techniques, dependability, and mode collapse are highlighted.

The requirement for GANs that are more suited for medical imaging, clinical demands that have advanced, and future directions of unsupervised learning are also covered. It is obvious that GAN offers significant potential and growth opportunities in medical imaging.

VI.REFERENCES

- [1] L. Qiao, Y. Zhu, and H. Zhou, "Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms," IEEE Access, vol. 8, pp. 104292–104302, 2020, doi: 10.1109/ACCESS.2020.2993937.
- [2] A. You, J. K. Kim, I. H. Ryu, and T. K. Yoo, "Application of generative adversarial networks (GAN) for ophthalmology image domains: a

survey," Eye Vis., vol. 9, no. 1, 2022, doi: 10.1186/s40662-022-00277-3.

- M. Z. Atwany, A. H. Sahyoun, and M. Yaqub,
 "Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey," IEEE Access, vol. 10, pp. 28642–28655, 2022, doi: 10.1109/ACCESS.2022.3157632.
- [4] S. N. Firke and R. B. Jain, "Convolutional Neural Network for Diabetic Retinopathy Detection," Proc. - Int. Conf. Artif. Intell. Smart Syst. ICAIS 2021, pp. 549–553, 2021, doi: 10.1109/ICAIS50930.2021.9395796.
- [5] M. Shelar, S. Gaitonde, A. Senthilkumar, M. Mundra, and A. Sarang, "Detection of Diabetic Retinopathy and its Classification from the Fundus Images," 2021 Int. Conf. Comput. Commun. Informatics, ICCCI 2021, pp. 3–8, 2021, doi: 10.1109/ICCCI50826.2021.9402347.
- [6] Zaman, A., Park, S. H., Bang, H., Park, C. woo, Park, I., & Joung, S. (2020). Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images. International Journal of Computer Assisted Radiology and Surgery, 15(6), 931–941. https://doi.org/10.1007/s11548-020-02192-1
- Zhuang, Z., Li, N., Raj, A. N. J., Mahesh, V. G.
 V., & Qiu, S. (2019). An RDAU-NET model for lesion segmentation in breast ultrasound images. PLoS ONE, 14(8). https://doi.org/10.1371/journal.pone.0221535
- [8] Negi, A., Raj, A. N. J., Nersisson, R., Zhuang, Z., & Murugappan, M. (2020). RDA-UNET-WGAN: An Accurate Breast Ultrasound Lesion Segmentation Using Wasserstein Generative Adversarial Networks. Arabian Journal for Science and Engineering, 45(8), 6399–6410. https://doi.org/10.1007/s13369-020-04480-z
- [9] Mahapatra, D., Bozorgtabar, B., & Garnavi, R.
 (2019). Image super-resolution using progressive generative adversarial networks for medical image analysis. Computerized Medical

Imaging and Graphics, 71, 30–39. https://doi.org/10.1016/j.compmedimag.2018.10 .005

- [10] Karim, A., et al. (2019). MedGAN: Medical image translation using GANs. Computerized Medical Imaging and Graphics, 79, 0895-6111. https://doi.org/10.1016/j.compmedimag.2019.10 1684
- [11] Poka, K. B., & Szemenyei, M. (2020, October 15). Augmentation Data Powered by Generative Adversarial Networks. 2020 23rd IEEE International Symposium on Measurement and Control in Robotics, ISMCR 2020. https://doi.org/10.1109/ISMCR51255.2020.9263 725
- [12] Yorioka, D., Kang, H., & Iwamura, K Data Augmentation for Deep Learning Using Generative Adversarial Networks. 2020 IEEE 9th Global Conference on Consumer Electronics,2020, 516–518. https://doi.org/10.1109/GCCE50665.2020.92919 63

Cite this article as :

Rutu Pathak, Dr. Sheshang Degadwala, Dhairya Vyas, "Retinopathy Image Augmentation Using Robust Generative Adversarial Networks (GANs) : A Review", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8 Issue 6, pp. 428-435, November-December 2022. Available at doi : https://doi.org/10.32628/CSEIT228665 Journal URL : https://ijsrcseit.com/CSEIT228665

